搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

正弦削波电压调控大气压氦气非平滑表面介质阻挡放电均匀性的仿真研究

刘凯 方泽 戴栋

引用本文:
Citation:

正弦削波电压调控大气压氦气非平滑表面介质阻挡放电均匀性的仿真研究

刘凯, 方泽, 戴栋

Numerical study on uniformity of atmospheric helium gas dielectric barrier discharge on non-smooth surface regulated by sinusoidal clipping voltage

Liu Kai, Fang Ze, Dai Dong
PDF
HTML
导出引用
  • 在大气压介质阻挡放电的实际应用中, 等离子体通常作用于非平滑表面. 其表面形貌导致的电场畸变和表面电荷分布不均匀, 会对放电的均匀稳定产生不利影响. 建立了下介质板为波浪状的大气压氦气介质阻挡放电仿真模型, 并采用正弦削波电压对放电均匀性进行调控. 结果表明: 相比于未削波情况下, 放电均匀性提高, 介质阻挡放电从柱状放电模式转换为准均匀放电模式. 这可以归因于气隙电压降低而产生的不完全放电消散; 随后的电子回流过程使残余空间电子与表面电荷中和, 限制了表面电荷积累. 随着削波比例增加, 表面电荷分布更为均匀, 进而导致电场分布在径向上波动减弱. 此外, 在一定削波范围内放电效率也有所提高. 本研究揭示了削波电压对非平滑表面介质阻挡放电的影响机理, 为介质阻挡放电均匀性调控提供了新的思路.
    In practical applications of dielectric barrier discharges under atmospheric pressure, plasma usually acts on non-smooth surfaces. The electric field distortion and uneven surface charge distribution caused by its surface morphology will create an adverse effect on the uniformity and stability of the discharge. In this paper, we establish a simulation model of atmospheric pressure helium dielectric barrier discharge on a wavy lower dielectric plate, and use a sinusoidal clipping voltage to regulate the discharge uniformity. The results show that the discharge uniformity is improved compared with the unclipped case, and the discharge mode is changed from columnar mode to quasi-uniform mode. This can be attributed to the incomplete discharge dissipation caused by the reduction of air gap voltage; the subsequent electron backflow process neutralizes the the residual space electrons with the surface charge, which limits the accumulation of surface charges. With the increase of clipping ratio, the surface charge distribution becomes more uniform, and the radial fluctuation of electric field distribution weakens. In addition, the discharge efficiency is improved in a certain clipping range. This study reveals the mechanism of clipping voltage influence on non-smooth surface discharge, and provides a new idea for regulating the uniformity of dielectric barrier discharge.
      通信作者: 戴栋, ddai@scut.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2021YFE0114700)和国家自然科学基金(批准号: 51877086)资助的课题.
      Corresponding author: Dai Dong, ddai@scut.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2021YFE0114700) and the National Natural Science Foundation of China (Grant No. 51877086).
    [1]

    梅丹华, 方志, 邵涛 2020 中国电机工程学报 40 1339Google Scholar

    Mei D H, Fang Z, Shao T 2020 Chin. Soc. Elec. Eng. 40 1339Google Scholar

    [2]

    戴栋, 宁文军, 邵涛 2017 电工技术学报 32 1Google Scholar

    Dai D, Ning W J, Shao T 2017 Trans. Chin. Elc. Soc. 32 1Google Scholar

    [3]

    李和平, 于达仁, 孙文廷, 刘定新, 李杰, 韩先伟, 李增耀, 孙冰, 吴云 2017 高电压技术 42 3697Google Scholar

    Li H P, Yu D L, Sun W T, Liu D X, Li J, Han X W, Li Z Y, Sun B, Wu Y 2017 High Voltage Eng. 42 3697Google Scholar

    [4]

    Adamovich I, Agarwal S, Ahedo E, et al. 2022 J. Phys. D: Appl. Phys. 55 373001Google Scholar

    [5]

    Larouss M, Bekeschus S, Bogaerts A, Keidar M, Bogaerts A, Fridman A, Lu B X 2022 IEEE Trans. Radiat. Plasma Med. Sci. 6 127Google Scholar

    [6]

    Sanito R C, You S J, Wang Y F 2021 J. Environ. Manage. 288 112380Google Scholar

    [7]

    Laroussi M, Lu X, Keidar M 2017 J. Appl. Phys. 122 020901Google Scholar

    [8]

    Gaunt L F, Beggs C B, Georghiou G E 2006 IEEE Trans. Plasma Sci. 34 1257Google Scholar

