搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

囚禁在电介质球形微腔中类氢原子的内部无序性

刘雪 王德华

引用本文:
Citation:

囚禁在电介质球形微腔中类氢原子的内部无序性

刘雪, 王德华

Internal disorder of hydrogenic-like atom trapped in dielectric spherical microcavity

Liu Xue, Wang De-Hua
PDF
HTML
导出引用
  • 给出了一种研究囚禁在微腔中类氢原子的内部无序性的一种方法, 即利用体系的量子信息熵和形状复杂度对囚禁体系的无序性进行表征和研究. 计算和分析了囚禁在InN电介质球形微腔中类氢原子的位置和动量空间中香农信息熵和形状复杂度, 重点探究了量子囚禁效应对体系无序性的影响. 计算结果表明: 当微腔半径较小时, 量子囚禁现象显著, 形状复杂度曲线中有一系列极值点, 这是由信息熵和空间不均匀性的共同作用引起的. 随着微腔半径增大, 囚禁现象减弱, 囚禁类氢原子的香农信息熵和形状复杂度趋近于自由空间类氢原子的情形. 为囚禁量子体系内部无序性的研究提供了一种有效方法, 对囚禁量子体系的信息测量提供了一定的参考.
    The research on the disorder of quantum system plays a very important role in the field of quantum information, and has received much attention from theoretical and experimental researchers. However, it is very difficult to study the disorder of atoms trapped in microcavity due to their complex nonlocal space-time evolution characteristics. To solve this problem, we present a method to study the internal disorder of hydrogenic atoms trapped in microcavity, that is, to characterize and investigate the disorder of the confined system by using the quantum information entropy and shape complexity of the system. The Shannon information entropy and shape complexity in position space and momentum space (Sr, Sp, C[r], C[p]) are calculated and analyzed for different quantum states of hydrogenic atom in InN dielectric spherical microcavity, and pay special attention to the exploration of the influence of quantum confinement effect on the disorder of the system. The results show that when the radius of the spherical microcavity is very small, the quantum confinement effect is more significant, and a series of extreme points appears in the shape complexity curve of the system, which is caused by the joint interaction of information entropy and spatial inhomogeneity. With the increase of the radius of the spherical cavity, the effect of quantum confinement is weakened, and the Shannon information entropy and shape complexity of the confined hydrogenic atom are similar to the counterparts of the hydrogenic atom in free space. Our work provides an effective method to study the internal disorder of a confined quantum. This work provides an effective method for studying the internal disorder of confined quantum systems and presents some references for the information measurement of confined quantum systems.
      通信作者: 王德华, lduwdh@163.com
    • 基金项目: 国家自然科学基金(批准号: 11374133)和山东省自然科学基金(批准号: ZR2019MA066)资助的课题.
      Corresponding author: Wang De-Hua, lduwdh@163.com
    • Funds: Supported by the National Natural Science Foundation of China (Grant No. 11374133) and the Natural Science Foundation of Shandong Province, China (Grant No. ZR2019MA066).
    [1]

    Connerade J P, Dolmatov V H, Lakshmi P A 2000 J. Phys. B: At. Mol. Opt. Phys. 33 251Google Scholar

    [2]

    Sabin J R, Brändas E J, Cruz S A 2009 The Theory of Confined Quantum Systems, Parts I and II, Advances in Quantum Chemistry (Vols. 57, 58) (Amsterdam: Academic Press) pp2–19

    [3]

    Sen K D 2014 Electronic Structure of Quantum Confined Atoms and Molecules (Switzerland: Springer) pp1–253

    [4]

    Wang D H, Zhang J, Sun Z P, Zhang S F, Zhao G 2021 Chem. Phys. 551 111331Google Scholar

    [5]

    Martínez-Sánchez M A, Vargas R, Garza J 2019 Quantum Rep. 1 208Google Scholar

    [6]

