搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微量元素La和Al-5Ti-1B复合细化Al-Cu机理

杨林洁 张丽丽 江鸿翔 何杰 赵九洲

引用本文:
Citation:

微量元素La和Al-5Ti-1B复合细化Al-Cu机理

杨林洁, 张丽丽, 江鸿翔, 何杰, 赵九洲

Mechanism of grain refinement in Al-Cu alloy by adding trace La and Al-5Ti-1B

Yang Lin-Jie, Zhang Li-Li, Jiang Hong-Xiang, He Jie, Zhao Jiu-Zhou
PDF
HTML
导出引用
  • 实验研究了复合添加微量元素La和Al-5Ti-1B对Al-Cu合金凝固组织的影响, 发现与单独添加Al-5Ti-1B相比, 复合添加Al-5Ti-1B和微量La可进一步细化Al-Cu合金凝固组织, 降低α-Al的形核过冷度. 结合高分辨透射电镜表征和理论计算, 探明了复合添加微量元素La和Al-5Ti-1B对Al-Cu合金凝固组织的细化机理: 经Al-5Ti-1B细化处理的Al-Cu合金凝固时, Cu富集于α-Al与TiB2粒子的界面处, 增加了α-Al与TiB2粒子间的错配度, 降低了TiB2粒子对α-Al的异质形核能力; 添加微量的La能有效降低α-Al与TiB2粒子间的错配度, 减小TiB2粒子和α-Al间的界面能及接触角, 从而提高TiB2粒子促进α-Al的异质形核能力和Al-5Ti-1B对Al-Cu合金晶粒的细化效果.
    Grain refinement of aluminium alloys can not only reduce the defects (such as segregation and hot tearing) but also improve the mechanical properties. Adding Al-5Ti-1B master alloy to the melt has become a common method to refine the solidification microstructure of aluminium alloys. A lot of researches have been carried out to uncover the grain refining mechanisms as well as to show the microstructure formation under the effect of grain refiner. These researches demonstrated that the grain refining efficiency is closely related to the number density of TiB2 particles as well as the solute Ti concentration in the melt. However, there exist still problems to be resolved, such as the limited grain refinement potency of Al-5Ti-1B master alloy. Recently, the addition of trace La to the melt has attracted much attention to control the microstructure of aluminium alloys. The Al-Cu alloys are widely applied to the automobile and aerospace fields due to their high strength, good ductility and high temperature properties. It has been reported that Cu can segregate to Al/TiB2 interface in the Al-Cu melt inoculated with Al-5Ti-1B master alloy. But the effect of Cu segregation on the grain refinement result is not clear yet. Meanwhile, whether the grain refinement effect of Al-5Ti-1B master alloy on Al-Cu alloy can be improved by the addition of trace La has not been reported.Solidification experiments are carried out for Al-2Cu alloy with the addition of Al-5Ti-1B master alloy+ trace La. The synergistic effect of trace La and Al-5Ti-1B on the solidification microstructure of Al-2Cu alloy is investigated. It is found that trace La can effectively enhance the refinement result of Al-2Cu alloy and further diminish the nucleation undercooling. Experimental and calculated results demonstrate that solute Cu segregates to the Al/TiB2 interface and thus increases the interatomic spacing mismatch between Ti (0001) plane of the TiB2 particles and the interfacial monolayer, while La segregation reduces the interatomic spacing mismatch. The trace La addition reduces the interfacial energy between α-Al and TiB2 particles, improves the potency of TiB2 particles to nucleate α-Al, and thus enhances the grain refinement result of Al-5Ti-1B master alloy.
      通信作者: 张丽丽, llzhang@imr.ac.cn ; 赵九洲, jzzhao@imr.ac.cn
    • 基金项目: 国家重点研发计划(批准号: 2021YFA0716303)、中国载人航天工程和国家自然科学基金(批准号: 51901231, 51971227)资助的课题.
      Corresponding author: Zhang Li-Li, llzhang@imr.ac.cn ; Zhao Jiu-Zhou, jzzhao@imr.ac.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2021YFA0716303), the China Manned Space Station Project, and the National Natural Science Foundation of China (Grant Nos. 51901231, 51971227).
    [1]

    张丽丽 2017 博士学位论文 (沈阳: 中国科学院大学)

    Zhang L L 2017 Ph. D. Dissertation (Shenyang: University of Chinese Academy of Sciences) (in Chinese)

    [2]

    Greer A L, Bunn A M, Tronche A, Evans P V, Bristow D J 2000 Acta Mater. 48 2823Google Scholar

    [3]