    [9]

    Ouyang J T, Li B, He F, Dai D 2018 Plasma Sci. Technol. 20 103002Google Scholar

    [10]

    Fang Z, Qiu Y, Zhang C, Kuffel E 2007 J. Phys. D:Appl. Phys. 40 1401Google Scholar

    [11]

    Wang Q, Ning W J, Dai D, Zhang Y H, Ouyang J T 2019 J. Phys. D: Appl. Phys. 52 205201Google Scholar

    [12]

    Zhang Y H, Ning W J, Dai D, Wang Q 2019 Plasma Sources Sci. Technol. 28 075003Google Scholar

    [13]

    Zhang Y H, Neyts E C, Bogaerts A 2016 J. Phys. Chem. C 120 25923Google Scholar

    [14]

    Hao Y P, Zheng B, Liu Y G 2014 Phys. Plasmas 21 013503Google Scholar

    [15]

    Zhang P, Kortshagen U 2006 J. Phys. D: Appl. Phys. 39 153Google Scholar

    [16]

    Zhang J, Wang Y H, Wang D Z 2015 Phys. Plasmas 22 043517Google Scholar

    [17]

    Brauer I, Punset C, Purwins H G, Boeuf J P 1999 J. Appl. Phys. 85 7569Google Scholar

    [18]

    Boeuf J P, Bernecker B, Callegari T, Blanco S, Fournier R 2012 Appl. Phys. Lett. 100 244108Google Scholar

    [19]

    Zhang Y H, Ning W J, Dai D, Wang Q 2019 Plasma Sci. Technol. 21 074003Google Scholar

    [20]

    Huang Z M, Hao Y P, Han Y Y, Yang L, Tang L, Liao Y F, Li L C 2017 Phys. Plasmas 24 113506Google Scholar

    [21]

    Ye Q Z, Wu Y F, Li X W, Chen T, Shao G W 2012 Plasma Sources Sci. Technol. 21 065008Google Scholar

    [22]

    Motrescu I, Ciolan M A, Sugiyama K, Kawamura N, Nagatsu M 2018 Plasma Sources Sci. Technol. 27 115005Google Scholar

    [23]

    Wang X X, Luo H Y, Liang Z, Mao T, Ma R L 2006 Plasma Sources Sci. Technol. 15 845Google Scholar

    [24]

    Brandenburg R 2017 Plasma Sources Sci. Technol. 26 053001Google Scholar

    [25]

    Heinlin J, Morfill G, Landthaler M, Stolz W, Isbary G, Zimmermann J L, Shimizu T, Karrer S 2010 J. Dtsch. Dermatol. Ges. 8 968Google Scholar

    [26]

    Buendia J A, Venkattraman A 2015 Europhys. Lett. 112 55002Google Scholar

    [27]

    Fu Y Y, Zhang P, Verboncoeur J P, Christlieb A J, Wang X X 2018 Phys. Plasmas 25 013530Google Scholar

    [28]

    Fu Y Y, Zhang P, Verboncoeur J P 2018 Appl. Phys. Lett. 113 054102Google Scholar

    [29]

    Levko D, Raja L L 2015 J. Appl. Phys. 117 173303Google Scholar

    [30]

    Go D B, Venkattraman A 2014 J. Phys. D: Appl. Phys. 47 503001Google Scholar

    [31]

    Venkattraman A, Garg A, Peroulis D, Alexeenko A A 2012 Appl. Phys. Lett. 100 083503Google Scholar

    [32]

    Cheng H, Liu X, Lu X P, Liu D W 2016 Phys. Plasmas 23 073517Google Scholar

    [33]

    Cheng H, Xu M Y, Pan S H, Lu X P, Liu D W 2018 Plasma Sci. Technol. 20 044006Google Scholar

    [34]

    Wang Q, Ning W J, Dai D, Zhang Y H 2019 Plasma Process. Polym. 17 1900182Google Scholar

    [35]

    Mujahid Z, Korolov I, Liu Y, Mussenbrock T, Schulze J 2022 J. Phys. D: Appl. Phys. 55 495201Google Scholar

    [36]

    Babaeva N Y, Tian W, Kushner M J 2014 J. Phys. D: Appl. Phys. 47 235201Google Scholar

    [37]

    Babaeva N Y, Kushner M J 2013 J. Phys. D:Appl. Phys. 46 025401Google Scholar

    [38]