    Guerra D, Vargas R, Fuentealba P, Garza J 2009 Adv. Quantum Chem. 58 1

    [7]

    Rodriguez-Bautista M, Díaz-García C, Navarrete-López A M, Vargas R, Garza J 2015 J. Chem. Phys. 143 034103Google Scholar

    [8]

    Porras-Montenegro N, Pe´rez-Merchancano S T 1992 Phys. Rev. B 46 9780Google Scholar

    [9]

    Şahin M 2008 Phys. Rev. B 77 045317Google Scholar

    [10]

    Yuan J H, Zhang Y, Guo X X, Zhang J J, Mo H 2015 Physica E 68 232Google Scholar

    [11]

    Wang D H, He X, Liu X, Chu B H, Liu W, Jiao M M 2022 Philos. Mag. 102 2302Google Scholar

    [12]

    Longo G M, Longo S, Giordano D 2015 Phys. Scr. 90 085402Google Scholar

    [13]

    Cottrell T L 1951 Trans. Faraday Soc. 47 337Google Scholar

    [14]

    Zhu J L, Xiong J J, Gu B L 1990 Phys. Rev. B 41 6001Google Scholar

    [15]

    Lopez-Rosa S, Manzano D, Dehesa J S 2009 Physica A 388 3273Google Scholar

    [16]

    Liu S 2007 J. Chem. Phys. 126 191107Google Scholar

    [17]

    Aquino N, Flores-Riveros A, Rivas-Silva J F 2013 Phys. Lett. A 377 2062Google Scholar

    [18]

    Sun G H, Popov D, Camacho-Nieto O, Dong S H 2015 Chin. Phys. B 24 100303Google Scholar

    [19]

    Najafizade S A, Hassanabadi H, Zarrinkamar S 2016 Chin. Phys. B 25 040301Google Scholar

    [20]

    Bialynicki-Birula I, Mycielski J 1975 Comm. Math. Phys. 44 129Google Scholar

    [21]

    Guevara N L, Sagar R P, Esquivel R O, 2003 J. Chem. Phys. 119 7030Google Scholar

    [22]

    Fuentealba P, Melin J 2002 Int. J. Quantum Chem. 90 334Google Scholar

    [23]

    López-Ruiz R, Mancini H L, Calbet X 1995 Phys. Lett. A 209 321Google Scholar

    [24]

    Calbet X, López-Ruiz R 2001 Phys. Rev. E 63 066116Google Scholar

    [25]

    Angulo J C, Antolín J 2008 J. Chem. Phys. 128 164109Google Scholar

    [26]

    Majumdar S, Mukherjee N, Roy A K 2017 Chem. Phys. Lett. 687 322Google Scholar

    [27]

    梁双, 吕燕伍 2007 物理学报 56 1617Google Scholar

    Liang S, Lv Y W 2007 Acta Phys. Sin. 56 1617Google Scholar

    [28]

    Mata M, Zhou X, Furtmayr F, et al. 2013 J. Mater. Chem. C 1 4300Google Scholar

    [29]

    Guo Y, Pan F, Ren Y J, et al. 2018 Phys. Chem. Chem. Phys. 20 24239Google Scholar

    [30]

    Li P, David A, Li H, et al. 2021 Appl. Phys. Lett. 119 231101Google Scholar

    [31]

    Binks D J, Dawson P, Oliver R A, Wallis D J 2022 Appl. Phys. Rev. 9 041309Google Scholar

    [32]

    Chang C, Li X C 2022 Eur. Phys. J. D. 76 134Google Scholar

    [33]

    González-Férez R, Dehesa J S, Patil S H, Sen K D 2009 Physica A 388 4919Google Scholar

  • 图 1  囚禁在InN电介质球形微腔中氢原子的不同的量子态在位置空间和动量空间中的径向概率密度分布, 假设球形微腔的半径ra = 10

    Fig. 1.  Position space and momentum space radial probability density for different quantum states of hydrogen atom in the InN dielectric spherical microcavity, suppose the radius of spherical microcavity ra = 10

    图 2  InN电介质球形微腔内氢原子前几个态的本征能 (a) ra = 10; (b) ra = 50; (c) ra = 200; (d) ra = 500

    Fig. 2.  Intrinsic energy of the first few states of hydrogen atom in the InN dielectric spherical microcavity: (a) ra = 10; (b) ra = 50; (c) ra = 200; (d) ra = 500.

