搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于全色全息透镜的增强现实系统

杨雨桦 何龙 邓林宵 朱立全 顾春 许立新

引用本文:
Citation:

基于全色全息透镜的增强现实系统

杨雨桦, 何龙, 邓林宵, 朱立全, 顾春, 许立新

Augmented reality system based on full-color holographic optical elements lens

Yang Yu-Hua, He Long, Deng Lin-Xiao, Zhu Li-Quan, Gu Chun, Xu Li-Xin
PDF
HTML
导出引用
  • 全息透镜是一种通过全息波前记录制作的成像元件. 由于其形状因子小、波长和角度选择性等优势, 在增强现实(augmented reality, AR)领域有着很好的应用前景. 全色全息透镜的制作与成像过程分析是当前的难点. 通过标量衍射理论推导了离轴全息透镜的共轭成像方程, 分析了现有成像系统中的畸变和像散问题. 此外, 通过 k 矢量圆和光线追迹相结合的几何光学方法模拟了一个视场角为18°, 眼盒为10 mm的AR系统, 通过干涉曝光实验制作了全色全息透镜, 其平均峰值衍射效率为56.7%, 达到国际较高水平. 将激光微投与全息透镜相结合, 搭建了AR系统原型, 得到了系统的畸变和像散效果实验效果, 与模拟的情况相一致. 并测量了系统的MTF参数, 其清晰度基本满足人眼的分辨率需求. 对于单色成像, 提出了添加柱面透镜的方式, 保证子午面和弧矢面的光焦度一致以消除像散; 提出了设计自由形式的波前记录方式以消除畸变. 对于全色成像, 提出了记录过程中预先补偿的方法, 以解决3个颜色通道之间图像不重合的问题.
    Holographic optical element (HOE) lens is an imaging element fabricated through recording wavefront by interference. Because of its advantages of small form factor and wavelength, angle selectivity and arbitrary wavefront formation, it has a good application prospect in augmented reality display. To make the system more compact, the HOE lens is adopted as an off-axis optical element. At the same time, according to diffraction principle, its wavelength response is more sensitive than those of traditional refractive and reflective optical elements. Thus the fabrication and design of a full-color HOE lens is a challenge to optimizing the free-space head-up display system. To systematically analyze the HOE imaging system, the conjugate relation between the object and image is derived by scalar diffraction theory. Then the Gaussian conjugate imaging equation is obtained and the off-axis aberration of distortion and astigmatism in the HOE imaging system are analyzed. In addition, A head-up display with field of view (FOV) of 18° and eyebox of 10 mm is simulated and its imaging process is visualized through the geometric optics method of k -vector diagram and ray-tracing. A full-color HOE lens with high diffraction efficiency is fabricated by interference. Its average peak diffraction efficiency is 56.7%, reaching a high level in the world. A prototype of augmented reality system is established by integrating laser pico-projectior with HOE lens. The experimental results of distortion effect and astigmatism effect of the system are obtained, which are consistent with the simulation results. The modulation transfer function (MTF) parameter of the system is measured, and its definition basically meets the requirements of the human eyes for resolution. The aberration of the system is analyzed and the optimization method is proposed. To optimize the monochromatic image quality, an extra cylindrical lens is added to ensure the same optical power of meridian and sagittal plane to eliminate the astigmatism. Besides, a freeform wavefront is designed by the geometric construction method and forms a freeform HOE to deal with the distortion problem. The local recording freeform wavefront can be calculated by the imaging equation. When full-color HOE is applied to the display system, the images of three channels may separate in the space because of their different reconstruction wavelengths and angles. We propose a pre-compensation method of recording process to solve this problem. If these above-mentioned problems can be solved, due to its good image uniformity, sufficient field angle and eyebox area, the head-up display based on HOE lens with extra optical power will have a better application in augmented reality technology.
      通信作者: 许立新, xulixin@ustc.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2021YFF0307804)资助的课题.
      Corresponding author: Xu Li-Xin, xulixin@ustc.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2021YFF0307804).
    [1]

    Xiong J, Hsiang E L, He Z, Zhan T, Wu S T 2021 Light: Sci. Appl. 10 216Google Scholar

    [2]

    Zhan T, Yin K, Xiong J, He Z, Wu S T 2020 iScience 23 101397Google Scholar

    [3]