    Lin A, Biscop E, Gorbanev Y, Smits E, Bogaerts A 2021 Plasma Process. Polym. 19 e2100151Google Scholar

    [39]

    Zhang Y H, Ning W J, Dai D, Wang Q 2019 Plasma Sources Sci. Technol. 28 104001Google Scholar

    [40]

    Kong M G, Deng X T 2003 IEEE Trans. Plasma Sci. 31 7Google Scholar

    [41]

    Fridman G, Friedman G, Gutsol A, Shekhter A B, Vasilets V N, Fridman A 2008 Plasma Process. Polym. 5 503Google Scholar

    [42]

    Ning W J, Dai D, Li L C 2018 Plasma Sources Sci. Technol. 27 08LT01Google Scholar

    [43]

    Cheng H, Liu X, Liu D W, Lu X P 2016 High Volt. 1 62Google Scholar

    [44]

    Lazarou C, Belmonte T, Chiper A S, Georghiou G E 2016 Plasma Sources Sci. Technol. 25 055023Google Scholar

    [45]

    力伯曼, 里登伯格 著 (蒲以康等 译) 2018 等离子体放电与材料工艺原理: 第2版 (北京: 电子工业出版社) 第6—7页

    Lieberman M A, Lichtenberg A J (translated by Pu Y K, et al.) 2018 Principles of Plasma Discharges and Materials Processing (2nd Ed.) (Beijing: Publishing House of Electronics Industry) pp6–7 (in Chinese)

    [46]

    Lazarou C, Koukounis D, Chiper A S, Costin C, Topala I, Georghiou G E 2015 Plasma Sources Sci. Technol. 24 035012Google Scholar

    [47]

    Hagelaar G J M, Pitchford L C 2005 Plasma Sources Sci. Technol. 14 722Google Scholar

    [48]

    Purwins H G, Stollenwerk L 2014 Plasma Phys. Control. Fusion 56 123001Google Scholar

    [49]

    Ellis H W, Pai R Y, McDaniel E W, Mason E A, Viehland L A 1976 At. Data Nucl. Data Tables. 17 177Google Scholar

    [50]

    Yan W, Xia Y, Bi Z H, Song Y, Wang D Z, Sosnin E A, Skakun V S, Liu D P 2017 J. Phys. D: Appl. Phys. 50 345201Google Scholar

    [51]

    Hagelaar G J M 2000 Phys. Rev. E 62 1452Google Scholar

    [52]

    Motz H, Wise H 1960 J. Chem. Phys. 32 1893Google Scholar

    [53]

    Bilici M A, Haase J R, Boyle C R, Go D B, Sankaran R M 2016 J. Appl. Phys. 119 223301Google Scholar

    [54]

    Boeuf J P, Yang L L, Pitchford L C 2013 J. Phys. D:Appl. Phys. 46 015201Google Scholar

    [55]

    Petra C G, Schenk O, Anitescu M 2014 Comput. Sci. Eng. 16 32Google Scholar

    [56]

    Li B, Dong L F, Zhang C, Shen Z K, Zhang X P 2014 J. Phys. D: Appl. Phys. 47 055205Google Scholar

    [57]

    Huang Z M, Hao Y P, Yang L, Han Y X, Li L C 2015 Phys. Plasmas 22 123519Google Scholar

    [58]

    Ning W J, Dai D, Zhang Y H, Hao Y P, Li L C 2017 Phys. Plasmas 24 073509Google Scholar

    [59]

    Golubovskii Y B, Maiorov V A, Behnke J, Behnke J F 2003 J. Phys. D: Appl. Phys. 36 39Google Scholar

    [60]

    Lee D, Park J M, Hong S H, Kim Y 2005 IEEE Trans. Plasma Sci. 33 949Google Scholar

    [61]

    Jiang W M, Tang J, Wang Y S, Zhao W, Duan Y X 2013 Phys. Plasmas 20 073509Google Scholar

    [62]

    Wang Q, Zhou X Y, Dai D, Huang Z, Zhang D M 2021 Plasma Sources Sci. Technol. 30 05LT01Google Scholar

  • 图 1  w-DBD仿真模型的几何结构

    Fig. 1.  Geometry of w-DBD simulation model.

    图 2  削波电压波形

    Fig. 2.  Waveform of clipping voltage.

    图 3  稳态下DBD在外施电压周期内其平均电子密度的空间分布 (施加10 kHz, 1.5 kV正弦电压) (a)平滑表面DBD; (b) w-DBD

    Fig. 3.  Spatial distribution of average electron density on DBD over one period of applied voltage at steady state (The voltage source is 10 kHz, 1.5 kV sinusoidal voltage): (a) Smooth surface DBD; (b) w-DBD.