    图 3  囚禁在InN电介质球形微腔和真空球形微腔中氢原子的1s态的香农信息熵和形状复杂度随半径的变化 (a)位置空间和动量空间中的香农信息熵SrSp; (b) 位置空间和动量空间的平均电子概率密度ln$\langle r \rangle$和ln$ \langle p \rangle $; (c) 位置空间的形状复杂度C [r]; (d)动量空间中的形状复杂度C [p]

    Fig. 3.  Shannon information entropy and shape complexity as a function of the radius of the microcavity for the 1 s state of the hydrogen atom confined in the InN dielectric spherical microvavtiy and vacuum spherical microcavity: (a) Shannon information entropy in the position space Sr and in the momentum space Sp; (b) averaging electron probability density in the position space ln$\langle r \rangle$ and in the momentum space ln$ \langle p \rangle $; (c) shape complexity in the position space C [r]; (d) shape complexity in the momentum space C [p].

    图 4  囚禁在InN电介质球形微腔中和真空球形微腔中氢原子的2s态的香农信息熵和形状复杂度随微腔半径的变化曲线 (a) Sr,Sp, ln$\langle r \rangle$和ln$\langle p \rangle $ra的变化曲线; (b)在位置空间和动量空间中形状复杂度C [r]和C [p]随ra的变化曲线

    Fig. 4.  Shannon information entropy and shape complexity as a function of the radius of the microcavity for the 2s state of the hydrogen atom confined in the InN dielectric spherical microvavtiy and vacuum spherical microcavity: (a) Variation of Sr, Sp, ln$\langle r \rangle$ and ln$\langle p \rangle $ with ra; (b) variation of shape complexity in the position space C [r] and in the momentum space C [p] with ra.

    图 5  囚禁在InN电介质球形微腔中氢原子的3s态和4s态的香农信息熵和形状复杂度随微腔半径的变化曲线 (a) 3s态Sr, Sp, ln$\langle r \rangle$和ln$\langle p \rangle $ra的变化; (b) 3s态的C [r]和C [p]随ra的变化; (c) 4s态Sr, Sp, ln$\langle r \rangle$和ln$ \langle p \rangle $ra的变化; (d) 4s态的C [r]和C [p]随ra的变化

    Fig. 5.  Shannon information entropy and shape complexity as a function of the radius of the InN dielectric spherical microcavity for the 3s state and 4s state: (a) Variation of Sr, Sp, ln$\langle r \rangle$ and ln$\langle p \rangle $ with ra for the 3s state; (b) variation of C [r] and C [p] with ra for the 3s state; (c) variation of Sr, Sp, ln$\langle r \rangle$ and ln$\langle p \rangle $ with ra for the 4s state; (d) variation of C [r] and C [p] with ra for the 4s state.

    图 6  囚禁在InN电介质球形微腔中氢原子的2p, 3p和4p态的香农信息熵和形状复杂度随微腔半径的变化 (a) 2p态Sr, Sp, ln$\langle r \rangle$和ln$\langle p \rangle $ra的变化; (b) 2p态C [r]和C [p]随ra的变化; (c) 3p态Sr, Sp, ln$\langle r \rangle$和ln$\langle p\rangle $ra的变化; (d) 3p态C [r]和C [p]随ra的变化; (e) 4p态Sr, Sp, ln$ \langle r \rangle $和ln$\langle p\rangle $ra的变化; (f) 4p态C [r]和C [p]随ra的变化

