搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于激发态分子内质子转移过程的HBT-OMe分子检测HClO的荧光增强机理

刘晓军 杨雪

引用本文:
Citation:

基于激发态分子内质子转移过程的HBT-OMe分子检测HClO的荧光增强机理

刘晓军, 杨雪

Mechanism of fluorescence enhancement of HClO detected by excited-state intramolecular proton transfer based HBT-OMe molecule

Liu Xiao-Jun, Yang Xue
PDF
HTML
导出引用
  • 采用密度泛函理论(DFT)和含时密度泛函理论(TDDFT)方法, 基于连续介质模型, 对HBT-OMe分子及其与HClO反应的产物基态和激发态结构及电荷分布等性质进行研究, 优化构型结果表明, HBT-OMe分子不能发生质子转移过程而其产物分子则能发生. 红外振动光谱与分子共价作用分析进一步证实产物分子能发生质子转移过程. 计算的前线分子轨道结果表明: HBT-OMe分子存在扭曲电荷转移(TICT)过程, 最高已占据分子轨道(HOMO)和最低未占据分子轨道(LUMO)电荷密度重叠小导致HBT-OMe分子荧光强度弱, 结合产物分子势能曲线发现, 产物分子质子转移过程能抑制分子的TICT过程, 从而使其荧光强度增强.
    The molecule with excited-state intramolecular proton transfer (ESIPT) has wide applications in fluorescent probe, biology imaging, light-emitting materials, etc. Biologically active oxygen hypochlorite (HClO) exists widely in the biological and chemical environment, which can pose a great threat to human health. Design of HClO-sensitive molecules in solvents is very important. Recently, Wu et al. [Wu L L, Yang Q Y, Liu L Y, et al. 2018 Chem. Commun. 54 8522] designed an ESIPT-based HBT-OMe probe molecule, which can detect HClO due to its methoxy-hydroxy-benzothiazole. They found that the fluorescence intensity of the system gradually increases with HClO increasing. However, the microscopic mechanism of this highly efficient fluorescent probe is not well understood. Therefore, in this work, we theoretically investigate the ESIPT mechanism of the HBT-Ome and its product molecule by using density functional theory and time-dependent density functional theory. Based on polarizable continuum model (PCM) with the integral equation formalism variant (IEFPCM) and Becke’s three-parameter hybrid exchange function with the Lee-Yang-Parr gradient-corrected functional (B3LYP) as well as the TZVP basis, the optimized structures are obtained. The structures show that the HBT-Ome product molecules tend to undergo proton transfer in the excited state but HBT-OMe molecules cannot undergo the proton transfer process. The analysis of frontier molecular orbitals not only explains the reason why the fluorescence of the HBT-Ome product is enhanced, but also demonstrates that the HBT-Ome fluorescence intensity is diminished owing to twisted intramolecular charge transfer in the excited state. It is twisted intramolecular charge transfer that leads smaller charge density to be overlapped and the fluorescence intensity of HBT-OMe molecule to be further weakened. Infrared vibrational spectrum shows the enhancement of intramolecular hydrogen bond of O—H, which indicates the tendency of proton transfer. The molecular covalent interaction analysis shows that the intramolecular interactions of HBT-OMe remain largely unchanged clearly. The intramolecular O—H bonding interaction is weakened, and the N—H bonding interaction is increased for HBT-OMe product molecule. The enhancement of intramolecular hydrogen bond of N—H further illustrates the trend of proton transfer. The calculated potential energy curve provides direct evidence for the occurrence of ESIPT in the HBT-Ome product molecule. Our work is of great significance in designing and synthesizing the HClO fluorescent probes based on ESIPT molecules.
      通信作者: 刘晓军, xiaojunliuqqhr@163.com
    • 基金项目: 国家自然科学基金 (批准号: 11904126) 资助的课题.
      Corresponding author: Liu Xiao-Jun, xiaojunliuqqhr@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11904126).
    [1]

