搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

EAST托卡马克上共振磁扰动对锯齿行为的影响

潘姗姗 段艳敏 徐立清 晁燕 钟国强 孙有文 盛回 刘海庆 储宇奇 吕波 金仡飞 胡立群

引用本文:
Citation:

EAST托卡马克上共振磁扰动对锯齿行为的影响

潘姗姗, 段艳敏, 徐立清, 晁燕, 钟国强, 孙有文, 盛回, 刘海庆, 储宇奇, 吕波, 金仡飞, 胡立群

Influence of resonant magnetic perturbation on sawtooth behavior in experimental advanced superconducting Tokamak

Pan Shan-Shan, Duan Yan-Min, Xu Li-Qing, Chao Yan, Zhong Guo-Qiang, Sun You-Wen, Sheng Hui, Liu Hai-Qing, Chu Yu-Qi, Lü Bo, Jin Yi-Fei, Hu Li-Qun
PDF
HTML
导出引用
  • 锯齿振荡是托卡马克装置上常见的磁流体不稳定性之一. 先进实验超导托卡马克(experimental advanced superconducting Tokamak, EAST)装置放电中观察到外加共振磁扰动(resonant magnetic perturbation, RMP)会影响锯齿振荡行为. 本文研究了环向模数n = 2的RMP对锯齿周期的影响. 通过RMP线圈相位差扫描实验发现, 当RMP上下线圈(n = 2)相位差$ \Delta {\phi }_{{\rm{U}}{\rm{L}}} $发生变化时, 扰动场的谱型发生变化, 锯齿周期和崩塌幅度也随之发生明显的改变. 单流体电阻磁流体力学 (MARS-F)程序分析表明, 在相同实验条件下, 当RMP上下线圈(n = 2)相位差为$\Delta {\phi }_{{\rm{U}}{\rm{L}}}=270^\circ$时, 等离子体芯部区域的响应最强, 此时锯齿周期和幅度最小. 锯齿行为的改变可能与RMP引起的快离子损失相关. 该研究利用RMP上下线圈(n = 2)实现对锯齿行为的有效调控, 有利于未来EAST发展高比压放电条件下的大锯齿自动控制技术.
    Sawtooth oscillation is one of the most important magneto-hydrodynamic (MHD) instabilities in Tokamak plasma, which can result in the periodic relaxation of the temperature and density of the core plasma when the safety factor on the magnetic axis (q0) is lower than unity. Owing to the periodic relaxation of the plasma core parameters, sawtooth oscillations are beneficial to avoiding impurity accumulation in plasma core. However, the large sawtooth crash may trigger off other MHD instabilities, like tearing modes (TMs) or neoclassical tearing modes (NTMs), which is a matter of concern for the plasma stability. Therefore, it is essential to control sawtooth oscillations for ensuring safe operation in the future Tokamaks such as ITER. The resonant magnetic perturbation (RMP) is widely used to control edge-localized modes (ELMs) and divertor heat flux in Tokamak. The application of RMP has also been found to affect the sawtooth behaviors. This paper studies the influence of RMP coils at n = 2 on sawtooth behaviors in experimental advanced superconducting Tokamak (EAST), where n is the toroidal mode number of the applied RMP. It is found that the phase difference between upper RMP coil and lower RMP coil ($ \Delta {\phi }_{{\rm{U}}{\rm{L}}}\left(^\circ\right)={\phi }_{{\rm{U}}}\left(^\circ\right)-{\phi }_{{\rm{L}}}\left(^\circ\right) $) is a notable parameter of affecting sawtooth behavior. The experiments for scanning the phase difference $ \Delta {\phi }_{{\rm{U}}{\rm{L}}} $ are carried out. When the phase difference $ \Delta {\phi }_{{\rm{U}}{\rm{L}}} $ of RMP at n = 2 is changed, the sawtooth period and amplitude become subsequently different. The minimum sawtooth period and amplitude appear at $\Delta {\phi }_{{\rm{U}}{\rm{L}}}=270^\circ$. At the same time, neutron yields measured by neutron diagnostic system have the same trend as sawtooth behavior during RMP phase difference scanning. The plasma response to RMP at n = 2 is analyzed by using the MARS-F code. The results show that the plasma responses much strongly at the $\Delta {\phi }_{{\rm{U}}{\rm{L}}}=270^\circ$. The loss of fast ion, caused by RMP coils, is possibly stronger at the $\Delta {\phi }_{{\rm{U}}{\rm{L}}}=270^\circ$ than that at other phase difference $ \Delta {\phi }_{{\rm{U}}{\rm{L}}}. $ The loss of fast ion can reduces its stabilization effect on sawtooth behavior, which results in the reduction of the sawtooth period and amplitude. Further research is needed to optimize the sawtooth control method with RMP to make it compatible with plasma performance.
      通信作者: 段艳敏, ymduan@ipp.ac.cn
    • 基金项目: 国家磁约束核聚变能发展研究专项(批准号: 2022YFE03040003, 2022YFE03010003)和国家自然科学基金(批准号: 11975273)资助的课题.
      Corresponding author: Duan Yan-Min, ymduan@ipp.ac.cn
    • Funds: Project supported by the National MCF Energy R&D Program of China (Grant Nos. 2022YFE03040003, 2022YFE03010003) and the National Natural Science Foundation of China (Grant No. 11975273).
    [1]

