搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

940 nm 垂直腔面发射激光器单管器件的设计与制备

潘智鹏 李伟 吕家纲 聂语葳 仲莉 刘素平 马骁宇

引用本文:
Citation:

940 nm 垂直腔面发射激光器单管器件的设计与制备

潘智鹏, 李伟, 吕家纲, 聂语葳, 仲莉, 刘素平, 马骁宇

Design and fabrication of 940 nm vertical cavity surface emitting laser single-emitter device

Pan Zhi-Peng, Li Wei, Lü Jia-Gang, Nie Yu-Wei, Zhong Li, Liu Su-Ping, Ma Xiao-Yu
PDF
HTML
导出引用
  • 计算了InGaAs/AlGaAs量子阱的激射波长与阱垒厚度的关系, 并通过Rsoft软件计算了不同温度下的材料增益特性. 计算并分析了渐变层厚度对分布布拉格反射镜(distributed Bragg reflectors, DBRs)势垒尖峰及反射谱的影响, 通过传输矩阵理论得到P-DBR和N-DBR的反射谱和相位谱. 模拟了垂直腔面发射激光器(vertical surface emitting lasers, VCSEL)结构整体的光场分布, 驻波波峰与量子阱位置符合, 基于有限元分析模拟了氧化层对电流限制的影响. 通过计算光子晶体垂直腔面发射激光器(photonic crystal vertical cavity surface emitting lasers, PC-VCSEL)中不同的模式分布及其品质因子Q, 证明该结构可以有效地实现基横模输出. 通过光刻、刻蚀、沉积、剥离等半导体工艺成功制备出氧化孔径为22 μm的VCSEL和PC-VCSEL, VCSEL的阈值电流为5.2 mA, 斜率效率0.67 mW/mA, 在不同电流光谱测试中均是明显的多横模输出; PC-VCSEL的阈值电流为6.5 mA, 基横模输出功率超过2.5 mW, 不同电流下的边模抑制比超过25 dB, 光谱宽度小于0.2 nm.
    As a key part of vertical cavity surface emitting laser (VCSEL), active region will seriously affect the threshold and efficiency of the device. To obtain the appropriate laser wavelength and material gain, the design of In0.18Ga0.82As strain compensated quantum well is optimized. The relationship between the lasing wavelength of multiple quantum wells (MQWs) and the thickness is calculated. Considering the influence between the active region temperature and the lasing wavelength, the thickness of the quantum well is chosen as 6 nm, and the quantum barrier thickness is chosen as 8 nm, corresponding to the lasing wavelength of 929 nm. The material gain characteristics of the MQWs at different temperatures are simulated by Rsoft. The material gain exceeds 3300/cm at 300 K, and the temperature drift coefficient of the peak wavelength is 0.3 nm/K. In this work, Al0.09Ga0.91As and Al0.89Ga0.11As are chosen as the high- and the low-refractive index material of distributed Bragg reflector (DBR), and 20 nm graded layer is inserted between two types of materials. The influence of the graded layer thickness of DBR on the valence band barrier and reflection spectrum are calculated and analyzed. The increase of graded layer thickness can lead the band barrier peak and the reflection spectrum bandwidth to decrease. The reflection spectrum and phase spectrum of P-DBR and N-DBR are calculated by the transmission matrix mode (TMM): the reflectance of DBR is over 99% and the phase shift is zero at 940 nm. The optical field distribution of the whole VCSEL structure is simulated, in which the standing wave peak overlaps with the active region, and the maximum gain can be obtained. Using the finite element method (FEM), the effect of oxidation confined layer on the injection current is simulated. The current in the active region is effectively limited to the position corresponding to the oxidation confined hole, and its current density is stronger and more uniform. The optical field distributions in different modes of photonic crystal-vertical cavity surface emitting laser (PC-VCSEL) are simulated, and different modes have different resonant wavelengths. The values of quality factor Q in different modes of VCSEL and PC-VCSEL are calculated, Q of the fundamental mode is higher than that of higher transverse mode. It is demonstrated that the photonic crystal air hole structure can realize the output of basic transverse mode by increasing the loss of high order transverse mode. The VCSEL and PC-VCSEL with oxidation hole size of 22 μm are successfully fabricated, in which the photonic crystal period is 5 μm, the air pore diameter is 2.5 μm, and the etching depth is 2 μm. Under continuous current test, the maximum slope efficiency of VCSEL is 0.66 mW/mA, the output power is 9.3 mW at 22 mA, and the lasing wavelength is 948.64 nm at 20 mA injection current. Multiple wavelengths and large spectrum width are observed in the spectrum of VSCEL, which is an obvious multi-transverse mode. The maximum fundamental transverse mode output of PC-VCSEL reaches 2.55 mW, the side mode suppression ratio (SMSR) is more than 25 dB, and the spectrum width is less than 0.2 nm, indicating that the photonic crystal air hole has a strong control effect on the transverse mode, and the laser wavelength is 946.4 nm at 17 mA.
      通信作者: 李伟, liwei66@semi.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 62174154)资助的课题.
      Corresponding author: Li Wei, liwei66@semi.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62174154).
    [1]