    Chen K Y, Cheng Y M, Lai C H, Hsu C C, Ho M L, Lee G H, Chou P T 2007 J. Am. Chem. Soc. 129 4534Google Scholar

    [2]

    Coe J D, Martinez T J 2005 J. Am. Chem. Soc. 127 4560Google Scholar

    [3]

    English D S, Zhang W, Kraus G A, Petrich J W 1997 J. Am. Chem. Soc. 119 2980Google Scholar

    [4]

    Fischer M, Wan P 1998 J. Am. Chem. Soc. 120 2680Google Scholar

    [5]

    Fischer M, Wan P 1999 J. Am. Chem. Soc. 121 4555Google Scholar

    [6]

    Weller A 1956 Berichte der Bunsengesellschaft für physikalische Chemie 60 1144

    [7]

    Keck J, Kramer H E A, Port H, Hirschk T, Fischer P, Rytz G 1996 J. Phys. Chem. 100 14468Google Scholar

    [8]

    Demchenko A, Klymchenko A, Pivovarenko V, Ercelen S, Duportail G, Mely Y 2003 J. Fluoresc. 13 291Google Scholar

    [9]

    Park S, Kwon J E, Kim S H, Seo J, Chung K, Park S Y, Jang D J, Medina B M, Gierschner J 2009 J. Am. Chem. Soc. 131 14043Google Scholar

    [10]

    Han J, Li Y Y, Wang Y, Bao X, Wang L, Ren L, Ni L, Li C 2018 Sens. Actuators B 273 778Google Scholar

    [11]

    Wu S M, Pizzo S V 2001 Arch. Biochem. Biophys. 391 119Google Scholar

    [12]

    Khatib S, Musa R, Vaya J 2007 Bioorg. Med. Chem. 15 3661Google Scholar

    [13]

    Mao L C, Liu Y Z, Yang S J, Li Y X, Zhang X Y, Wei Y 2019 Dyes Pigments 162 611Google Scholar

    [14]

    Dickinson B C, Chang C J 2008 J. Am. Chem. Soc. 130 11561Google Scholar

    [15]

    He Y H, Xu Y, Shang Y T, Zheng S W, Chen W H, Pang Y 2018 Anal. Bioanal. Chem. 410 7007Google Scholar

    [16]

    Pan Y M, Huang J, Han Y F 2017 Tetrahedron Lett. 58 1301Google Scholar

    [17]

    Wu L L, Yang Q Y, Liu L Y, Sedgwick A C, Cresswell A J, Bull S D, Huang C S, James T D 2018 Chem. Commun. 54 8522Google Scholar

    [18]

    Becke A D 1993 J. Chem. Phys. 98 5648Google Scholar

    [19]

    Zhu L X, Zhou Q, Cao B F, Li B, Wang Z R, Zhang X L, Yin H, Shi Y 2022 J. Mol. Liq. 347 118365Google Scholar

    [20]

    Arshad M N, Khalid M, Asad M, Braga A A C, Asiri A M, Alotaibi M M 2022 ACS. Omega. 7 11631Google Scholar

    [21]

    Yang D P, Yang G, Zhao J F, Zheng R, Wang Y S 2017 RSC Adv. 7 1299Google Scholar

    [22]

    Yang D P, Zhao J F, Zheng R, Wang Y S, Lyu J 2015 Spectrochim. Acta A 151 368Google Scholar

    [23]

    Zhao J F, Dong H, Yang H, Zheng Y J 2018 Org. Chem. Front. 5 2710Google Scholar

    [24]

    Zadeh S S, Ebrahimi A, Shahraki A 2023 Spectrochim. Acta Part A 292 122453Google Scholar

    [25]

    Song P, Li Y Z, Ma F C, Pullerits T, Sun M T 2013 J. Phys. Chem. C 117 15879Google Scholar

    [26]

    Zhou Q, Du C, Yang L, Zhao M Y, Dai Y M, Song P 2017 J. Phys. Chem. A 121 4645Google Scholar

    [27]