    Porcelli F, Boucher D, Rosenbluth M N 1996 Plasma Phys. Controlled Fusion 38 2163Google Scholar

    [2]

    Goniche M, Dumont R J, Bobkov V, et al. 2017 Plasma Phys. Controlled Fusion 59 055001Google Scholar

    [3]

    Bando T, Wakatsuki T, Honda M, Isayama A, Shinohara K, Inoue S, Yoshida M, Matsunaga G, Takechi M, Oyama N, Ide S 2021 Plasma Phys. Controlled Fusion 63 085009Google Scholar

    [4]

    Wang J Q, Xiao C J, Wang X G, Ji X Q, Liu Y 2012 Plasma Phys. Controlled Fusion 54 122001Google Scholar

    [5]

    Chao Y, Xu L Q, Hu L Q, Yuan Y, Zhang Y K, Lü B, Zhong G Q, Liu Y, Liu H Q, Du H F 2019 AIP Adv. 9 015226Google Scholar

    [6]

    Li J C, Gong X Y, Dong J Q, Wang J, Yin L 2016 Chin. Phys. B 25 045201Google Scholar

    [7]

    Lerche E, Lennholm M, Carvalho I S, Jacquet P, Mantsinen M, Dumortier P, Van Eester D, Graves J P, Card P, Noble C 2020 Nucl. Fusion 60 126037Google Scholar

    [8]

    Sun Y W, Ma Q, Jia M N, et al. 2021 Nucl. Fusion 61 106037Google Scholar

    [9]

    Bonfiglio D, Veranda M, Cappello S, Chacón L, Escande D F 2017 Plasma Phys. Controlled Fusion 59 014032Google Scholar

    [10]

    Li J C, Ding Y H, Yu Q Q, Wang N C, Li D, Zhang X Q, Han D L, Chen Z P, Yang Z J, Zhou S, Yan W, Liang Y F, Zhang X L, Lin X D, Sun H B, Gao X, Li J G 2020 Nucl. Fusion 60 126002Google Scholar

    [11]

    Kim G, Yun G S, Woo M 2019 Plasma Phys. Controlled Fusion 61 055001Google Scholar

    [12]

    Yuan Y, Hu L Q, Xu L Q, Wang X G, Wang X J, Xu H D, Luo Z P, Chen K Y, Lin S Y, Duan Y M, Chang P X, Zhao H L, He K Y, Liang Y F 2016 Phys. Plasmas 23 062503Google Scholar

    [13]

    Sun Y W, Liang Y, Qian J P, Shen B, Wan B 2015 Plasma Phys. Controlled Fusion 57 045003Google Scholar

    [14]

    Mao F Y, Wang N C, Huang Z, Ren Z K, Zhou S, Shen C S, Zhang X Y, He Y, Zhang Q, Jia R, Zhao C X, Li Y B, Hu B, Li D, Bala A A, Chen Z P, Chen Z Y, Yang Z J, Liang Y F, Ding Y H, Pan Y 2022 Plasma Sci. Technol. 24 124002Google Scholar