    于洪岩, 尧舜, 张红梅, 王青, 张扬, 周广正, 吕朝晨, 程立文, 郎陆广, 夏宇, 周天宝, 康联鸿, 王智勇, 董国亮 2019 物理学报 68 064207Google Scholar

    Yu H Y, Yao S, Zhang H M, Wang Q, Zhang Y, Zhou G Z, Lü Z C, Cheng L W, Lang L G, Xia Y, Zhou T B, Kang L H, Wang Z Y, Dong G L 2019 Acta Phys. Sin. 68 064207Google Scholar

    [2]

    陈良惠, 杨国文, 刘育衔 2020 中国激光 47 0500001Google Scholar

    Cheng L H, Yang G W, Liu Y X 2020 Chin. J. Lasers 47 0500001Google Scholar

    [3]

    张继业, 李雪, 张建伟, 宁永强, 王立军 2020 发光学报 41 1443Google Scholar

    Zhang J Y, Li X, Zhang J W, Ning Y Q, Wang L J 2020 Chin. J. Lumin. 41 1443Google Scholar

    [4]

    Warren M E, Podva D, Dacha P, Block M K, Helms C J, Maynard J 2018 Conference on Vertical-Cavity Surface-Emitting Lasers XXII San Francisco, USA, January 31–February 1, 2018 pUNSP 105520 E

    [5]

    Xun M, Pan G, Zhao Z, Sun Y, Yang C, Kan Q, Zhou J, Wu D 2021 IEEE Trans. Electron Devices 68 158Google Scholar

    [6]

    Khan Z, Ledentsov N, Chorchos L, Shih J C, Chang Y H, Ledentsov N N, Shi J W 2020 IEEE Access 8 72095Google Scholar

    [7]

    刘安金 2020 中国激光 47 0701005Google Scholar

    Liu A J 2020 Chin. J. Lasers 47 0701005Google Scholar

    [8]

    Liu A J, Wolf P, Lott J A, Bimberg D 2019 Photonics Res. 7 02000121Google Scholar

    [9]

    王翔媛, 崔碧峰, 李彩芳, 许建荣, 王豪杰 2021 激光与光电子学进展 58 0700008Google Scholar

    Wang X Y, Cui B F, Li C F, Xu J R, Wang H J 2021 Laser Optoelectron. Prog. 58 0700008Google Scholar

    [10]

    Unold H J, Golling M, Michalzik R, Supper D, Ebeling K J 2001 27 th European Conference on Optical Communication Amsterdam, Netherlands, Setember 30–October 4, 2001 p520

    [11]

    Siriani D F, Leisher P O, Choquette K D 2009 IEEE J. Quantum Electron. 45 762Google Scholar

    [12]

    Fryslie S T M, Gao Z H, Dave H, Thompson B J, Lakomy K, Lin S Y, Decker P J, McElfresh D K, Schutt-Aine J E, Choquette K D 2017 IEEE J. Sel. Top. Quantum Electron. 23 1700409Google Scholar

    [13]

    Xie Y Y, Kan Q, Xu C, Xu K, Chen H D 2017 Chin. Phys. B. 26 014203Google Scholar

    [14]

    Wang Q H, Xie Y Y, Xu C, Pan G Z, Dong Y B 2020 Conference on Lasers and Electro-Optics San Jose, USA, May 10–15, 2020 p2021-03-02