    Quested T E, Greer A L 2004 Acta Mater. 52 3859Google Scholar

    [4]

    Quested T E, Greer A L 2005 Acta Mater. 53 4643Google Scholar

    [5]

    Easton M A, StJohn D H 2001 Acta Mater. 49 1867Google Scholar

    [6]

    Easton M A, StJohn D H 2005 Metall. Mater. Trans. A 36 1911Google Scholar

    [7]

    Easton M A, StJohn D H 2008 Mater. Sci. Eng. A 486 8Google Scholar

    [8]

    Fan Z, Wang Y, Zhang Y, Qin T, Zhou X R, Thompson G E, Pennycook T, Hashimoto T 2015 Acta Mater. 84 292Google Scholar

    [9]

    Cibula A 1951 J. Inst. Met. 80 1

    [10]

    Crossley F A, Mondolfo L F 1951 JOM. 3 1143Google Scholar

    [11]

    Jones G P, Jones H 1987 Solidification Processing (Sheffield: University of Sheffield) p496

    [12]

    Mohanty P S, Gruzleski J E 1995 Acta Metall. Mater. 43 2001Google Scholar

    [13]

    Fan Z Y 2013 Metall. Mater. Trans. A 44 1409Google Scholar

    [14]

    Maxwell I, Hellawell A 1975 Acta Metall. 23 229Google Scholar

    [15]

    Zhang L L, Zheng Q J, Jiang H X, Zhao J Z 2019 Scr. Mater. 160 25Google Scholar

    [16]

    Li J H, Hage F S, Ramasse Q M, Schumacher P 2021 Acta Mater. 206 116652Google Scholar

    [17]

    吴俊子, 贾锦玉, 姜佳鑫 2018 稀土信息 2 30

    Wu J Z, Jia J Y, Jiang J X 2018 Rare Earth Inform. 2 30

    [18]

    韩延峰 2007 博士学位论文 (上海: 上海交通大学)

    Han Y F 2007 Ph. D. Dissertation (Shanghai: Shanghai Jiao Tong University) (in Chinese)

    [19]

    Zhang Z, Bian X, Wang Y, Liu, X 2003 Mater. Sci. Eng. A 352 8Google Scholar

    [20]

    李克, 饶磊, 闫洪, 王俊, 孙宝德 2006 铸造 9 894

    Li K, Rao L, Yan H, Wang J, Sun B D 2006 Foundry 9 894

    [21]

    董天顺, 崔春翔, 刘双进, 刘福才 2008 稀有金属材料与工程 1 29

    Dong T S, Cui C X, Liu S J, Liu F C 2008 Rare Metal Mater. Eng. 1 29

    [22]

    Wang Z J, Si N C 2015 Rare Metal Mater. Eng. 44 2970Google Scholar

    [23]

    Ma T F, Chen Z Y, Nie Z R, Huang H 2013 J. Rare Earths 31 622Google Scholar

    [24]

    Wang K, Cui C X, Wang Q, Liu S, Gu C 2012 Mater. Lett. 85 153Google Scholar

    [25]

    Wang K, Cui C X, Wang Q, Zhao L, Hu Y 2013 J. Rare Earths 31 313Google Scholar

    [26]

    Zhang L L, Song Y, Yang L J, Zhao J Z, He J, Jiang H X 2022 Materials 15 600Google Scholar

    [27]

    Zhang M X, Kelly P M, Easton M A, Taylor J A 2005 Acta Mater. 53 1427Google Scholar

    [28]

    Wang Y, Fang C M, Zhou L, Hashimoto T, Fan Z 2018 Acta Mater. 164 428Google Scholar

    [29]

    Iida T, Guthrie R I L 1993 The Physical Properties of Liquid Metals (Oxford: Clarendon Press) p71

    [30]

    Fan T X, Yang G, Zhang D 2005 Metall. Mater. Trans. A 36 225Google Scholar

    [31]

    Dinsdale A T 1991 Calphad. 15 317Google Scholar

    [32]

    李淑波, 杜文博, 王旭东, 刘轲, 王朝辉 2018 金属学报 54 911Google Scholar

    Li S B, Du W B, Wang X D, Liu K, Wang C H 2018 Acta Metall. Sin. 54 911Google Scholar

    [33]

    Zhang L L, Jiang H X, He J, Zhao J Z 2020 Scr. Mater. 179 99Google Scholar

    [34]

    Okamoto H 2013 J. Phase Equilib. Diffus. 34 493Google Scholar

    [35]

    Elliott R P, Shunk F A 1981 Bull. Alloy Phase Diagrams 2 219Google Scholar

  • 图 1  Al-2Cu和不同La添加量下经0.4% Al-5Ti-1B中间合金细化处理的Al-2Cu合金晶粒平均尺寸和微观组织的OM像

    Fig. 1.  Average size of α-Al grains and OM images of the Al-2Cu alloys without addition of inoculant, inoculated with 0.4% Al-5Ti-1B and inoculated with 0.4% Al-5Ti-1B + 0.08% La.