    Han J H, Liu X C, Li H, Yin H, Zhao H F, Ma L N, Song Y D, Y Shi 2018 Phys. Chem. Chem. Phys. 20 26259Google Scholar

    [28]

    Zutterman F, Liégeois V, Champagne B 2022 J. Phys. Chem. B 126 3414Google Scholar

    [29]

    Cammi R, Tomasi J 1995 J. Comput. Chem. 16 1449Google Scholar

    [30]

    Mennucci B, Cancès E, Tomasi J 1997 J. Phys. Chem. B 101 10506Google Scholar

    [31]

    Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 09, Gaussian, Inc, Wallingford, CT, USA, 2009

    [32]

    Wang Y, Shi Y, Cong L, Li H 2015 Spectrochim. Acta A 137 913Google Scholar

    [33]

    Zhao G J, Han K L 2007 J. Phys. Chem. A 111 9218Google Scholar

    [34]

    Zhao G J, Han K L 2007 J. Phys. Chem. A 111 2469Google Scholar

    [35]

    Yang Y G, Liu Y F, Yang D P, Li H, Jiang K, Sun J F 2015 Phys. Chem. Chem. Phys. 17 32132Google Scholar

    [36]

    Yang Y J, Liu Y F, Yang D P, Li H, Jiang K, Sun J F 2015 Spectrochim. Acta Part A 151 814Google Scholar

    [37]

    Johnson E R, Keinan S, Mori-Sanchez P, Contreras-García J, Cohen A J, Yang W 2010 J. Am. Chem. Soc. 132 6498Google Scholar

    [38]

    Liu S L, Zhao Y S, Zhang C P, Lin L Q, Li Y X, Song Y F 2019 Spectrochim. Acta, Part A 219 164Google Scholar

    [39]

    Lu T, Chen F W 2012 J. Comp. Chem. 33 580Google Scholar

    [40]

    Humphery W, Dalke A, Schulten K 1996 J. Mol. Graph 14 33Google Scholar

    [41]

    Sobolewski A L, Domcke W 1999 J. Phys. Chem. A 103 4494Google Scholar

    [42]

    Sobolewski A L, Domcke W 1999 Phys. Chem. Chem. Phys. 1 3065Google Scholar

    [43]

    Li C Z, Ma C, Li D L, Liu Y F 2016 J. Lumin. 172 29Google Scholar

  • 图 1  优化的HBT-OMe-OMe几何构型 (a) S0态; (b) S1态. 产物分子几何构型 (c) S0态; (d) S1态. 其中粉色为氧原子, 绿色为氮原子, 黄色为硫原子

    Fig. 1.  Optimized structures of HBT-OMe: (a) S0; (b) S1. Product molecule: (c) S0; (d) S1. O atom: pink; N atom: green; S atom: yellow.

    图 2  HBT-OMe的前线分子轨道 (a) HOMO; (b) LUMO. 产物分子的前线分子轨道 (c) HOMO; (d) LUMO

    Fig. 2.  The frontier molecular orbital of HBT-OMe: (a) HOMO; (b) LUMO. Product molecule: (c) HOMO; (d) LUMO.

    图 3  产物分子的IR振动光谱

    Fig. 3.  The infrared vibrational spectrum of product molecule.

    图 4  HBT-OMe分子及产物分子在S0态((a), (c)), S1态((b), (d))的非共价相互作用图

    Fig. 4.  The RDG and scatter diagram of HBT-OMe and product molecule in S0 ((a), (c)) and S1 ((b), (d)).

    图 5  产物的势能曲线

    Fig. 5.  The potential energy curve of product molecule.

    表 1  HBT-OMe-OMe重要的二面角信息

    Table 1.  Dihedral angle information of HBT-OMe.

    反应物
    N1—C2—C3— C4C3—C4—O5—C6
    S026.2473.223
    S1–101.690–76.981
    产物
    N1—C2—C3—C4C3—C4—O5—H6
    S0–0.005–0.004
    S10.028–0.011
    下载: 导出CSV

    表 2  HBT-OMe的垂直激发能

    Table 2.  Vertical excitation energy of HBT-OMe.