    史晓刚, 薛正辉, 李会会, 王丙杰, 李双龙 2021 中国光学 14 1146Google Scholar

    Shi X G, Xue Z H, Li H H, Wang B J, Li S L 2021 Chin. Opt. 14 1146Google Scholar

    [4]

    Yu C, Peng Y F, Zhao Q, Li H F, Liu X 2017 Appl. Opt. 56 9390Google Scholar

    [5]

    Han J, Liu J, Yao X C, Wang Y T 2015 Opt. Express 23 3534Google Scholar

    [6]

    金闻嘉 2020 硕士学位论文 (杭州: 浙江大学)

    Jin W J 2020 M S. Dissertation (Hangzhou: Zhejiang University) (in Chinese)

    [7]

    Peng H C, Cheng D W, Han J, Xu C, Song W T, Ha L Z, Yang J, Hu Q X, Wang Y T 2014 Appl. Opt. 53 H177Google Scholar

    [8]

    Li G, Lee D, Jeong Y, Cho J, Lee B 2016 Opt. Lett. 41 2486Google Scholar

    [9]

    Chang C, Bang K, Wetzstein G, Lee B, Gao L 2020 Optica 7 1563Google Scholar

    [10]

    刘奡 2019 博士学位论文 (南京: 东南大学)

    Liu A 2019 Ph. D. Dissertation (Nanjing: Dongnan University) (in Chinese)

    [11]

    邬融, 孙明营, 周申蕾, 乔战峰, 华能 2020 物理学报 69 234209Google Scholar

    Wu R, Sun M Y, Zhou S L, Qiao Z F, Hua N 2020 Acta Phys. Sin. 69 234209Google Scholar

    [12]

    Cheng D W, Wang Y T, Hua H, Talha M M 2009 Appl. Opt. 48 2655Google Scholar

    [13]

    Pulli K 2017 Sid Symposium Digest of Technical Papers 48 132Google Scholar

    [14]

    Li G, Jeong J, Lee D, Yeom J, Jang C, Lee S, Lee B 2015 Opt. Express 23 33170Google Scholar

    [15]

    Jang C G, Mercier O, Bang K, Li G, Zhao Y, Lanman D 2020 ACM Trans. Graph. 39 184Google Scholar

    [16]

    Maimone A, Wang J 2020 ACM Trans. Graph. 39 67Google Scholar

    [17]

    Jang C, Hong K, Yeom J, Lee B 2014 Opt. Express 22 27958Google Scholar

    [18]

    Jang C, Lee C K, Jeong J, Li G, Lee S, Yeom J, Hong K, Lee B 2016 Appl. Opt. 55 A71Google Scholar

    [19]

    Lee S, Lee B, Cho J, Jang C, Kim J, Lee B 2017 IEEE Photon. Technol. Lett. 29 82Google Scholar

    [20]

    Li Y N Q, Yang Q, Xiong J H, Yin K, Wu S T 2021 Opt. Express 29 42696Google Scholar

    [21]

    Xiong J, Yin K, Li K, Wu S T 2021 Adv. Photonics Res. 2 2000049Google Scholar

    [22]

    Xie Y, Kang M W, Wang B P 2014 Appl. Opt. 53 4206Google Scholar

    [23]

    Zhang Y N, Zhu X L, Liu A, Weng Y S, Shen Z W, Wang B P 2019 Appl. Opt. 58 G84Google Scholar

    [24]

    Shen Z W, Zhang Y N, Weng Y S, Li X H 2017 IEEE Photonics J 9 7000911Google Scholar

    [25]

    Piao J A, Li G, Piao M L, Kim N 2013 J. Opt. Soc. Korea. 17 242Google Scholar

    [26]

    Piao M L, Kim N 2014 Appl. Opt. 53 2180Google Scholar

    [27]

    Piao M L, Kwon K C, Kang H J, Lee K Y, Kim N 2015 Appl. Opt. 54 5252Google Scholar

    [28]

    Zhu J, Yang T, Jin G F 2013 Opt. Express 21 26080Google Scholar

  • 图 1  光波导AR显示系统原理示意图

    Fig. 1.  Schematic diagram of optical waveguide AR display system principle.