    图 2  添加1% Al-5Ti-1B的Al-2Cu合金的TEM像及元素分布图 (a) 低倍TEM像; (b)—(e) 元素Al (b), Cu (c), Ti (d), B (e)分布图; (f) TiB2粒子的高倍TEM像, 其中插图为元素Al, Cu和Ti在蓝框内的平均电子能量损失谱线

    Fig. 2.  TEM image and elemental maps in the Al-2Cu alloy inoculated by 1% Al-5Ti-1B: (a) TEM image at low magnification; (b)–(e) elemental maps of Al (b), Cu (c), Ti (d), B (e); (f) TEM image at high magnification of TiB2 particles, where inset shows the electron energy loss spectroscopy line profiles of elements Al, Cu and Ti averaged over the area indicated in Fig. (f) by blue box

    图 3  (a) 添加1% Al-5Ti-1B + 0.08% La的Al-2Cu合金的高倍TEM像; (b)—(e) 元素Al (b), Cu (c), Ti (d), La (e)的X射线能量散谱图; (f) Al, Cu, Ti和La元素的电子能量损失谱线

    Fig. 3.  (a) TEM image at high magnification in Al-2Cu alloy inoculated by 1% Al-5Ti-1B + 0.08% La; (b)–(e) energy dispersive X-ray spectroscopy maps of Al (b), Cu (c), Ti (d), La (e); (f) electron energy loss spectroscopy line profiles of elements Al, Cu, Ti and La averaged over the area indicated in (a) by pink box of TiB2 particles.

    图 4  添加1% Al-5Ti-1B + 0% La (a)和1% Al-5Ti-1B +0.08% La (b)的Al-2Cu合金HRTEM像; (c) TiB2粒子中Ti (0001)面与界面单原子层间界面示意图

    Fig. 4.  HRTEM images showing the basal plane (0001) of TiB2 in Al-2Cu alloy inoculated with 1% Al-5Ti-1B + 0% La (a) and 1% Al-5Ti-1B +0.08%La (b), respectively; (c) schematic illustration of interface between the Ti (0001) plane of TiB2 surface and the monolayer

    图 5  经0.4% Al-5Ti-1B细化处理的Al-2Cu合金的DTA升温(虚线)和冷却(实线)曲线, 其中TmTn分别为合金的熔点和开始形核温度, Tm = 926.2K; 插图为α-Al的形核过冷度ΔTHeter

    Fig. 5.  DTA heating (dashed line) and cooling (solid line) curves for the Al-2Cu alloys with the addition of 0.4% Al-5Ti-1B master alloy. Tn and Tm = 926.2K are respectively the nucleation temperature of α-Al and the melting point temperature of Al. Inset shows the undercooling ΔTHeter.

    图 6  微量La添加量对经0.4%Al-5Ti-1B细化处理的Al-2Cu合金生长限制因子的影响

    Fig. 6.  Effect of trace La addition on the growth restriction factor of Al-2Cu alloy inoculated with 0.4% Al-5Ti-1B master alloy.

    表 1  (13)式中涉及的参数

    Table 1.  Parameters used in Eq. (13).

    ikimi/(K·%–1)$ {c'_{{\text{S}}i}}/\% $$ {c'_{{\text{L}}i}}/\% $Reference
    Ti7.833.3[12]
    Cu0.17–3.45.6932.5[34]
    La0.004–1.710.0511.7[35]
    下载: 导出CSV
  • [1]

    张丽丽 2017 博士学位论文 (沈阳: 中国科学院大学)

    Zhang L L 2017 Ph. D. Dissertation (Shenyang: University of Chinese Academy of Sciences) (in Chinese)

    [2]

    Greer A L, Bunn A M, Tronche A, Evans P V, Bristow D J 2000 Acta Mater. 48 2823Google Scholar

    [3]

    Quested T E, Greer A L 2004 Acta Mater. 52 3859Google Scholar

    [4]

    Quested T E, Greer A L 2005 Acta Mater. 53 4643Google Scholar

    [5]

    Easton M A, StJohn D H 2001 Acta Mater. 49 1867Google Scholar

    [6]

    Easton M A, StJohn D H 2005 Metall. Mater. Trans. A 36 1911Google Scholar

    [7]