    [15]

    Ren Q H, Wang J, Yang M, Wang H J, Cheng Z, Huang Y Q 2020 Quantum Electron. 50 714Google Scholar

    [16]

    晏长岭, 秦莉, 宁永强, 张淑敏, 王青, 赵路民, 刘云, 王立军, 钟景昌 2004 激光杂志 25 29Google Scholar

    Yan C L, Qin L, Ning Y Q, Zhang S M, Wang Q, Zhao L M, Liu Y, Wang L J, Zhong J C 2004 Laser J. 25 29Google Scholar

    [17]

    潘智鹏, 李伟, 吕家纲, 王振诺, 常津源, 刘素平, 仲莉, 马骁宇 2023 中国激光 50 0701007

    Pan Z P, Li W, Lü J G, Wang Z N, Chang J Y, Liu S P, Zhong L, Ma X Y 2023 Chin. J. Lasers 50 0701007

    [18]

    李鹏飞, 邓军, 陈永远, 杨立鹏, 吴波, 徐晨 2013 半导体光电 34 190Google Scholar

    Li P F, Deng J, Chen Y Y, Yang L P, Wu B, Xu C 2013 Semicond. Optoelectron. 34 190Google Scholar

    [19]

    许晓芳, 邓军, 李建军, 张令宇, 任凯兵, 冯媛媛, 贺鑫, 宋钊, 聂祥 2022 半导体光电 43 332Google Scholar

    Xun X X, Deng J, Li J J, Zang L Y, Ren K B, Feng Y Y, He X, Song Z, Nie X 2022 Semicond. Optoelectron. 43 332Google Scholar

    [20]

    Qiao P F, Cook K T, Li K, Chang-Hasnain C J 2017 IEEE J. Sel. Top. Quantum Electron. 23 1700516

    [21]

    Huffaker D L, Deppe D G, Kumar K 1994 Appl. Phys. lett. 65 97Google Scholar

    [22]

    Choquette K D, Geib K M, Chui H C, Hammons B E, Hou H Q, Drummond T J, Hull R 1996 Appl. Phys. Lett. 69 1385Google Scholar

    [23]

    Qi Y Y, Li W, Liu S P, Ma X Y 2019 J. Appl. Phys. 126 193101Google Scholar

    [24]

    潘智鹏, 李伟, 戚宇轩, 吕家纲, 刘素平, 仲莉, 马骁宇 2022 光学学报 42 1414002

    Pan Z P, Li W, Qi YY, Lv J G, Liu S P, Zhong L, Ma X Y 2022 Acta Opt. Sin. 42 1414002

  • 图 1  不同量子阱宽和量子垒宽对应的激射波长

    Fig. 1.  Lasing wavelength under different quantum well widths and barrier widths.

    图 2  不同温度下的材料增益特性

    Fig. 2.  Material gain spectra at different temperatures.

    图 3  不同渐变层厚度下的DBR价带图

    Fig. 3.  Valence-band diagram of DBR under different gradient layer thickness.

    图 4  不同渐变层厚度下的DBR反射谱

    Fig. 4.  DBR reflection spectrum under different gradient layer thickness.

    图 5  P-DBR和N-DBR的反射谱和相移谱

    Fig. 5.  Reflection spectrum and phase shift spectrum of P-DBR and N-DBR.

    图 6  VCSEL的折射率及归一化电场强度分布

    Fig. 6.  Refractive index and normalized electric field distribution of VCSEL.

    图 7  电流分布及光场分布

    Fig. 7.  Current distribution and light field distribution.

    图 8  PC-VCSL的不同模式 (a) 基横模, 谐振波长为937.25 nm; (b) 一阶横模, 谐振波长为936.84 nm; (c) 二阶横模, 谐振波长为936.14 nm

    Fig. 8.  Different modes of PC-VCSEL: (a) The fundamental transverse mode with resonant wavelength of 937.25 nm; (b) the first order transverse mode with resonant wavelength of 936.84 nm; (c) the second order transverse mode with resonant wavelength of 936.14 nm.

    图 9  VCSEL外延结构 (a) 电致发光谱; (b) 白光反射谱

    Fig. 9.  (a) EL spectrum and (b) white light reflection spectrum of VCSEL epitaxial structure.