    图 4  不同pc下, 放电达到稳态后一个外施电压周期内的平均电子密度的空间分布 (a) pc = 50%; (b) pc = 55%; (c) pc = 60%; (d) pc = 65%; (e) pc = 70%

    Fig. 4.  Spatial distribution of average electron density over one period of applied voltage at steady state under different pc: (a) pc = 50%; (b) pc=55%; (c) pc = 60%; (d) pc = 65%; (e) pc = 70%.

    图 5  不同pc下, 放电达到稳态后一个外施电压周期内的外施电压Va, 气隙电压Vg和电流密度J (a) pc = 0; (b) pc = 50%; (c) pc = 55%; (d) pc = 60%; (e) pc = 65%; (f) pc = 70%

    Fig. 5.  Temporal profiles of applied voltage Va, gap voltage Vg and current density J over one period of applied voltage at steady state under different pc: (a) pc = 0; (b) pc = 50%; (c) pc = 55%; (d) pc = 60%; (e) pc = 65%; (f) pc = 70%.

    图 6  pc不同时, 放电达到稳态后一个外施电压周期内的电压电流波形(a), (c), (e)和t1t5时刻对应的电子密度空间分布(b), (d), (f). 正负号表示该时刻的气隙电压极性 (a), (b) pc = 0; (c), (d) pc = 55%; (e), (f) pc = 70%

    Fig. 6.  Voltage and current waveform (a), (c), (e) and spatial distribution (b), (d), (f) of electron density corresponding to t1 to t5 over one period of applied voltage at steady state under different pc. Plus and minus signs indicate air gap voltage polarity at this time: (a), (b) pc = 0; (c), (d) pc = 55%; (e), (f) pc = 70%.

    图 7  pc分别为0, 55%, 70%时, t1 (a)和t4 (b)时刻对应的净表面电荷密度ρs

    Fig. 7.  Net surface charge density ρs at t1 (a) and t4 (b) under pc of 0, 55% and 70% respectively.

    图 8  pc分别为0, 55%, 70%时 (a1), (b1) t1t4时刻对应的轴向平均电场强度|Ez|; (a2) t1时刻距上介质板表面0.05 mm附近的径向电场强度Er; (b2) t4时刻距下介质板表面0.05 mm附近的径向电场强度Er

    Fig. 8.  Under pc of 0, 55% and 70%: (a1), (b1) Axial average electric field |Ez| at t1 and t4 respectively; (a2) radial electric field Er near surface of 0.05 mm upper dielectric plate at t1; (b2) radial electric field Er near surface of 0.05 mm lower dielectric plate at t4.

    图 9  pc分别为0, 55%, 70%时, 介质板表面附近的电子通量Γe (a) t1时刻上介质板表面附近(r = 0—8 mm, z = 2—3 mm区域); (b) t4时刻下介质板表面附近(r = 0—8 mm, z = 0.9—2.0 mm区域)

    Fig. 9.  Electron flux Γe near dielectric plate at pc of 0, 55% and 70%: (a) Near upper dielectric plate (r = 0–8 mm, z = 2–3 mm) at t1; (b) near lower dielectric plate (r = 0–8 mm, z = 0.9–2.0 mm) at t4.

    图 10  pc分别为0, 55%, 70%时, t1 (a)和t4 (b)时刻对应的轴向平均种子电子密度ne

    Fig. 10.  Axial average seed electron density ne at t1 (a) and t4 (b) under pc of 0, 55% and 70% respectively.

    图 11  pc分别为0, 55%, 70%时, 正击穿过程中(从预电离阶段开始的半个外施电压周期)局部强放电处的轴向切线的电子密度时空分布, 以及气隙电压极性反转时刻的电子密度ne, 离子密度ni和轴向电场|Ez|的轴向分布 (a) pc = 0; (b) pc = 55%; (c) pc = 70%

    Fig. 11.  Spatial-temporal distribution of electron density at axial tangent of the partial strong discharge during positive breakdown (half of applied voltage period starting from pre-ionization stage), and axial distribution of electron density ne, ion density ni and axial electric field |Ez| at the time of polarity reversal of the air gap voltage under different pc: (a) pc = 0; (b) pc = 55%; (c) pc = 70%.