    Fig. 6.  Shannon information entropy and shape complexity as a function of the radius of the InN dielectric spherical microcavity for the 2p, 3p and 4p states: (a) Variation of Sr, Sp, ln$ \langle r \rangle $and ln$\langle p \rangle $ with ra for the 2p state; (b) variation of C [r] and C [p] with ra for the 2p state; (c) variation of Sr, Sp, ln$ \langle r \rangle $and ln$\langle p \rangle $ with ra for the 3p state; (d) variation of C [r] and C [p] with ra for the 3p state; (e) variation of Sr, Sp, ln$ \langle r \rangle $and ln$\langle p \rangle $ with ra for the 4p state; (f) variation of C [r] and C [p] with ra for the 4p state.

    图 7  囚禁在InN电介质球形微腔中氢原子的不同量子态的香农信息熵和St的比较

    Fig. 7.  Comparison of Shannon information entropy sum St for different quantum states of hydrogenic atom confined in the InN dielectric spherical microcavity.

    图 8  囚禁在InN电介质球形微腔中氢原子的不同的s态和p态的动量空间的形状复杂度C [r]的比较

    Fig. 8.  Comparison of the momentum space shape complexity C [r] for different s and p states of hydrogenic atom confined in the InN dielectric spherical microcavity.

    图 9  囚禁在InN电介质球形微腔中氢原子的不同的s态和p态的动量空间的形状复杂度C [p]的比较

    Fig. 9.  Comparison of the momentum space shape complexity C [p] for different s and p states of hydrogenic atom confined in the InN dielectric spherical microcavity.

    表 1  InN电介质球形微腔中氢原子在不同囚禁半径下的前几个态的本征能

    Table 1.  Intrinsic energy of the first few states of hydrogen atoms at different confinement radii in InN dielectric spherical microcavity.

    ra/a.u.0.5103050100200300500
    1s19.420090.03291–0.00042–0.00192–0.00213–0.00214–0.00214–0.00214
    2s78.549490.176800.014930.00365–0.00011–0.00053–0.00053–0.00053
    2p40.139430.088770.007090.00152–0.00032–0.00053–0.00053–0.00053
    3s177.193060.421000.041550.013050.00208–0.00001–0.00021–0.00024
    3p119.051810.282970.027970.008800.00138–0.00007–0.00022–0.00024
    3d66.221350.155380.014860.004470.00056–0.00016–0.00023–0.00024
    4s315.330120.764610.079350.026530.005360.000740.00009–0.00012
    4p237.449380.576930.060170.020230.004150.000570.00005–0.00012
    4d165.172130.400250.041490.013850.002770.00034–0.00001–0.00013
    4f97.464200.234230.023810.007770.001430.00010–0.00008–0.00013
    下载: 导出CSV

    表 2  囚禁在InN电介质球形微腔中氢原子1s, 2s, 3s和4s态在位置和动量空间中的香农信息熵和形状复杂度随半径的变化

    Table 2.  Variation of Shannon information entropy and shape complexity in the position and momentum spaces of 1s, 2s, 3s and 4s states for hydrogenic atom confined in the InN dielectric spherical microcavity as a function of the radius of the microcavity.