    [15]

    Chen L, Zonca F 2016 Rev. Mod. Phys. 88 015008Google Scholar

    [16]

    Qian J P, Lao L L, Liu H Q, Ding W X, Zeng L, Luo Z P, Ren Q L, Huang Y, Huang J, Brower D L, Hanada K, Chen D L, Sun Y W, Shen B, Gong X Z, Xiao B J, Wan B N 2017 Nucl. Fusion 57 036008Google Scholar

    [17]

    Liu H Q, Qian J P, Jie Y X, Ding W X, Brower D L, Zou Z Y, Li W M, Lian H, Wang S X, Yang Y, Zeng L, Lan T, Yao Y, Hu L Q, Zhang X D, Wan B N 2016 Rev. Sci. Instrum. 87 11D903Google Scholar

    [18]

    Zhong G Q, Cao H R, Hu L Q, Zhou R J, Xiao M, Li K, Pu N, Huang J, Liu G Z, Lin S Y, Lyu B, Liu H Q, Zhang X J 2016 Plasma Phys. Controlled Fusion 58 075013Google Scholar

    [19]

    Lyu B, Chen J, Hu R J, Delgado-Aparicio L F, Wang F D, Bitter M, Hill K W, Pablant N, Lee S G, Ye M Y, Shi Y J, Wan B N 2018 Rev. Sci. Instrum. 89 10F112Google Scholar

    [20]

    Zhong G Q, Hu L Q, Pu N, Zhou R J, Xiao M, Cao H R, Zhu Y B, Li K, Fan T S, Peng X Y, Du T F, Ge L J, Huang J, Xu G S, Wan B N 2016 Rev. Sci. Instrum. 87 11D820Google Scholar

    [21]

    Chapman I T, Pinches S D, Graves J P, et al. 2007 Plasma Phys. Controlled Fusion 49 B385Google Scholar

    [22]

    Chen W, Ding X T, Liu Y, Yang Q W, Ji X Q, Isobe M, Yuan G L, Zhang Y P, Zhou Y, Song X Y, Dong Y B, Li W, Zhou J, Lei G J, Cao J Y, Deng W, Song X M, Duan X R 2010 Nucl. Fusion. 50 084008Google Scholar

    [23]

    Ding Y H, Chen Z Y, Chen Z P, et al. 2018 Plasma Sci. Technol. 20 125101Google Scholar

    [24]

    苏春燕, 牟茂淋, 陈少永, 郭文平, 唐昌建 2021 物理学报 70 095207Google Scholar

    Su C Y, Mou M L, Chen S Y, Guo W P, Tang C J 2021 Acta Phys. Sin. 70 095207Google Scholar

    [25]

    He K Y, Sun Y W, Wan B N, Gu S, Jia M N, Hu Y 2021 Nucl. Fusion 61 016009Google Scholar

    [26]

    Hao G Z, Li C Y, Liu Y Q, Chen H T, Wang S, Bai X, Dong G Q, He H D, Zhao Y F, Miao Y T, Zhou L N, Xu J Q, Zhang N, Chen Q, Sun T F, Ji X Q, Liu Y, Zhong W L, Xu M, Duan X R 2021 Nucl. Fusion 61 126031Google Scholar

    [27]

    李春雨, 郝广周, 刘钺强, 王炼, 刘艺慧子 2022 物理学报 71 075202Google Scholar

    Li C Y, Hao G Z, Liu Y Q, Wang L, Liu Y H Z 2022 Acta Phys. Sin. 71 075202Google Scholar

    [28]

    Liu Y Q, Kirk A, Nardon E 2010 Phys. Plasmas 17 122502Google Scholar

    [29]

    Ren J, Sun Y W, Wang H H, Gu S, Qian J P, Shi T H, Shen B, Liu Y Q, Guo W F, Chu N, He K Y, Jia M N, Wang Y, Sheng Z C, Luo Z P, Zeng L, Gong X Z, Liang Y F, Wan B N 2021 Nucl. Fusion. 61 056007Google Scholar

    [30]

    Jia M N, Loarte A, Sun Y W, et al. 2021 Nucl. Fusion. 61 106023Google Scholar

  • 图 1  EAST上软X射线诊断分布示意图

    Fig. 1.  Poloidal layout of soft X-ray diagnostic system in EAST.