    图 10  PC-VCSEL工艺流程

    Fig. 10.  PC-VCSEL process flow.

    图 11  (a) VCSEL显微镜照片; (b) PC-VCSEL显微镜照片

    Fig. 11.  Microscope images of (a) VCSEL and (b) PC-VCSEL.

    图 12  VCSEL单管 (a) L-I-V测试; (b) 光谱测试

    Fig. 12.  VCSEL single-emitter: (a) L-I-V test curves; (b) spectrum test results.

    图 13  PC-VCSEL (a) L-I-V测试; (b) 光谱测试

    Fig. 13.  PC-VCSEL: (a) L-I-V test curves; (b) spectrum test results.

    表 1  不同结构下各个模式对应的品质因子

    Table 1.  The quality factor of each mode under different structure.

    基横模一阶横模二阶横模
    PC-VCSEL623826461373
    VCSEL106141061210602
    下载: 导出CSV
  • [1]

    于洪岩, 尧舜, 张红梅, 王青, 张扬, 周广正, 吕朝晨, 程立文, 郎陆广, 夏宇, 周天宝, 康联鸿, 王智勇, 董国亮 2019 物理学报 68 064207Google Scholar

    Yu H Y, Yao S, Zhang H M, Wang Q, Zhang Y, Zhou G Z, Lü Z C, Cheng L W, Lang L G, Xia Y, Zhou T B, Kang L H, Wang Z Y, Dong G L 2019 Acta Phys. Sin. 68 064207Google Scholar

    [2]

    陈良惠, 杨国文, 刘育衔 2020 中国激光 47 0500001Google Scholar

    Cheng L H, Yang G W, Liu Y X 2020 Chin. J. Lasers 47 0500001Google Scholar

    [3]

    张继业, 李雪, 张建伟, 宁永强, 王立军 2020 发光学报 41 1443Google Scholar

    Zhang J Y, Li X, Zhang J W, Ning Y Q, Wang L J 2020 Chin. J. Lumin. 41 1443Google Scholar

    [4]

    Warren M E, Podva D, Dacha P, Block M K, Helms C J, Maynard J 2018 Conference on Vertical-Cavity Surface-Emitting Lasers XXII San Francisco, USA, January 31–February 1, 2018 pUNSP 105520 E

    [5]

    Xun M, Pan G, Zhao Z, Sun Y, Yang C, Kan Q, Zhou J, Wu D 2021 IEEE Trans. Electron Devices 68 158Google Scholar

    [6]

    Khan Z, Ledentsov N, Chorchos L, Shih J C, Chang Y H, Ledentsov N N, Shi J W 2020 IEEE Access 8 72095Google Scholar

    [7]

    刘安金 2020 中国激光 47 0701005Google Scholar

    Liu A J 2020 Chin. J. Lasers 47 0701005Google Scholar

    [8]

    Liu A J, Wolf P, Lott J A, Bimberg D 2019 Photonics Res. 7 02000121Google Scholar

    [9]

    王翔媛, 崔碧峰, 李彩芳, 许建荣, 王豪杰 2021 激光与光电子学进展 58 0700008Google Scholar

    Wang X Y, Cui B F, Li C F, Xu J R, Wang H J 2021 Laser Optoelectron. Prog. 58 0700008Google Scholar

    [10]

    Unold H J, Golling M, Michalzik R, Supper D, Ebeling K J 2001 27 th European Conference on Optical Communication Amsterdam, Netherlands, Setember 30–October 4, 2001 p520

    [11]

    Siriani D F, Leisher P O, Choquette K D 2009 IEEE J. Quantum Electron. 45 762Google Scholar

    [12]

    Fryslie S T M, Gao Z H, Dave H, Thompson B J, Lakomy K, Lin S Y, Decker P J, McElfresh D K, Schutt-Aine J E, Choquette K D 2017 IEEE J. Sel. Top. Quantum Electron. 23 1700409Google Scholar

    [13]

    Xie Y Y, Kan Q, Xu C, Xu K, Chen H D 2017 Chin. Phys. B. 26 014203Google Scholar

    [14]