    ra/a.u.0.5246104010040010001500
    1sSr–1.40782.73884.80125.99986.84417.493811.212512.308312.328312.3283
    Sp8.02243.86771.79460.58560.2690–0.9287–4.7199–5.7473–5.7617–5.7617
    C [r]1.32381.33311.34631.36041.37541.39151.77292.47422.51072.5107
    C [p]1.51561.51101.50531.50021.49591.49241.60812.30072.35452.3545
    2sSr–1.61822.53934.61735.83246.69457.363311.560014.501116.294416.2945
    Sp9.81065.65173.57222.35611.49340.8246–3.3163–6.3549–8.9410–8.9411
    C [r]2.31222.33182.35842.38572.41352.44202.88722.69782.58822.5883
    C [p]1.29871.29911.30041.30271.30591.31041.62553.57053.58623.5862
    3sSr–1.69412.46514.54515.76226.62607.296411.486814.374418.418918.6100
    Sp10.76986.61224.53473.32052.45981.7931–2.2946–4.861410.030410.3718
    C [r]3.29653.31833.34763.37723.40713.43723.89124.31502.42492.5897
    C [p]1.29591.29341.29001.28661.28331.28021.25661.61644.92455.3478
    4sSr–1.73322.42644.50685.72426.58837.258911.443514.281618.798420.2300
    Sp11.42167.26385.18573.97103.10982.4425–1.6559–4.1749–8.936011.2692
    C [r]4.27984.30224.33234.36244.39274.42304.87335.48563.30592.5188
    C [p]1.32051.31931.31731.31531.31341.31151.29171.37383.27857.1624
    下载: 导出CSV

    表 3  InN电介质球形微腔中氢原子2p, 3p和4p态位置空间和动量空间中的香农信息熵和形状复杂度

    Table 3.  Shannon information entropy and shape complexity of 2p, 3p and 4p states in the position space and momentum space for hydrogen atom confined in the InN dielectric spherical microcavity.

    ra/a.u.0.5246104010040010001500
    2pSr–1.12793.02875.10506.31817.843911.941414.476515.880415.880415.8804
    Sp9.02144.86332.78511.56970.0398–4.0817–6.5889–7.7092–7.7092–7.7092
    C [r]1.15681.15771.15891.16021.16281.18871.29181.71071.71071.7107
    C [p]1.30841.30681.30491.30241.29821.27491.32811.76391.76391.7639
    3pSr–1.39202.76604.84426.05957.589611.733314.473718.271118.421418.4214
    Sp10.33206.17334.09422.87831.3468–2.7953–5.4546–9.4770–9.6406–9.6406
    C [r]1.60881.61131.61481.61831.62541.68331.81501.82671.96571.9657
    C [p]1.25641.25471.25261.25061.24651.22401.27492.95112.96712.9671
    4pSr–1.51412.64444.72345.93947.471111.626114.379418.762920.148820.1494
    Sp11.11816.95964.88083.66522.1344–2.0027–4.6540–8.772510.815810.8150
    C [r]2.06442.06762.07192.07622.08502.15332.29772.25202.08172.0829
    C [p]1.28781.28621.28451.28271.27911.25421.22882.71233.87463.8744
    下载: 导出CSV
  • [1]

    Connerade J P, Dolmatov V H, Lakshmi P A 2000 J. Phys. B: At. Mol. Opt. Phys. 33 251Google Scholar

    [2]

    Sabin J R, Brändas E J, Cruz S A 2009 The Theory of Confined Quantum Systems, Parts I and II, Advances in Quantum Chemistry (Vols. 57, 58) (Amsterdam: Academic Press) pp2–19

    [3]

    Sen K D 2014 Electronic Structure of Quantum Confined Atoms and Molecules (Switzerland: Springer) pp1–253

    [4]

    Wang D H, Zhang J, Sun Z P, Zhang S F, Zhao G 2021 Chem. Phys. 551 111331Google Scholar

    [5]

    Martínez-Sánchez M A, Vargas R, Garza J 2019 Quantum Rep. 1 208Google Scholar

    [6]

    Guerra D, Vargas R, Fuentealba P, Garza J 2009 Adv. Quantum Chem. 58 1

    [7]

    Rodriguez-Bautista M, Díaz-García C, Navarrete-López A M, Vargas R, Garza J 2015 J. Chem. Phys. 143 034103Google Scholar

    [8]

    Porras-Montenegro N, Pe´rez-Merchancano S T 1992 Phys. Rev. B 46 9780Google Scholar

    [9]

    Şahin M 2008 Phys. Rev. B 77 045317Google Scholar

    [10]