    Electronic excitation energy/nmOscillator strengthsOrbital transition
    反应物
    S1392.860.0082H → L (98.8%)
    S2367.890.0003H-1 → L (99.1%)
    产物
    S1357.490.1228H → L (96.9%)
    S2307.230.4634H-2 → L (4.3%)
    H-1 → L (91.9%)
    下载: 导出CSV
  • [1]

    Chen K Y, Cheng Y M, Lai C H, Hsu C C, Ho M L, Lee G H, Chou P T 2007 J. Am. Chem. Soc. 129 4534Google Scholar

    [2]

    Coe J D, Martinez T J 2005 J. Am. Chem. Soc. 127 4560Google Scholar

    [3]

    English D S, Zhang W, Kraus G A, Petrich J W 1997 J. Am. Chem. Soc. 119 2980Google Scholar

    [4]

    Fischer M, Wan P 1998 J. Am. Chem. Soc. 120 2680Google Scholar

    [5]

    Fischer M, Wan P 1999 J. Am. Chem. Soc. 121 4555Google Scholar

    [6]

    Weller A 1956 Berichte der Bunsengesellschaft für physikalische Chemie 60 1144

    [7]

    Keck J, Kramer H E A, Port H, Hirschk T, Fischer P, Rytz G 1996 J. Phys. Chem. 100 14468Google Scholar

    [8]

    Demchenko A, Klymchenko A, Pivovarenko V, Ercelen S, Duportail G, Mely Y 2003 J. Fluoresc. 13 291Google Scholar

    [9]

    Park S, Kwon J E, Kim S H, Seo J, Chung K, Park S Y, Jang D J, Medina B M, Gierschner J 2009 J. Am. Chem. Soc. 131 14043Google Scholar

    [10]

    Han J, Li Y Y, Wang Y, Bao X, Wang L, Ren L, Ni L, Li C 2018 Sens. Actuators B 273 778Google Scholar

    [11]

    Wu S M, Pizzo S V 2001 Arch. Biochem. Biophys. 391 119Google Scholar

    [12]

    Khatib S, Musa R, Vaya J 2007 Bioorg. Med. Chem. 15 3661Google Scholar

    [13]

    Mao L C, Liu Y Z, Yang S J, Li Y X, Zhang X Y, Wei Y 2019 Dyes Pigments 162 611Google Scholar

    [14]

    Dickinson B C, Chang C J 2008 J. Am. Chem. Soc. 130 11561Google Scholar

    [15]

    He Y H, Xu Y, Shang Y T, Zheng S W, Chen W H, Pang Y 2018 Anal. Bioanal. Chem. 410 7007Google Scholar

    [16]

    Pan Y M, Huang J, Han Y F 2017 Tetrahedron Lett. 58 1301Google Scholar

    [17]

    Wu L L, Yang Q Y, Liu L Y, Sedgwick A C, Cresswell A J, Bull S D, Huang C S, James T D 2018 Chem. Commun. 54 8522Google Scholar

    [18]

    Becke A D 1993 J. Chem. Phys. 98 5648Google Scholar

    [19]

    Zhu L X, Zhou Q, Cao B F, Li B, Wang Z R, Zhang X L, Yin H, Shi Y 2022 J. Mol. Liq. 347 118365Google Scholar

    [20]

    Arshad M N, Khalid M, Asad M, Braga A A C, Asiri A M, Alotaibi M M 2022 ACS. Omega. 7 11631Google Scholar

    [21]

    Yang D P, Yang G, Zhao J F, Zheng R, Wang Y S 2017 RSC Adv. 7 1299Google Scholar

    [22]

    Yang D P, Zhao J F, Zheng R, Wang Y S, Lyu J 2015 Spectrochim. Acta A 151 368Google Scholar

    [23]

    Zhao J F, Dong H, Yang H, Zheng Y J 2018 Org. Chem. Front. 5 2710Google Scholar

    [24]