    图 2  EAST #116507炮放电中等离子体主要参数的演化 (a)中性束注入功率; (b) n = 2的RMP电流(蓝色)及其上下线圈相位差(红色); (c)锯齿周期(蓝色圆圈)和崩塌幅度(黑色三角); (d)芯部SXR辐射信号; (e)图(d)的局部放大图

    Fig. 2.  Evolution of plasma parameters for EAST shot #116507: (a) NBI heating power; (b) n = 2 RMP coil current amplitude (blue) and the phase difference between the upper and lower coil $\Delta {\phi }_{{\rm{U}}{\rm{L}}}$ (red); (c) sawtooth period (blue circles) and amplitude (black triangles); (d) core SXR emission; (e) partial enlargement of panel (d).

    图 3  n = 2的RMP线圈不同相位差下的芯部SXR辐射信号 (a) #116507; (b) #116510; (c) #116505; (d) #116508

    Fig. 3.  Core SXR emission of various phase difference of RMP at n = 2: (a) #116507; (b) #116510; (c) #116505; (d) #116508.

    图 4  EAST #116507炮的q分布

    Fig. 4.  The q profiles of EAST #116507.

    图 5  EAST #116507炮放电中等离子体参数的演变 (a)芯部SXR辐射信号(蓝色)和RMP上下线圈相位差(红色); (b)锯齿周期(蓝色圆圈)和崩塌幅度(黑色三角); (c)中子产额; (d)等离子体芯部旋转速度

    Fig. 5.  Evolution of plasma parameters of EAST shot #116507: (a) Core SXR emission (blue) and the phase difference between the upper and lower coil $\Delta {\phi }_{{\rm{U}}{\rm{L}}}$ of RMP at n = 2 (red); (b) sawtooth period (blue circles) and amplitude (black triangles); (c) neutron yield; (d) toroidal rotation velocity of plasma core.

    图 6  IRMP = 3.5 kA时, EAST 四炮等离子体参数的演变(a)等离子体电流; (b)中性束注入功率; (c)等离子体密度; (d) n = 2 的RMP上下线圈相位差; (e)中子产额

    Fig. 6.  Evolution of plasma parameters of four shot with EAST at IRMP = 3.5 kA: (a) Plasma current; (b) NBI heating power; (c) electron density; (d) phase difference between the upper and lower coil $\Delta {\phi }_{{\rm{U}}{\rm{L}}}$ of RMP at n = 2; (e) neutron yield.

    图 7  (a), (c) EAST #116507炮放电芯部SXR辐射信号; (b), (d) 图(a), (c)对应时间段的SXR频谱图

    Fig. 7.  (a), (c) Core SXR signal of discharge #116507; (b), (d) spectrum of SXR for the time corresponding to panels (a) and (c).

    图 8  EAST #116507炮放电中n = 2的扰动场在不同相位差下的谱型对比 (a)$\Delta {\phi }_{{\rm{U}}{\rm{L}}}=0^\circ$; (b)$\Delta {\phi }_{{\rm{U}}{\rm{L}}}=180^\circ$; (c)$\Delta {\phi }_{{\rm{U}}{\rm{L}}}= 270^\circ$

    Fig. 8.  Comparison of n = 2 RMP spectrum for different phase difference of discharge #116507: (a) $\Delta {\phi }_{{\rm{U}}{\rm{L}}}=0^\circ$; (b) $\Delta {\phi }_{{\rm{U}}{\rm{L}}}= $$ 180^\circ$; (c) ${\Delta }{\phi }_{{\rm{U}}{\rm{L}}}=270^\circ$.