    图 2  自由空间光学组合器AR显示系统示意图

    Fig. 2.  Schematic diagram of free-space optical combiner AR display system.

    图 3  全息透镜记录波前示意图

    Fig. 3.  Schematic diagram of the recording wavefront of an HOE lens.

    图 4  单片全息透镜的成像原理图, 红、绿和蓝线分别为不同视场的物光线(图中FOV为视场角; HOEL为全息透镜)

    Fig. 4.  Principle diagram of the imaging process of a singlet HOE lens and the red, green and blue rays are the object rays with different fields of view. (FOV represents the field of view and HOEL represents the holographic optical element lens)

    图 5  HOE的波前k矢量图 (a)记录过程; (b)再现过程

    Fig. 5.  k-vector diagram of an HOE: (a) Recording process; (b) reconstruction process.

    图 6  光线追迹的方式模拟成像效果 (a)子午面xz; (b)弧矢面yz

    Fig. 6.  Simulation of the imaging process through ray-tracing: (a) Meridian plane xz; (b) sagittal plane yz.

    图 7  全色全息透镜AR系统示意图(SLM, 空间光调制器; HOEL, 全息透镜)

    Fig. 7.  Schematic diagram of full-color AR system based on an HOE lens (SLM, a spatial light modulator; HOEL, holographic optical element lens).

    图 8  全色全息透镜的制作示意图

    Fig. 8.  Schematic diagram for fabricating a full-color HOE lens.

    图 9  投影型AR系统的原型

    Fig. 9.  Prototype of projection-type AR system.

    图 10  全色全息透镜成像的图像效果 (a)红光; (b)绿光; (c)蓝光

    Fig. 10.  Image effect of full-color HOE lens: (a) Red light; (b) green light; (c) blue light..

    图 11  RGB子光栅的角度选择性

    Fig. 11.  Angular selectivity of the RGB sub-gratings.

    图 12  全息透镜成像系统的MTF曲线测量

    Fig. 12.  MTF curves measurement of HOE lens imaging system.

    图 13  全息透镜的像散效果, 透镜聚焦于(a)子午像处和(b)弧矢像处

    Fig. 13.  Astigmatic of the HOE lens, focusing on (a) meridian image and (b) sagittal image.

    图 14  子午面和弧矢面的成像示意图 (a)子午面xz; (b)弧矢面yz

    Fig. 14.  Imaging diagram of meridian plane and sagittal plane: (a) Meridian plane xz; (b) sagittal plane yz.

    图 15  全息透镜的畸变效果

    Fig. 15.  Distortion effect of HOE lens.

    图 16  自由曲面HOE的几何构造设计方法示意图

    Fig. 16.  Schematic diagram of geometric construction design method of freeform HOE.

    图 17  不同子光栅的成像过程(其中红线、绿线分别为红光、绿光的成像过程, 青色线为物方光线)

    Fig. 17.  Imaging process of different sub-grating (red line represents red light, green line represents green light and cyan line represents light from the object).

    表 1  全息透镜成像系统的光学参数

    Table 1.  Optical parameters of HOE lens imaging system.

    参数数值
    眼盒大小/mm10
    视场角/(°)18
    全息透镜焦距/mm65
    红、绿、蓝光栅角带宽/(°)12
    下载: 导出CSV
  • [1]

    Xiong J, Hsiang E L, He Z, Zhan T, Wu S T 2021 Light: Sci. Appl. 10 216Google Scholar

    [2]

    Zhan T, Yin K, Xiong J, He Z, Wu S T 2020 iScience 23 101397Google Scholar

    [3]

    史晓刚, 薛正辉, 李会会, 王丙杰, 李双龙 2021 中国光学 14 1146Google Scholar

    Shi X G, Xue Z H, Li H H, Wang B J, Li S L 2021 Chin. Opt. 14 1146Google Scholar

    [4]

    Yu C, Peng Y F, Zhao Q, Li H F, Liu X 2017 Appl. Opt. 56 9390Google Scholar

    [5]

    Han J, Liu J, Yao X C, Wang Y T 2015 Opt. Express 23 3534Google Scholar

    [6]

    金闻嘉 2020 硕士学位论文 (杭州: 浙江大学)

    Jin W J 2020 M S. Dissertation (Hangzhou: Zhejiang University) (in Chinese)

    [7]