    图 12  电子回流开始和结束时刻下表面电荷密度分布 (a) pc = 55%; (b) pc = 70%

    Fig. 12.  Lower surface’s charge density distribution at beginning and the end of electron backflow: (a) pc = 55%; (b) pc = 70%.

    图 13  pc分别为0, 55%, 70%时, 5个周期内局部强放电的击穿强度(以轴向平均电子密度表示, 其中削波电压下选取的正负击穿位置不同)

    Fig. 13.  Strength of local intense discharge or discharge column within five periods under pc of 0, 55% and 70% respectively (Which is expressed as axial average electron density, and selected positions of positive and negative breakdown under the clipping voltage are different).

    图 14  pc分别为0, 55%, 70%时, 放电达到稳态后一个外施电压周期内的彭宁电离速率

    Fig. 14.  Penning ionization rates over one period of applied voltage at steady state under pc of 0, 55% and 70% respectively.

    图 15  不同pc下, 放电达到稳态后预电离阶段的轴向平均电场强度|Ez|和轴向平均种子电荷密度(ne + ni)avg

    Fig. 15.  Axial average electric field |Ez| and axial average seed charge density (ne + ni)avg at pre-ionization stage after discharge reaches steady state under different pc.

    图 16  不同pc下, 放电达到稳态后一个外施电压周期内的时间平均功率密度Pav和时间平均电子密度neav

    Fig. 16.  Time-averaged power density Pav and time-averaged electron density neav over one period of applied voltage at steady state under different pc.

    表 1  等离子体模型的边界条件

    Table 1.  Boundary conditions of plasma model.

    边界表达式备注
    ABV = Vam高压电极
    GHV = 0接地
    BC, CD, EF, FG$- {\boldsymbol{n}} \cdot D = 0$零电荷
    DE$- {\boldsymbol{n} } \cdot { {\boldsymbol{\varGamma } }_{\text{e} } } = 0$绝缘
    $- {\boldsymbol{n} } \cdot { {\boldsymbol{\varGamma } }_{ \text{ε}} } = 0$
    DJ, EIEq. (10)—Eq. (12),
    Eq. (14), Eq. (15)
    介质表面
    HIJA${ {\partial V}/{\partial r} } = 0$对称轴
    下载: 导出CSV

    表 2  模型中输入的初始值

    Table 2.  Initial parameters applied in model.

    参数初始值
    电子数密度/m–32.2×1013
    He+数密度/m–31.0×1013
    $ {\text{He}}_2^ + $数密度/m–31.0×1013
    $ {\text{N}}_2^ + $数密度/m–31.0×1012
    $ {\text{N}}_4^ + $数密度/m–31.0×1012
    He*摩尔分数1.0×10–9
    $ {\text{He}}_2^* $摩尔分数1.0×10–9
    N2摩尔分数100×10–6
    平均电子/eV4
    气体温度/K300
    压强/Torr760
    下载: 导出CSV
  • [1]

    梅丹华, 方志, 邵涛 2020 中国电机工程学报 40 1339Google Scholar

    Mei D H, Fang Z, Shao T 2020 Chin. Soc. Elec. Eng. 40 1339Google Scholar

    [2]

    戴栋, 宁文军, 邵涛 2017 电工技术学报 32 1Google Scholar

    Dai D, Ning W J, Shao T 2017 Trans. Chin. Elc. Soc. 32 1Google Scholar

    [3]

    李和平, 于达仁, 孙文廷, 刘定新, 李杰, 韩先伟, 李增耀, 孙冰, 吴云 2017 高电压技术 42 3697Google Scholar

    Li H P, Yu D L, Sun W T, Liu D X, Li J, Han X W, Li Z Y, Sun B, Wu Y 2017 High Voltage Eng. 42 3697Google Scholar

    [4]

    Adamovich I, Agarwal S, Ahedo E, et al. 2022 J. Phys. D: Appl. Phys. 55 373001Google Scholar

    [5]

    Larouss M, Bekeschus S, Bogaerts A, Keidar M, Bogaerts A, Fridman A, Lu B X 2022 IEEE Trans. Radiat. Plasma Med. Sci. 6 127Google Scholar

    [6]

    Sanito R C, You S J, Wang Y F 2021 J. Environ. Manage. 288 112380Google Scholar

    [7]

    Laroussi M, Lu X, Keidar M 2017 J. Appl. Phys. 122 020901Google Scholar

    [8]

    Gaunt L F, Beggs C B, Georghiou G E 2006 IEEE Trans. Plasma Sci. 34 1257Google Scholar

    [9]