    Yuan J H, Zhang Y, Guo X X, Zhang J J, Mo H 2015 Physica E 68 232Google Scholar

    [11]

    Wang D H, He X, Liu X, Chu B H, Liu W, Jiao M M 2022 Philos. Mag. 102 2302Google Scholar

    [12]

    Longo G M, Longo S, Giordano D 2015 Phys. Scr. 90 085402Google Scholar

    [13]

    Cottrell T L 1951 Trans. Faraday Soc. 47 337Google Scholar

    [14]

    Zhu J L, Xiong J J, Gu B L 1990 Phys. Rev. B 41 6001Google Scholar

    [15]

    Lopez-Rosa S, Manzano D, Dehesa J S 2009 Physica A 388 3273Google Scholar

    [16]

    Liu S 2007 J. Chem. Phys. 126 191107Google Scholar

    [17]

    Aquino N, Flores-Riveros A, Rivas-Silva J F 2013 Phys. Lett. A 377 2062Google Scholar

    [18]

    Sun G H, Popov D, Camacho-Nieto O, Dong S H 2015 Chin. Phys. B 24 100303Google Scholar

    [19]

    Najafizade S A, Hassanabadi H, Zarrinkamar S 2016 Chin. Phys. B 25 040301Google Scholar

    [20]

    Bialynicki-Birula I, Mycielski J 1975 Comm. Math. Phys. 44 129Google Scholar

    [21]

    Guevara N L, Sagar R P, Esquivel R O, 2003 J. Chem. Phys. 119 7030Google Scholar

    [22]

    Fuentealba P, Melin J 2002 Int. J. Quantum Chem. 90 334Google Scholar

    [23]

    López-Ruiz R, Mancini H L, Calbet X 1995 Phys. Lett. A 209 321Google Scholar

    [24]

    Calbet X, López-Ruiz R 2001 Phys. Rev. E 63 066116Google Scholar

    [25]

    Angulo J C, Antolín J 2008 J. Chem. Phys. 128 164109Google Scholar

    [26]

    Majumdar S, Mukherjee N, Roy A K 2017 Chem. Phys. Lett. 687 322Google Scholar

    [27]

    梁双, 吕燕伍 2007 物理学报 56 1617Google Scholar

    Liang S, Lv Y W 2007 Acta Phys. Sin. 56 1617Google Scholar

    [28]

    Mata M, Zhou X, Furtmayr F, et al. 2013 J. Mater. Chem. C 1 4300Google Scholar

    [29]

    Guo Y, Pan F, Ren Y J, et al. 2018 Phys. Chem. Chem. Phys. 20 24239Google Scholar

    [30]

    Li P, David A, Li H, et al. 2021 Appl. Phys. Lett. 119 231101Google Scholar

    [31]

    Binks D J, Dawson P, Oliver R A, Wallis D J 2022 Appl. Phys. Rev. 9 041309Google Scholar

    [32]

    Chang C, Li X C 2022 Eur. Phys. J. D. 76 134Google Scholar

    [33]

    González-Férez R, Dehesa J S, Patil S H, Sen K D 2009 Physica A 388 4919Google Scholar