    Easton M A, StJohn D H 2008 Mater. Sci. Eng. A 486 8Google Scholar

    [8]

    Fan Z, Wang Y, Zhang Y, Qin T, Zhou X R, Thompson G E, Pennycook T, Hashimoto T 2015 Acta Mater. 84 292Google Scholar

    [9]

    Cibula A 1951 J. Inst. Met. 80 1

    [10]

    Crossley F A, Mondolfo L F 1951 JOM. 3 1143Google Scholar

    [11]

    Jones G P, Jones H 1987 Solidification Processing (Sheffield: University of Sheffield) p496

    [12]

    Mohanty P S, Gruzleski J E 1995 Acta Metall. Mater. 43 2001Google Scholar

    [13]

    Fan Z Y 2013 Metall. Mater. Trans. A 44 1409Google Scholar

    [14]

    Maxwell I, Hellawell A 1975 Acta Metall. 23 229Google Scholar

    [15]

    Zhang L L, Zheng Q J, Jiang H X, Zhao J Z 2019 Scr. Mater. 160 25Google Scholar

    [16]

    Li J H, Hage F S, Ramasse Q M, Schumacher P 2021 Acta Mater. 206 116652Google Scholar

    [17]

    吴俊子, 贾锦玉, 姜佳鑫 2018 稀土信息 2 30

    Wu J Z, Jia J Y, Jiang J X 2018 Rare Earth Inform. 2 30

    [18]

    韩延峰 2007 博士学位论文 (上海: 上海交通大学)

    Han Y F 2007 Ph. D. Dissertation (Shanghai: Shanghai Jiao Tong University) (in Chinese)

    [19]

    Zhang Z, Bian X, Wang Y, Liu, X 2003 Mater. Sci. Eng. A 352 8Google Scholar

    [20]

    李克, 饶磊, 闫洪, 王俊, 孙宝德 2006 铸造 9 894

    Li K, Rao L, Yan H, Wang J, Sun B D 2006 Foundry 9 894

    [21]

    董天顺, 崔春翔, 刘双进, 刘福才 2008 稀有金属材料与工程 1 29

    Dong T S, Cui C X, Liu S J, Liu F C 2008 Rare Metal Mater. Eng. 1 29

    [22]

    Wang Z J, Si N C 2015 Rare Metal Mater. Eng. 44 2970Google Scholar

    [23]

    Ma T F, Chen Z Y, Nie Z R, Huang H 2013 J. Rare Earths 31 622Google Scholar

    [24]

    Wang K, Cui C X, Wang Q, Liu S, Gu C 2012 Mater. Lett. 85 153Google Scholar

    [25]

    Wang K, Cui C X, Wang Q, Zhao L, Hu Y 2013 J. Rare Earths 31 313Google Scholar

    [26]

    Zhang L L, Song Y, Yang L J, Zhao J Z, He J, Jiang H X 2022 Materials 15 600Google Scholar

    [27]

    Zhang M X, Kelly P M, Easton M A, Taylor J A 2005 Acta Mater. 53 1427Google Scholar

    [28]

    Wang Y, Fang C M, Zhou L, Hashimoto T, Fan Z 2018 Acta Mater. 164 428Google Scholar

    [29]

    Iida T, Guthrie R I L 1993 The Physical Properties of Liquid Metals (Oxford: Clarendon Press) p71

    [30]

    Fan T X, Yang G, Zhang D 2005 Metall. Mater. Trans. A 36 225Google Scholar

    [31]

    Dinsdale A T 1991 Calphad. 15 317Google Scholar

    [32]

    李淑波, 杜文博, 王旭东, 刘轲, 王朝辉 2018 金属学报 54 911Google Scholar

    Li S B, Du W B, Wang X D, Liu K, Wang C H 2018 Acta Metall. Sin. 54 911Google Scholar

    [33]

    Zhang L L, Jiang H X, He J, Zhao J Z 2020 Scr. Mater. 179 99Google Scholar

    [34]

    Okamoto H 2013 J. Phase Equilib. Diffus. 34 493Google Scholar

    [35]