    Ouyang J T, Li B, He F, Dai D 2018 Plasma Sci. Technol. 20 103002Google Scholar

    [10]

    Fang Z, Qiu Y, Zhang C, Kuffel E 2007 J. Phys. D:Appl. Phys. 40 1401Google Scholar

    [11]

    Wang Q, Ning W J, Dai D, Zhang Y H, Ouyang J T 2019 J. Phys. D: Appl. Phys. 52 205201Google Scholar

    [12]

    Zhang Y H, Ning W J, Dai D, Wang Q 2019 Plasma Sources Sci. Technol. 28 075003Google Scholar

    [13]

    Zhang Y H, Neyts E C, Bogaerts A 2016 J. Phys. Chem. C 120 25923Google Scholar

    [14]

    Hao Y P, Zheng B, Liu Y G 2014 Phys. Plasmas 21 013503Google Scholar

    [15]

    Zhang P, Kortshagen U 2006 J. Phys. D: Appl. Phys. 39 153Google Scholar

    [16]

    Zhang J, Wang Y H, Wang D Z 2015 Phys. Plasmas 22 043517Google Scholar

    [17]

    Brauer I, Punset C, Purwins H G, Boeuf J P 1999 J. Appl. Phys. 85 7569Google Scholar

    [18]

    Boeuf J P, Bernecker B, Callegari T, Blanco S, Fournier R 2012 Appl. Phys. Lett. 100 244108Google Scholar

    [19]

    Zhang Y H, Ning W J, Dai D, Wang Q 2019 Plasma Sci. Technol. 21 074003Google Scholar

    [20]

    Huang Z M, Hao Y P, Han Y Y, Yang L, Tang L, Liao Y F, Li L C 2017 Phys. Plasmas 24 113506Google Scholar

    [21]

    Ye Q Z, Wu Y F, Li X W, Chen T, Shao G W 2012 Plasma Sources Sci. Technol. 21 065008Google Scholar

    [22]

    Motrescu I, Ciolan M A, Sugiyama K, Kawamura N, Nagatsu M 2018 Plasma Sources Sci. Technol. 27 115005Google Scholar

    [23]

    Wang X X, Luo H Y, Liang Z, Mao T, Ma R L 2006 Plasma Sources Sci. Technol. 15 845Google Scholar

    [24]

    Brandenburg R 2017 Plasma Sources Sci. Technol. 26 053001Google Scholar

    [25]

    Heinlin J, Morfill G, Landthaler M, Stolz W, Isbary G, Zimmermann J L, Shimizu T, Karrer S 2010 J. Dtsch. Dermatol. Ges. 8 968Google Scholar

    [26]

    Buendia J A, Venkattraman A 2015 Europhys. Lett. 112 55002Google Scholar

    [27]

    Fu Y Y, Zhang P, Verboncoeur J P, Christlieb A J, Wang X X 2018 Phys. Plasmas 25 013530Google Scholar

    [28]

    Fu Y Y, Zhang P, Verboncoeur J P 2018 Appl. Phys. Lett. 113 054102Google Scholar

    [29]

    Levko D, Raja L L 2015 J. Appl. Phys. 117 173303Google Scholar

    [30]

    Go D B, Venkattraman A 2014 J. Phys. D: Appl. Phys. 47 503001Google Scholar

    [31]

    Venkattraman A, Garg A, Peroulis D, Alexeenko A A 2012 Appl. Phys. Lett. 100 083503Google Scholar

    [32]

    Cheng H, Liu X, Lu X P, Liu D W 2016 Phys. Plasmas 23 073517Google Scholar

    [33]

    Cheng H, Xu M Y, Pan S H, Lu X P, Liu D W 2018 Plasma Sci. Technol. 20 044006Google Scholar

    [34]

    Wang Q, Ning W J, Dai D, Zhang Y H 2019 Plasma Process. Polym. 17 1900182Google Scholar

    [35]

    Mujahid Z, Korolov I, Liu Y, Mussenbrock T, Schulze J 2022 J. Phys. D: Appl. Phys. 55 495201Google Scholar

    [36]

    Babaeva N Y, Tian W, Kushner M J 2014 J. Phys. D: Appl. Phys. 47 235201Google Scholar

    [37]

    Babaeva N Y, Kushner M J 2013 J. Phys. D:Appl. Phys. 46 025401Google Scholar

    [38]

    Lin A, Biscop E, Gorbanev Y, Smits E, Bogaerts A 2021 Plasma Process. Polym. 19 e2100151Google Scholar