    Zadeh S S, Ebrahimi A, Shahraki A 2023 Spectrochim. Acta Part A 292 122453Google Scholar

    [25]

    Song P, Li Y Z, Ma F C, Pullerits T, Sun M T 2013 J. Phys. Chem. C 117 15879Google Scholar

    [26]

    Zhou Q, Du C, Yang L, Zhao M Y, Dai Y M, Song P 2017 J. Phys. Chem. A 121 4645Google Scholar

    [27]

    Han J H, Liu X C, Li H, Yin H, Zhao H F, Ma L N, Song Y D, Y Shi 2018 Phys. Chem. Chem. Phys. 20 26259Google Scholar

    [28]

    Zutterman F, Liégeois V, Champagne B 2022 J. Phys. Chem. B 126 3414Google Scholar

    [29]

    Cammi R, Tomasi J 1995 J. Comput. Chem. 16 1449Google Scholar

    [30]

    Mennucci B, Cancès E, Tomasi J 1997 J. Phys. Chem. B 101 10506Google Scholar

    [31]

    Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 09, Gaussian, Inc, Wallingford, CT, USA, 2009

    [32]

    Wang Y, Shi Y, Cong L, Li H 2015 Spectrochim. Acta A 137 913Google Scholar

    [33]

    Zhao G J, Han K L 2007 J. Phys. Chem. A 111 9218Google Scholar

    [34]

    Zhao G J, Han K L 2007 J. Phys. Chem. A 111 2469Google Scholar

    [35]

    Yang Y G, Liu Y F, Yang D P, Li H, Jiang K, Sun J F 2015 Phys. Chem. Chem. Phys. 17 32132Google Scholar

    [36]

    Yang Y J, Liu Y F, Yang D P, Li H, Jiang K, Sun J F 2015 Spectrochim. Acta Part A 151 814Google Scholar

    [37]

    Johnson E R, Keinan S, Mori-Sanchez P, Contreras-García J, Cohen A J, Yang W 2010 J. Am. Chem. Soc. 132 6498Google Scholar

    [38]

    Liu S L, Zhao Y S, Zhang C P, Lin L Q, Li Y X, Song Y F 2019 Spectrochim. Acta, Part A 219 164Google Scholar

    [39]

    Lu T, Chen F W 2012 J. Comp. Chem. 33 580Google Scholar

    [40]

    Humphery W, Dalke A, Schulten K 1996 J. Mol. Graph 14 33Google Scholar

    [41]

    Sobolewski A L, Domcke W 1999 J. Phys. Chem. A 103 4494Google Scholar

    [42]

    Sobolewski A L, Domcke W 1999 Phys. Chem. Chem. Phys. 1 3065Google Scholar

    [43]