    Wang Q H, Xie Y Y, Xu C, Pan G Z, Dong Y B 2020 Conference on Lasers and Electro-Optics San Jose, USA, May 10–15, 2020 p2021-03-02

    [15]

    Ren Q H, Wang J, Yang M, Wang H J, Cheng Z, Huang Y Q 2020 Quantum Electron. 50 714Google Scholar

    [16]

    晏长岭, 秦莉, 宁永强, 张淑敏, 王青, 赵路民, 刘云, 王立军, 钟景昌 2004 激光杂志 25 29Google Scholar

    Yan C L, Qin L, Ning Y Q, Zhang S M, Wang Q, Zhao L M, Liu Y, Wang L J, Zhong J C 2004 Laser J. 25 29Google Scholar

    [17]

    潘智鹏, 李伟, 吕家纲, 王振诺, 常津源, 刘素平, 仲莉, 马骁宇 2023 中国激光 50 0701007

    Pan Z P, Li W, Lü J G, Wang Z N, Chang J Y, Liu S P, Zhong L, Ma X Y 2023 Chin. J. Lasers 50 0701007

    [18]

    李鹏飞, 邓军, 陈永远, 杨立鹏, 吴波, 徐晨 2013 半导体光电 34 190Google Scholar

    Li P F, Deng J, Chen Y Y, Yang L P, Wu B, Xu C 2013 Semicond. Optoelectron. 34 190Google Scholar

    [19]

    许晓芳, 邓军, 李建军, 张令宇, 任凯兵, 冯媛媛, 贺鑫, 宋钊, 聂祥 2022 半导体光电 43 332Google Scholar

    Xun X X, Deng J, Li J J, Zang L Y, Ren K B, Feng Y Y, He X, Song Z, Nie X 2022 Semicond. Optoelectron. 43 332Google Scholar

    [20]

    Qiao P F, Cook K T, Li K, Chang-Hasnain C J 2017 IEEE J. Sel. Top. Quantum Electron. 23 1700516

    [21]

    Huffaker D L, Deppe D G, Kumar K 1994 Appl. Phys. lett. 65 97Google Scholar

    [22]

    Choquette K D, Geib K M, Chui H C, Hammons B E, Hou H Q, Drummond T J, Hull R 1996 Appl. Phys. Lett. 69 1385Google Scholar

    [23]

    Qi Y Y, Li W, Liu S P, Ma X Y 2019 J. Appl. Phys. 126 193101Google Scholar

    [24]

    潘智鹏, 李伟, 戚宇轩, 吕家纲, 刘素平, 仲莉, 马骁宇 2022 光学学报 42 1414002

    Pan Z P, Li W, Qi YY, Lv J G, Liu S P, Zhong L, Ma X Y 2022 Acta Opt. Sin. 42 1414002