    [39]

    Zhang Y H, Ning W J, Dai D, Wang Q 2019 Plasma Sources Sci. Technol. 28 104001Google Scholar

    [40]

    Kong M G, Deng X T 2003 IEEE Trans. Plasma Sci. 31 7Google Scholar

    [41]

    Fridman G, Friedman G, Gutsol A, Shekhter A B, Vasilets V N, Fridman A 2008 Plasma Process. Polym. 5 503Google Scholar

    [42]

    Ning W J, Dai D, Li L C 2018 Plasma Sources Sci. Technol. 27 08LT01Google Scholar

    [43]

    Cheng H, Liu X, Liu D W, Lu X P 2016 High Volt. 1 62Google Scholar

    [44]

    Lazarou C, Belmonte T, Chiper A S, Georghiou G E 2016 Plasma Sources Sci. Technol. 25 055023Google Scholar

    [45]

    力伯曼, 里登伯格 著 (蒲以康等 译) 2018 等离子体放电与材料工艺原理: 第2版 (北京: 电子工业出版社) 第6—7页

    Lieberman M A, Lichtenberg A J (translated by Pu Y K, et al.) 2018 Principles of Plasma Discharges and Materials Processing (2nd Ed.) (Beijing: Publishing House of Electronics Industry) pp6–7 (in Chinese)

    [46]

    Lazarou C, Koukounis D, Chiper A S, Costin C, Topala I, Georghiou G E 2015 Plasma Sources Sci. Technol. 24 035012Google Scholar

    [47]

    Hagelaar G J M, Pitchford L C 2005 Plasma Sources Sci. Technol. 14 722Google Scholar

    [48]

    Purwins H G, Stollenwerk L 2014 Plasma Phys. Control. Fusion 56 123001Google Scholar

    [49]

    Ellis H W, Pai R Y, McDaniel E W, Mason E A, Viehland L A 1976 At. Data Nucl. Data Tables. 17 177Google Scholar

    [50]

    Yan W, Xia Y, Bi Z H, Song Y, Wang D Z, Sosnin E A, Skakun V S, Liu D P 2017 J. Phys. D: Appl. Phys. 50 345201Google Scholar

    [51]

    Hagelaar G J M 2000 Phys. Rev. E 62 1452Google Scholar

    [52]

    Motz H, Wise H 1960 J. Chem. Phys. 32 1893Google Scholar

    [53]

    Bilici M A, Haase J R, Boyle C R, Go D B, Sankaran R M 2016 J. Appl. Phys. 119 223301Google Scholar

    [54]

    Boeuf J P, Yang L L, Pitchford L C 2013 J. Phys. D:Appl. Phys. 46 015201Google Scholar

    [55]

    Petra C G, Schenk O, Anitescu M 2014 Comput. Sci. Eng. 16 32Google Scholar

    [56]

    Li B, Dong L F, Zhang C, Shen Z K, Zhang X P 2014 J. Phys. D: Appl. Phys. 47 055205Google Scholar

    [57]

    Huang Z M, Hao Y P, Yang L, Han Y X, Li L C 2015 Phys. Plasmas 22 123519Google Scholar

    [58]

    Ning W J, Dai D, Zhang Y H, Hao Y P, Li L C 2017 Phys. Plasmas 24 073509Google Scholar

    [59]

    Golubovskii Y B, Maiorov V A, Behnke J, Behnke J F 2003 J. Phys. D: Appl. Phys. 36 39Google Scholar

    [60]

    Lee D, Park J M, Hong S H, Kim Y 2005 IEEE Trans. Plasma Sci. 33 949Google Scholar

    [61]

    Jiang W M, Tang J, Wang Y S, Zhao W, Duan Y X 2013 Phys. Plasmas 20 073509Google Scholar

    [62]

    Wang Q, Zhou X Y, Dai D, Huang Z, Zhang D M 2021 Plasma Sources Sci. Technol. 30 05LT01Google Scholar