  • [1] 刘香莲, 李凯宙, 李晓琼, 张强. 二维电介质光子晶体中量子自旋与谷霍尔效应共存的研究. 物理学报, 2023, 72(7): 074205. doi: 10.7498/aps.72.20221814
    [2] 巩龙延, 杨慧, 赵生妹. 中间测量对受驱单量子比特统计复杂度的影响. 物理学报, 2020, 69(23): 230301. doi: 10.7498/aps.69.20200802
    [3] 任志红, 李岩, 李艳娜, 李卫东. 基于量子Fisher信息的量子计量进展. 物理学报, 2019, 68(4): 040601. doi: 10.7498/aps.68.20181965
    [4] 李金晴, 罗云荣, 海文华. 囚禁单离子的量子阻尼运动. 物理学报, 2017, 66(23): 233701. doi: 10.7498/aps.66.233701
    [5] 杨孝敬, 杨阳, 李淮周, 钟宁. 基于模糊近似熵的抑郁症患者静息态功能磁共振成像信号复杂度分析. 物理学报, 2016, 65(21): 218701. doi: 10.7498/aps.65.218701
    [6] 孙克辉, 贺少波, 尹林子, 阿地力·多力坤. 模糊熵算法在混沌序列复杂度分析中的应用. 物理学报, 2012, 61(13): 130507. doi: 10.7498/aps.61.130507
    [7] 陈小军, 李赞, 白宝明, 蔡觉平. 一种确定混沌伪随机序列复杂度的模糊关系熵测度. 物理学报, 2011, 60(6): 064215. doi: 10.7498/aps.60.064215
    [8] 杨美蓉, 海文华, 鲁耿彪, 钟宏华. 激光脉冲作用下囚禁离子在Lamb-Dicke区域精确的量子运动. 物理学报, 2010, 59(4): 2406-2415. doi: 10.7498/aps.59.2406
    [9] 刘王云, 毕思文, 豆西博. 囚禁离子非线性Jaynes-Cummings模型量子场熵演化特性. 物理学报, 2010, 59(3): 1780-1785. doi: 10.7498/aps.59.1780
    [10] 王天琪, 俞重远, 刘玉敏, 芦鹏飞. 有限元法分析不同形状量子点的应变能及弛豫度变化. 物理学报, 2009, 58(8): 5618-5623. doi: 10.7498/aps.58.5618
    [11] 张丽春, 胡双启, 李怀繁, 赵 仁. 轴对称黑洞的量子统计熵. 物理学报, 2008, 57(6): 3328-3332. doi: 10.7498/aps.57.3328
    [12] 张 淼, 贾焕玉, 姬晓辉, 司 坤, 韦联福. 制备囚禁冷离子的振动压缩量子态. 物理学报, 2008, 57(12): 7650-7657. doi: 10.7498/aps.57.7650
    [13] 何 亮, 杜 磊, 庄奕琪, 李伟华, 陈建平. 金属互连电迁移噪声的多尺度熵复杂度分析. 物理学报, 2008, 57(10): 6545-6550. doi: 10.7498/aps.57.6545
    [14] 沈建其, 庄 飞. 各向异性磁电介质量子真空水平上的动量转移. 物理学报, 2007, 56(5): 2719-2724. doi: 10.7498/aps.56.2719
    [15] 张佃中. 非线性时间序列互信息与Lempel-Ziv复杂度的相关性研究. 物理学报, 2007, 56(6): 3152-3157. doi: 10.7498/aps.56.3152
    [16] 马 云, 傅立斌, 杨志安, 刘 杰. 玻色-爱因斯坦凝聚体自囚禁现象的动力学相变及其量子纠缠特性. 物理学报, 2006, 55(11): 5623-5628. doi: 10.7498/aps.55.5623
    [17] 邬云文, 海文华. 共面两囚禁离子体系精确的量子运动. 物理学报, 2006, 55(11): 5721-5727. doi: 10.7498/aps.55.5721
    [18] 宋克慧. 利用Λ型原子与双模腔场的相互作用进行量子信息处理. 物理学报, 2005, 54(10): 4730-4735. doi: 10.7498/aps.54.4730
    [19] 向少华, 宋克慧. 用腔场QED技术实现量子信息转移. 物理学报, 2005, 54(3): 1190-1193. doi: 10.7498/aps.54.1190
    [20] 王波波. 环面黑洞背景下量子场的熵. 物理学报, 2004, 53(7): 2401-2406. doi: 10.7498/aps.53.2401
计量
  • 文章访问数:  2873
  • PDF下载量:  80
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-20
  • 修回日期:  2023-03-21
  • 上网日期:  2023-03-23
  • 刊出日期:  2023-05-20

/

返回文章
返回