  • [1] 闫观鑫, 郝永芹, 张秋波. 高功率垂直腔面发射激光器阵列热特性. 物理学报, 2024, 73(5): 054204. doi: 10.7498/aps.73.20231614
    [2] 王志鹏, 张峰, 杨嘉炜, 李鹏涛, 关宝璐. 表面液晶-垂直腔面发射激光器阵列的热特性. 物理学报, 2020, 69(6): 064203. doi: 10.7498/aps.69.20191793
    [3] 于洪岩, 尧舜, 张红梅, 王青, 张杨, 周广正, 吕朝晨, 程立文, 郎陆广, 夏宇, 周天宝, 康联鸿, 王智勇, 董国亮. 940 nm垂直腔面发射激光器的设计及制备. 物理学报, 2019, 68(6): 064207. doi: 10.7498/aps.68.20181822
    [4] 张浩, 郭星星, 项水英. 基于单向注入垂直腔面发射激光器系统的密钥分发. 物理学报, 2018, 67(20): 204202. doi: 10.7498/aps.67.20181038
    [5] 周广正, 尧舜, 于洪岩, 吕朝晨, 王青, 周天宝, 李颖, 兰天, 夏宇, 郎陆广, 程立文, 董国亮, 康联鸿, 王智勇. 高速850 nm垂直腔面发射激光器的优化设计与外延生长. 物理学报, 2018, 67(10): 104205. doi: 10.7498/aps.67.20172550
    [6] 关宝璐, 刘欣, 江孝伟, 刘储, 徐晨. 多横模垂直腔面发射激光器及其波长特性. 物理学报, 2015, 64(16): 164203. doi: 10.7498/aps.64.164203
    [7] 邓伟, 夏光琼, 吴正茂. 基于双光反馈垂直腔面发射激光器的双信道混沌同步通信. 物理学报, 2013, 62(16): 164209. doi: 10.7498/aps.62.164209
    [8] 刘发, 徐晨, 赵振波, 周康, 解意洋, 毛明明, 魏思民, 曹田, 沈光地. 氧化孔形状对光子晶体垂直腔面发射激光器模式的影响. 物理学报, 2012, 61(5): 054203. doi: 10.7498/aps.61.054203
    [9] 毛明明, 徐晨, 魏思民, 解意洋, 刘久澄, 许坤. 质子注入能量对垂直腔面发射激光器的阈值和功率的影响. 物理学报, 2012, 61(21): 214207. doi: 10.7498/aps.61.214207
    [10] 郝永芹, 冯源, 王菲, 晏长岭, 赵英杰, 王晓华, 王玉霞, 姜会林, 高欣, 薄报学. 808nm大孔径垂直腔面发射激光器研究. 物理学报, 2011, 60(6): 064201. doi: 10.7498/aps.60.064201
    [11] 薛力芳, 张强, 李芳, 周燕, 刘育梁. 高频调制大功率窄线宽分布反馈光纤激光器. 物理学报, 2011, 60(1): 014213. doi: 10.7498/aps.60.014213
    [12] 刘安金, 邢名欣, 渠红伟, 陈微, 周文君, 郑婉华. 光子晶体波导对垂直腔面发射激光器光束远场形貌的调控. 物理学报, 2010, 59(2): 1035-1039. doi: 10.7498/aps.59.1035
    [13] 王宝强, 徐晨, 刘英明, 解意洋, 刘发, 赵振波, 周康, 沈光地. 光子晶体垂直腔面发射激光器的电流分布研究. 物理学报, 2010, 59(12): 8542-8547. doi: 10.7498/aps.59.8542
    [14] 杨 浩, 郭 霞, 关宝璐, 王同喜, 沈光地. 注入电流对垂直腔面发射激光器横模特性的影响. 物理学报, 2008, 57(5): 2959-2965. doi: 10.7498/aps.57.2959
    [15] 彭红玲, 韩 勤, 杨晓红, 牛智川. 1.3μm量子点垂直腔面发射激光器高频响应的优化设计. 物理学报, 2007, 56(2): 863-870. doi: 10.7498/aps.56.863
    [16] 张剑铭, 邹德恕, 徐 晨, 顾晓玲, 沈光地. 电极结构优化对大功率GaN基发光二极管性能的影响. 物理学报, 2007, 56(10): 6003-6007. doi: 10.7498/aps.56.6003
    [17] 佟存柱, 牛智川, 韩 勤, 吴荣汉. 1.3μm GaAs基量子点垂直腔面发射激光器结构设计与分析. 物理学报, 2005, 54(8): 3651-3656. doi: 10.7498/aps.54.3651
    [18] 赵红东, 宋殿友, 张智峰, 孙 静, 孙 梅, 武 一, 温幸饶. n型DBR中电势对垂直腔面发射激光器阈值的影响. 物理学报, 2004, 53(11): 3744-3747. doi: 10.7498/aps.53.3744
    [19] 赵红东, 康志龙, 王胜利, 陈国鹰, 张以谟. 高速调制响应垂直腔面发射激光器中的微腔效应. 物理学报, 2003, 52(1): 77-80. doi: 10.7498/aps.52.77
    [20] 廉 鹏, 殷 涛, 高 国, 邹德恕, 陈昌华, 李建军, 沈光地, 马骁宇, 陈良惠. 新型多有源区隧道再生光耦合大功率半导体激光器. 物理学报, 2000, 49(12): 2374-2377. doi: 10.7498/aps.49.2374
计量
  • 文章访问数:  3836
  • PDF下载量:  189
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-01
  • 修回日期:  2023-04-01
  • 上网日期:  2023-04-11
  • 刊出日期:  2023-06-05

/

返回文章
返回