    Peng H C, Cheng D W, Han J, Xu C, Song W T, Ha L Z, Yang J, Hu Q X, Wang Y T 2014 Appl. Opt. 53 H177Google Scholar

    [8]

    Li G, Lee D, Jeong Y, Cho J, Lee B 2016 Opt. Lett. 41 2486Google Scholar

    [9]

    Chang C, Bang K, Wetzstein G, Lee B, Gao L 2020 Optica 7 1563Google Scholar

    [10]

    刘奡 2019 博士学位论文 (南京: 东南大学)

    Liu A 2019 Ph. D. Dissertation (Nanjing: Dongnan University) (in Chinese)

    [11]

    邬融, 孙明营, 周申蕾, 乔战峰, 华能 2020 物理学报 69 234209Google Scholar

    Wu R, Sun M Y, Zhou S L, Qiao Z F, Hua N 2020 Acta Phys. Sin. 69 234209Google Scholar

    [12]

    Cheng D W, Wang Y T, Hua H, Talha M M 2009 Appl. Opt. 48 2655Google Scholar

    [13]

    Pulli K 2017 Sid Symposium Digest of Technical Papers 48 132Google Scholar

    [14]

    Li G, Jeong J, Lee D, Yeom J, Jang C, Lee S, Lee B 2015 Opt. Express 23 33170Google Scholar

    [15]

    Jang C G, Mercier O, Bang K, Li G, Zhao Y, Lanman D 2020 ACM Trans. Graph. 39 184Google Scholar

    [16]

    Maimone A, Wang J 2020 ACM Trans. Graph. 39 67Google Scholar

    [17]

    Jang C, Hong K, Yeom J, Lee B 2014 Opt. Express 22 27958Google Scholar

    [18]

    Jang C, Lee C K, Jeong J, Li G, Lee S, Yeom J, Hong K, Lee B 2016 Appl. Opt. 55 A71Google Scholar

    [19]

    Lee S, Lee B, Cho J, Jang C, Kim J, Lee B 2017 IEEE Photon. Technol. Lett. 29 82Google Scholar

    [20]

    Li Y N Q, Yang Q, Xiong J H, Yin K, Wu S T 2021 Opt. Express 29 42696Google Scholar

    [21]

    Xiong J, Yin K, Li K, Wu S T 2021 Adv. Photonics Res. 2 2000049Google Scholar

    [22]

    Xie Y, Kang M W, Wang B P 2014 Appl. Opt. 53 4206Google Scholar

    [23]

    Zhang Y N, Zhu X L, Liu A, Weng Y S, Shen Z W, Wang B P 2019 Appl. Opt. 58 G84Google Scholar

    [24]

    Shen Z W, Zhang Y N, Weng Y S, Li X H 2017 IEEE Photonics J 9 7000911Google Scholar

    [25]

    Piao J A, Li G, Piao M L, Kim N 2013 J. Opt. Soc. Korea. 17 242Google Scholar

    [26]

    Piao M L, Kim N 2014 Appl. Opt. 53 2180Google Scholar

    [27]

    Piao M L, Kwon K C, Kang H J, Lee K Y, Kim N 2015 Appl. Opt. 54 5252Google Scholar

    [28]