  • [1]

    Porcelli F, Boucher D, Rosenbluth M N 1996 Plasma Phys. Controlled Fusion 38 2163Google Scholar

    [2]

    Goniche M, Dumont R J, Bobkov V, et al. 2017 Plasma Phys. Controlled Fusion 59 055001Google Scholar

    [3]

    Bando T, Wakatsuki T, Honda M, Isayama A, Shinohara K, Inoue S, Yoshida M, Matsunaga G, Takechi M, Oyama N, Ide S 2021 Plasma Phys. Controlled Fusion 63 085009Google Scholar

    [4]

    Wang J Q, Xiao C J, Wang X G, Ji X Q, Liu Y 2012 Plasma Phys. Controlled Fusion 54 122001Google Scholar

    [5]

    Chao Y, Xu L Q, Hu L Q, Yuan Y, Zhang Y K, Lü B, Zhong G Q, Liu Y, Liu H Q, Du H F 2019 AIP Adv. 9 015226Google Scholar

    [6]

    Li J C, Gong X Y, Dong J Q, Wang J, Yin L 2016 Chin. Phys. B 25 045201Google Scholar

    [7]

    Lerche E, Lennholm M, Carvalho I S, Jacquet P, Mantsinen M, Dumortier P, Van Eester D, Graves J P, Card P, Noble C 2020 Nucl. Fusion 60 126037Google Scholar

    [8]

    Sun Y W, Ma Q, Jia M N, et al. 2021 Nucl. Fusion 61 106037Google Scholar

    [9]

    Bonfiglio D, Veranda M, Cappello S, Chacón L, Escande D F 2017 Plasma Phys. Controlled Fusion 59 014032Google Scholar

    [10]

    Li J C, Ding Y H, Yu Q Q, Wang N C, Li D, Zhang X Q, Han D L, Chen Z P, Yang Z J, Zhou S, Yan W, Liang Y F, Zhang X L, Lin X D, Sun H B, Gao X, Li J G 2020 Nucl. Fusion 60 126002Google Scholar

    [11]

    Kim G, Yun G S, Woo M 2019 Plasma Phys. Controlled Fusion 61 055001Google Scholar

    [12]

    Yuan Y, Hu L Q, Xu L Q, Wang X G, Wang X J, Xu H D, Luo Z P, Chen K Y, Lin S Y, Duan Y M, Chang P X, Zhao H L, He K Y, Liang Y F 2016 Phys. Plasmas 23 062503Google Scholar

    [13]

    Sun Y W, Liang Y, Qian J P, Shen B, Wan B 2015 Plasma Phys. Controlled Fusion 57 045003Google Scholar

    [14]

    Mao F Y, Wang N C, Huang Z, Ren Z K, Zhou S, Shen C S, Zhang X Y, He Y, Zhang Q, Jia R, Zhao C X, Li Y B, Hu B, Li D, Bala A A, Chen Z P, Chen Z Y, Yang Z J, Liang Y F, Ding Y H, Pan Y 2022 Plasma Sci. Technol. 24 124002Google Scholar

    [15]

    Chen L, Zonca F 2016 Rev. Mod. Phys. 88 015008Google Scholar

    [16]

    Qian J P, Lao L L, Liu H Q, Ding W X, Zeng L, Luo Z P, Ren Q L, Huang Y, Huang J, Brower D L, Hanada K, Chen D L, Sun Y W, Shen B, Gong X Z, Xiao B J, Wan B N 2017 Nucl. Fusion 57 036008Google Scholar

    [17]

    Liu H Q, Qian J P, Jie Y X, Ding W X, Brower D L, Zou Z Y, Li W M, Lian H, Wang S X, Yang Y, Zeng L, Lan T, Yao Y, Hu L Q, Zhang X D, Wan B N 2016 Rev. Sci. Instrum. 87 11D903Google Scholar

    [18]

    Zhong G Q, Cao H R, Hu L Q, Zhou R J, Xiao M, Li K, Pu N, Huang J, Liu G Z, Lin S Y, Lyu B, Liu H Q, Zhang X J 2016 Plasma Phys. Controlled Fusion 58 075013Google Scholar

    [19]

    Lyu B, Chen J, Hu R J, Delgado-Aparicio L F, Wang F D, Bitter M, Hill K W, Pablant N, Lee S G, Ye M Y, Shi Y J, Wan B N 2018 Rev. Sci. Instrum. 89 10F112Google Scholar