    Li C Z, Ma C, Li D L, Liu Y F 2016 J. Lumin. 172 29Google Scholar

  • [1] 邢凤竹, 崔建坡, 王艳召, 顾建中. 激发态丰质子核的双质子发射. 物理学报, 2022, 71(6): 062301. doi: 10.7498/aps.71.20211839
    [2] 赵嘉琳, 程开, 于雪克, 赵纪军, 苏艳. 几种典型含能材料光激发解离的含时密度泛函理论研究. 物理学报, 2021, 70(20): 203301. doi: 10.7498/aps.70.20210670
    [3] 李亚莎, 孙林翔, 周筱, 陈凯, 汪辉耀. 基于密度泛函理论的外电场下C5F10O的结构及其激发特性. 物理学报, 2020, 69(1): 013101. doi: 10.7498/aps.69.20191455
    [4] 彭婕, 张嗣杰, 王苛, DoveMartin. 经式8-羟基喹啉铝的光谱与激发性质密度泛函. 物理学报, 2020, 69(2): 023101. doi: 10.7498/aps.69.20191453
    [5] 李媛媛, 胡竹斌, 孙海涛, 孙真荣. 胆红素分子激发态性质的密度泛函理论研究. 物理学报, 2020, 69(16): 163101. doi: 10.7498/aps.69.20200518
    [6] 张红, 尹海峰, 张开彪, 林家和. 基于含时密度泛函理论的表面等离激元研究进展. 物理学报, 2015, 64(7): 077303. doi: 10.7498/aps.64.077303
    [7] 徐国亮, 张琳, 路战胜, 刘培, 刘玉芳. 特殊构型Si2N2分子团簇电致激发特性的密度泛函理论研究. 物理学报, 2014, 63(10): 103101. doi: 10.7498/aps.63.103101
    [8] 胡文勇, 邵元智. 局域浓度调控扩散系数的次氯酸-碘离子-丙二酸系统图灵斑图形成中的反常扩散. 物理学报, 2014, 63(23): 238202. doi: 10.7498/aps.63.238202
    [9] 王志萍, 朱云, 吴亚敏, 张秀梅. 质子与羟基碰撞的含时密度泛函理论研究. 物理学报, 2014, 63(2): 023401. doi: 10.7498/aps.63.023401
    [10] 王志萍, 陈健, 吴寿煜, 吴亚敏. 碳分子线C5在激光场中的含时密度泛函理论研究. 物理学报, 2013, 62(12): 123302. doi: 10.7498/aps.62.123302
    [11] 李涛, 唐延林, 凌智钢, 李玉鹏, 隆正文. 外电场对对硝基氯苯分子结构与电子光谱影响的研究. 物理学报, 2013, 62(10): 103103. doi: 10.7498/aps.62.103103
    [12] 张来斌, 任廷琦. 扩环荧光碱基类似物x-腺嘌呤分子基态和激发态性质的理论研究. 物理学报, 2013, 62(10): 107102. doi: 10.7498/aps.62.107102
    [13] 崔磊, 王小娟, 王帆, 曾祥华. 脉冲激光偏振方向对氧分子高次谐波的影响——基于含时密度泛函理论的模拟. 物理学报, 2010, 59(1): 317-321. doi: 10.7498/aps.59.317
    [14] 郑加金, 陆云清, 李培丽. 激发态分子内质子转移有机分子HBT的三阶非线性光学特性. 物理学报, 2010, 59(7): 4687-4693. doi: 10.7498/aps.59.4687
    [15] 郑加金, 陆云清, 李培丽, 陈陶. 激发态质子转移分子2-(2'-羟基苯基)苯并噻唑溶液的全光开关效应. 物理学报, 2010, 59(9): 6626-6631. doi: 10.7498/aps.59.6626
    [16] 顾 斌, 崔 磊, 曾祥华, 张丰收. 超强飞秒激光脉冲作用下氢分子的高次谐波行为——基于含时密度泛函理论的模拟. 物理学报, 2006, 55(6): 2972-2976. doi: 10.7498/aps.55.2972
    [17] 崔 磊, 顾 斌, 滕玉永, 胡永金, 赵 江, 曾祥华. 脉冲激光偏振方向对氮分子高次谐波的影响--基于含时密度泛函理论的模拟. 物理学报, 2006, 55(9): 4691-4694. doi: 10.7498/aps.55.4691
    [18] 蔡建秋, 陶向明, 陈文斌, 赵新新, 谭明秋. Cu(100) (2×22)R45°-O的表面结构与电子态的密度泛函研究. 物理学报, 2005, 54(11): 5350-5355. doi: 10.7498/aps.54.5350
    [19] 顾 斌, 金年庆, 王志萍, 曾祥华. 用含时密度泛函理论计算钠原子跃迁光谱. 物理学报, 2005, 54(10): 4648-4653. doi: 10.7498/aps.54.4648
    [20] 梁晓玲, 李家明. 激发态原子振子强度密度极小点. 物理学报, 1985, 34(11): 1479-1487. doi: 10.7498/aps.34.1479
计量
  • 文章访问数:  3585
  • PDF下载量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-05
  • 修回日期:  2023-03-25
  • 上网日期:  2023-04-11
  • 刊出日期:  2023-06-05

/

返回文章
返回