  • [1] 赵凯, 牟宗信, 张家良. 同轴介质阻挡放电发生器介质层等效电容和负载特性研究. 物理学报, 2014, 63(18): 185208. doi: 10.7498/aps.63.185208
    [2] 戴栋, 王其明, 郝艳捧. 大气压氦气介质阻挡放电中的周期一不对称放电实验研究. 物理学报, 2013, 62(13): 135204. doi: 10.7498/aps.62.135204
    [3] 董丽芳, 岳晗, 范伟丽, 李媛媛, 杨玉杰, 肖红. 介质阻挡放电跃变升压模式下靶波斑图研究. 物理学报, 2011, 60(6): 065206. doi: 10.7498/aps.60.065206
    [4] 董丽芳, 杨玉杰, 刘为远, 岳晗, 王帅, 刘忠伟, 陈强. 不同电介质结构下介质阻挡放电特性研究. 物理学报, 2011, 60(2): 025216. doi: 10.7498/aps.60.025216
    [5] 董丽芳, 李树峰, 范伟丽. 介质阻挡放电丝结构转变中的缺陷研究. 物理学报, 2011, 60(6): 065205. doi: 10.7498/aps.60.065205
    [6] 梁卓, 罗海云, 王新新, 关志成, 王黎明. 气流对氮气介质阻挡放电气体温度及放电模式的影响. 物理学报, 2010, 59(12): 8739-8746. doi: 10.7498/aps.59.8739
    [7] 董丽芳, 杨玉杰, 范伟丽, 岳晗, 王帅, 肖红. 介质阻挡放电中放电丝结构相变过程研究. 物理学报, 2010, 59(3): 1917-1922. doi: 10.7498/aps.59.1917
    [8] 邵先军, 马跃, 李娅西, 张冠军. 低气压氙气介质阻挡放电的一维仿真研究. 物理学报, 2010, 59(12): 8747-8754. doi: 10.7498/aps.59.8747
    [9] 董丽芳, 赵海涛, 谢伟霞, 王红芳, 刘微粒, 范伟丽, 肖 红. 介质阻挡放电系统中超四边形斑图形成的实验研究. 物理学报, 2008, 57(9): 5768-5773. doi: 10.7498/aps.57.5768
    [10] 董丽芳, 王红芳, 刘微粒, 贺亚峰, 刘富成, 刘书华. 介质阻挡放电中电介质参量对放电时间特性的影响. 物理学报, 2008, 57(3): 1802-1806. doi: 10.7498/aps.57.1802
    [11] 李雪辰, 贾鹏英, 刘志辉, 李立春, 董丽芳. 介质阻挡放电丝模式和均匀模式转化的特性. 物理学报, 2008, 57(2): 1001-1007. doi: 10.7498/aps.57.1001
    [12] 董丽芳, 高瑞玲, 贺亚峰, 范伟丽, 李雪辰, 刘书华, 刘微粒. 介质阻挡放电斑图中放电通道的相互作用研究. 物理学报, 2007, 56(3): 1471-1475. doi: 10.7498/aps.56.1471
    [13] 尹增谦, 万景瑜, 黄明强, 王慧娟. 介质阻挡放电中的能量转换过程研究. 物理学报, 2007, 56(12): 7078-7083. doi: 10.7498/aps.56.7078
    [14] 欧阳吉庭, 何 锋, 缪劲松, 冯 硕. 共面介质阻挡放电特性研究. 物理学报, 2006, 55(11): 5969-5974. doi: 10.7498/aps.55.5969
    [15] 王艳辉, 王德真. 介质阻挡均匀大气压氮气放电特性研究. 物理学报, 2006, 55(11): 5923-5929. doi: 10.7498/aps.55.5923
    [16] 贺亚峰, 董丽芳, 刘富成, 范伟丽. 介质阻挡放电中的局域态六边形结构. 物理学报, 2005, 54(9): 4236-4239. doi: 10.7498/aps.54.4236
    [17] 张远涛, 王德真, 王艳辉. 大气压介质阻挡丝状放电时空演化数值模拟. 物理学报, 2005, 54(10): 4808-4815. doi: 10.7498/aps.54.4808
    [18] 王艳辉, 王德真. 大气压下多脉冲均匀介质阻挡放电的研究. 物理学报, 2005, 54(3): 1295-1300. doi: 10.7498/aps.54.1295
    [19] 董丽芳, 毛志国, 冉俊霞. 氩气介质阻挡放电不同放电模式的电学特性研究. 物理学报, 2005, 54(7): 3268-3272. doi: 10.7498/aps.54.3268
    [20] 尹增谦, 王 龙, 董丽芳, 李雪辰, 柴志方. 介质阻挡放电中微放电的映射方程. 物理学报, 2003, 52(4): 929-934. doi: 10.7498/aps.52.929
计量
  • 文章访问数:  3285
  • PDF下载量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-14
  • 修回日期:  2023-05-07
  • 上网日期:  2023-05-08
  • 刊出日期:  2023-07-05

/

返回文章
返回