    [20]

    Zhong G Q, Hu L Q, Pu N, Zhou R J, Xiao M, Cao H R, Zhu Y B, Li K, Fan T S, Peng X Y, Du T F, Ge L J, Huang J, Xu G S, Wan B N 2016 Rev. Sci. Instrum. 87 11D820Google Scholar

    [21]

    Chapman I T, Pinches S D, Graves J P, et al. 2007 Plasma Phys. Controlled Fusion 49 B385Google Scholar

    [22]

    Chen W, Ding X T, Liu Y, Yang Q W, Ji X Q, Isobe M, Yuan G L, Zhang Y P, Zhou Y, Song X Y, Dong Y B, Li W, Zhou J, Lei G J, Cao J Y, Deng W, Song X M, Duan X R 2010 Nucl. Fusion. 50 084008Google Scholar

    [23]

    Ding Y H, Chen Z Y, Chen Z P, et al. 2018 Plasma Sci. Technol. 20 125101Google Scholar

    [24]

    苏春燕, 牟茂淋, 陈少永, 郭文平, 唐昌建 2021 物理学报 70 095207Google Scholar

    Su C Y, Mou M L, Chen S Y, Guo W P, Tang C J 2021 Acta Phys. Sin. 70 095207Google Scholar

    [25]

    He K Y, Sun Y W, Wan B N, Gu S, Jia M N, Hu Y 2021 Nucl. Fusion 61 016009Google Scholar

    [26]

    Hao G Z, Li C Y, Liu Y Q, Chen H T, Wang S, Bai X, Dong G Q, He H D, Zhao Y F, Miao Y T, Zhou L N, Xu J Q, Zhang N, Chen Q, Sun T F, Ji X Q, Liu Y, Zhong W L, Xu M, Duan X R 2021 Nucl. Fusion 61 126031Google Scholar

    [27]

    李春雨, 郝广周, 刘钺强, 王炼, 刘艺慧子 2022 物理学报 71 075202Google Scholar

    Li C Y, Hao G Z, Liu Y Q, Wang L, Liu Y H Z 2022 Acta Phys. Sin. 71 075202Google Scholar

    [28]

    Liu Y Q, Kirk A, Nardon E 2010 Phys. Plasmas 17 122502Google Scholar

    [29]

    Ren J, Sun Y W, Wang H H, Gu S, Qian J P, Shi T H, Shen B, Liu Y Q, Guo W F, Chu N, He K Y, Jia M N, Wang Y, Sheng Z C, Luo Z P, Zeng L, Gong X Z, Liang Y F, Wan B N 2021 Nucl. Fusion. 61 056007Google Scholar

    [30]