    Elliott R P, Shunk F A 1981 Bull. Alloy Phase Diagrams 2 219Google Scholar

  • [1] 戴宇佳, 李明亮, 宋超, 高勋, 郝作强, 林景全. 空间约束结合梯度下降法提高铝合金中Fe成分激光诱导击穿光谱技术检测精度. 物理学报, 2021, 70(20): 205204. doi: 10.7498/aps.70.20210792
    [2] 宋岩, 江鸿翔, 赵九洲, 何杰, 张丽丽, 李世欣. Al-Ti-B细化工业纯铝凝固组织演变过程数值模拟. 物理学报, 2021, 70(8): 086402. doi: 10.7498/aps.70.20201431
    [3] 郭志超, 李平林. 晶粒细化对MgB2超导临界电流密度的作用. 物理学报, 2014, 63(6): 067401. doi: 10.7498/aps.63.067401
    [4] 管仁国, 赵占勇, 黄红乾, 连超, 钞润泽, 刘春明. 冷却倾斜板熔体处理过程边界层分布及流动传热的理论研究. 物理学报, 2012, 61(20): 206602. doi: 10.7498/aps.61.206602
    [5] 张辉, 吴迪, 张国英, 肖明珠. 铜基大块非晶合金添加微量元素对腐蚀行为的影响机理研究. 物理学报, 2010, 59(1): 488-493. doi: 10.7498/aps.59.488
    [6] 孙对兄, 苏茂根, 董晨钟, 王向丽, 张大成, 马新文. 基于激光诱导击穿光谱技术的铝合金成分定量分析. 物理学报, 2010, 59(7): 4571-4576. doi: 10.7498/aps.59.4571
    [7] 王娜, 唐壁玉. L12型铝合金的结构、弹性和电子性质的第一性原理研究. 物理学报, 2009, 58(13): 230-S234. doi: 10.7498/aps.58.230
    [8] 樊飞, 班春燕, 王洋, 巴启先, 崔建忠. 普通铸造和低频电磁铸造7050铝合金电阻率-温度特性的研究. 物理学报, 2009, 58(1): 638-643. doi: 10.7498/aps.58.638
    [9] 刘贵立. Mg合金晶粒细化机理的电子理论研究. 物理学报, 2009, 58(5): 3319-3323. doi: 10.7498/aps.58.3319
    [10] 刘贵立. Mg-Zr合金微观组织电子结构研究. 物理学报, 2008, 57(2): 1043-1047. doi: 10.7498/aps.57.1043
    [11] 张大成, 马新文, 朱小龙, 李 斌, 祖凯玲. 激光诱导击穿光谱应用于三种水果样品微量元素的分析. 物理学报, 2008, 57(10): 6348-6353. doi: 10.7498/aps.57.6348
    [12] 郑里平, 李斗星, 许子健, 朱志远. 用双粒子模型研究微量元素与Ni在Ni3Al晶界共富集现象. 物理学报, 2007, 56(3): 1520-1525. doi: 10.7498/aps.56.1520
    [13] 张国英, 张 辉, 刘春明, 周永军. 微合金化元素晶界偏聚与钢的超细化理论研究. 物理学报, 2006, 55(3): 1369-1373. doi: 10.7498/aps.55.1369
    [14] 庞雪君, 王 强, 王春江, 王亚勤, 李亚彬, 赫冀成. 强磁场对铝合金中溶质组元分布状态的影响效果. 物理学报, 2006, 55(10): 5129-5134. doi: 10.7498/aps.55.5129
    [15] 彭开萍, 陈文哲, 钱匡武. 3004铝合金“反常”锯齿屈服现象的研究. 物理学报, 2006, 55(7): 3569-3575. doi: 10.7498/aps.55.3569
    [16] 吴汉华, 龙北红, 吕宪义, 汪剑波, 金曾孙. 铝合金微弧氧化过程中电学参量的特性研究. 物理学报, 2005, 54(4): 1697-1701. doi: 10.7498/aps.54.1697
    [17] 张国英, 张 辉, 刘春明, 周永军. 钢铁材料中形变诱导相变超细化机理研究. 物理学报, 2005, 54(4): 1771-1776. doi: 10.7498/aps.54.1771
    [18] 朱 波, 蔡 珣, 王成国, 蔡华甦. 声发射特性与材料断裂韧性相关性研究. 物理学报, 2003, 52(8): 1960-1964. doi: 10.7498/aps.52.1960
    [19] 张 勤, 班春燕, 崔建忠, 巴启先, 路贵民, 张北江. CREM法半连铸Al合金过程中电磁场对溶质元素固溶的影响机理. 物理学报, 2003, 52(10): 2642-2648. doi: 10.7498/aps.52.2642
    [20] 王震遐, 潘冀生, 章骥平, 陶振兰. 合金在离子择优溅射中的表面元素局域富集效应. 物理学报, 1992, 41(10): 1722-1727. doi: 10.7498/aps.41.1722
计量
  • 文章访问数:  3400
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-06
  • 修回日期:  2023-02-13
  • 上网日期:  2023-02-17
  • 刊出日期:  2023-04-20

/

返回文章
返回