    Zhu J, Yang T, Jin G F 2013 Opt. Express 21 26080Google Scholar

  • [1] 高乾程, 何泽浩, 刘珂瑄, 韩超, 曹良才. 面向纯相位型全息显示的自适应混合约束迭代算法. 物理学报, 2023, 72(2): 024203. doi: 10.7498/aps.72.20221690
    [2] 王贯, 顾春, 许立新. 显示设备防蓝光模式和色域的关系. 物理学报, 2022, 71(10): 104205. doi: 10.7498/aps.71.20212356
    [3] 徐平, 肖钰斐, 黄海漩, 杨拓, 张旭琳, 袁霞, 李雄超, 王梦禹, 徐海东. 简单结构超表面实现波长和偏振态同时复用全息显示新方法. 物理学报, 2021, 70(8): 084201. doi: 10.7498/aps.70.20201047
    [4] 彭玮婷, 刘娟, 李昕, 薛高磊, 韩剑, 胡滨, 王涌天. 新颖材料器件为全息显示带来的新机遇. 物理学报, 2018, 67(2): 024213. doi: 10.7498/aps.67.20172026
    [5] 梅屹峰, 唐远河, 梅小宁, 刘汉臣, 刘骞, 余洋, 李宁远, 高恒. 基于长余辉材料的激光书写和显示. 物理学报, 2016, 65(17): 170701. doi: 10.7498/aps.65.170701
    [6] 武宇, 易仕和, 何霖, 全鹏程, 朱杨柱. 基于流动显示的压缩拐角流动结构定量研究. 物理学报, 2015, 64(1): 014703. doi: 10.7498/aps.64.014703
    [7] 李丹, 张宝龙, 郭海成. 垂直向列型彩色滤光膜硅覆液晶微显示器的三维光学建模. 物理学报, 2015, 64(14): 140701. doi: 10.7498/aps.64.140701
    [8] 曾超, 高洪跃, 刘吉成, 于瀛洁, 姚秋香, 刘攀, 郑华东, 曾震湘. 动态全息三维显示研究最新进展. 物理学报, 2015, 64(12): 124215. doi: 10.7498/aps.64.124215
    [9] 夏军, 常琛亮, 雷威. 基于液晶空间光调制器的全息显示. 物理学报, 2015, 64(12): 124213. doi: 10.7498/aps.64.124213
    [10] 王雨雷, 张昀, 付万琴, 吕志伟, 周宇, 邓青华, 丁磊. 复杂激光系统中平板光学元件的调频-调幅效应的研究. 物理学报, 2012, 61(10): 104206. doi: 10.7498/aps.61.104206
    [11] 张宝龙, 李丹, 戴凤智, 杨世凤, 郭海成. 彩色滤光膜硅覆液晶微显示器的三维光学建模. 物理学报, 2012, 61(4): 040701. doi: 10.7498/aps.61.040701
    [12] 王芳, 赵星, 杨勇, 方志良, 袁小聪. 基于人眼视觉的集成成像三维显示分辨率的比较. 物理学报, 2012, 61(8): 084212. doi: 10.7498/aps.61.084212
    [13] 周丽丹, 粟敬钦, 李平, 王文义, 刘兰琴, 张颖, 张小民. 高功率固体激光装置光学元件"缺陷"分布与光束近场质量的定量关系研究. 物理学报, 2011, 60(2): 024202. doi: 10.7498/aps.60.024202
    [14] 常宏, 杨福桂, 董磊, 王安廷, 谢建平, 明海. 激光光斑形状和尺寸对扫描显示中散斑对比度的影响. 物理学报, 2010, 59(7): 4634-4639. doi: 10.7498/aps.59.4634
    [15] 郑华东, 于瀛洁, 代林茂, 王涛. 彩色全息显示中液晶空间光调制器位相调制偏差的矫正方法. 物理学报, 2010, 59(9): 6145-6151. doi: 10.7498/aps.59.6145
    [16] 周丽丹, 粟敬钦, 李平, 刘兰琴, 王文义, 王方, 莫磊, 程文雍, 张小民. 高功率固体激光装置光学元件“缺陷”分布的功率谱密度方法及等效求法. 物理学报, 2009, 58(9): 6279-6284. doi: 10.7498/aps.58.6279
    [17] 姚军财, 申 静, 王剑华. 阴极射线管显示器亮度范围内对人眼视觉特性的实验研究. 物理学报, 2008, 57(7): 4034-4041. doi: 10.7498/aps.57.4034
    [18] C. S. IH, 王永昭, 吴继宗, 相连钦. 计算机产生全息光学元件用于校正椭圆高斯激光束. 物理学报, 1986, 35(2): 220-227. doi: 10.7498/aps.35.220
    [19] 张森, 冯国良, 蔚樟富, 顾根青. X射线三维图象显示. 物理学报, 1981, 30(9): 1264-1269. doi: 10.7498/aps.30.1264
    [20] 叶碧青, 马忠林. 激光谐振腔内光学元件的热光效应. 物理学报, 1980, 29(6): 756-763. doi: 10.7498/aps.29.756
计量
  • 文章访问数:  3442
  • PDF下载量:  112
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-14
  • 修回日期:  2023-03-15
  • 上网日期:  2023-03-30
  • 刊出日期:  2023-06-05

/

返回文章
返回