    Jia M N, Loarte A, Sun Y W, et al. 2021 Nucl. Fusion. 61 106023Google Scholar

  • [1] 胡莹欣, 赵开君, 李继全, 严龙文, 许健强, 黄治辉, 余德良, 谢耀禹, 丁肖冠, 温思宇. HL-2A托卡马克电子回旋共振加热调制对湍流驱动和传播的影响. 物理学报, 2025, 74(5): . doi: 10.7498/aps.74.20241263
    [2] 丁肖冠, 赵开君, 谢耀禹, 陈志鹏, 陈忠勇, 杨州军, 高丽, 丁永华, 温思宇, 胡莹欣. J-TEXT托卡马克锯齿振荡期间湍流传播和对称性破缺对边缘剪切流的影响. 物理学报, 2025, 74(4): 045201. doi: 10.7498/aps.74.20241364
    [3] 金仡飞, 张洪明, 尹相辉, 吕波, CheonhoBae, 叶凯萱, 盛回, 王士凡, 赵海林, 顾帅, 袁泓, 林子超, 傅盛宇, 卢迪安, 符佳, 王福地. EAST上RMP驱动等离子体自发旋转物理机制的实验研究. 物理学报, 2024, 73(24): 245203. doi: 10.7498/aps.73.20241357
    [4] 周利娜, 胡汉卿, 刘钺强, 段萍, 陈龙, 张瀚予. 等离子体对共振磁扰动的流体和动理学响应的模拟研究. 物理学报, 2023, 72(7): 075202. doi: 10.7498/aps.72.20222196
    [5] 李春雨, 郝广周, 刘钺强, 王炼, 刘艺慧子. 托卡马克装置中等离子体环向旋转对三维响应场的影响. 物理学报, 2022, 71(7): 075202. doi: 10.7498/aps.71.20211975
    [6] 苏春燕, 牟茂淋, 陈少永, 郭文平, 唐昌建. 托卡马克等离子体中共振磁扰动场放大效应对离子轨道特性的作用. 物理学报, 2021, 70(9): 095207. doi: 10.7498/aps.70.20201860
    [7] 陈撷宇, 牟茂淋, 苏春燕, 陈少永, 唐昌建. HL-2A中环向旋转影响等离子体对共振磁扰动的响应过程. 物理学报, 2020, 69(19): 195201. doi: 10.7498/aps.69.20200519
    [8] 郑永真, 齐昌炜, 丁玄同, 郦文忠. 托卡马克等离子体中内部磁扰动的测量研究. 物理学报, 2006, 55(1): 294-298. doi: 10.7498/aps.55.294
    [9] 王文浩, 俞昌旋, 许宇鸿, 闻一之, 凌必利, 宋梅, 万宝年. HT-7超导托卡马克边界等离子体参量及其涨落的实验研究. 物理学报, 2001, 50(8): 1521-1527. doi: 10.7498/aps.50.1521
    [10] 王世庆, 金亚秋. 电子回旋共振加热情形锯齿振荡的数值分析. 物理学报, 2001, 50(9): 1737-1741. doi: 10.7498/aps.50.1737
    [11] 刘胜侠. HT-6M托卡马克离子回旋共振频率加热电荷交换能谱的分析. 物理学报, 1995, 44(1): 152-156. doi: 10.7498/aps.44.152
    [12] 沈学民, 王兆申, 邵玉贵, 薛迪冶, 丁家义, 许德政, 吴从中, 邓旭, 王坚, 汪亚明, 李有宜, 实验小组. HT-6M托卡马克二次谐波离子回旋共振加热实验. 物理学报, 1995, 44(9): 1442-1448. doi: 10.7498/aps.44.1442
    [13] 匡光力, G.WAIDMANN. TEXTOR托卡马克等离子体的磁流体动力学振荡特性. 物理学报, 1994, 43(9): 1466-1475. doi: 10.7498/aps.43.1466
    [14] 毛文进. 托卡马克中共振螺旋场对撕裂模的影响. 物理学报, 1993, 42(7): 1092-1097. doi: 10.7498/aps.42.1092
    [15] 杨宣宗, 戚霞枝, 王龙. 利用软X射线锯齿振荡研究托卡马克等离子体的热输运. 物理学报, 1987, 36(6): 717-724. doi: 10.7498/aps.36.717
    [16] 沈仲卿, 郑少白, 王龙. 托卡马克装置反馈稳定区(Ⅱ)——实验部份. 物理学报, 1986, 35(9): 1126-1133. doi: 10.7498/aps.35.1126
    [17] 汪茂泉, 詹如娟. 用电子迴旋共振加热抑制托卡马克中的撕裂模. 物理学报, 1986, 35(9): 1233-1237. doi: 10.7498/aps.35.1233
    [18] 陈雁萍, 柯孚久, 蔡诗东. 产生高β托卡马克中高能电子的电子迴旋共振加热方法. 物理学报, 1986, 35(10): 1271-1280. doi: 10.7498/aps.35.1271
    [19] 戚霞枝, 郑少白. CT-6B托卡马克装置中软X射线辐射及扰动. 物理学报, 1984, 33(4): 465-471. doi: 10.7498/aps.33.465
    [20] 一○四组. CT-6托卡马克研究(Ⅱ)——物理实验结果. 物理学报, 1980, 29(6): 764-777. doi: 10.7498/aps.29.764
计量
  • 文章访问数:  4141
  • PDF下载量:  117
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-08
  • 修回日期:  2023-05-04
  • 上网日期:  2023-05-05
  • 刊出日期:  2023-07-05

/

返回文章
返回