搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

颗粒填充复合炸药裂纹缺陷的高信噪比超声成像方法

李海宁 禹利达 甘仁杰 张伟斌 杨占锋

引用本文:
Citation:

颗粒填充复合炸药裂纹缺陷的高信噪比超声成像方法

李海宁, 禹利达, 甘仁杰, 张伟斌, 杨占锋

High signal-to-noise-ratio ultrasonic imaging of crack defects in particles filled composite explosives

Li Hai-Ning, Yu Li-Da, Gan Ren-Jie, Zhang Wei-Bin, Yang Zhan-Feng
PDF
HTML
导出引用
  • 高聚物黏结炸药(PBX)是一类由炸药造型颗粒高度填充和少量黏结剂构成的复合材料, 其内部裂纹的有效检出对结构完整性评价和安全可靠性评估具有重要意义. PBX因其特殊的细观结构特征呈现出声速低、衰减强的特点, 利用传统线性超声聚焦成像时, 超声波在颗粒边界发生的多重反射会造成重构图像信噪比低, 裂纹特征淹没在背景噪声中, 难以有效识别. 为改善成像信噪比, 提出一种基带非线性合成聚焦(BB-NSF)超声相控阵成像算法, 充分利用全矩阵数据中各通道接收信号的空间相干性, 增强缺陷位置图像强度的同时抑制了背景噪声, 再结合PBX曲面构形特征对算法的延时法则进行修正, 实现了曲面构形PBX不同取向裂纹缺陷的高信噪比成像, 并对重构图像质量和成像效率进行了定量对比评价. 结果表明, BB-NSF算法可有效地抑制背景噪声, 显著地改善PBX裂纹检出能力. BB-NSF算法中的信号空间相干度p是影响图像信噪比的关键参数. p值大于2.0时, PBX裂纹缺陷超声重构图像的信噪比相比于传统的全聚焦成像算法可以提升10 dB以上. 随着p值增加, 重构图像的信噪比可以得到进一步提升, 而计算效率保持稳定, 体现出BB-NSF算法在强衰减复合材料内部缺陷成像方面的优势和应用前景.
    Polymer bonded explosive (PBX) is a kind of composite material with highly filled molding explosive particles (normally more than 95%) and a small quantity of binders (less than 5%). The effective detection of internal cracks in PBX is of great significance in evaluating structural integrity and safety reliability.Ultrasonic phased array detection and imaging methods show great advantages and potential in detecting crack defects. But acoustic test results indicate that the PBX has unique characteristics with low longitudinal wave velocity (~3000 m·s–1) and strong attenuation (attenuation coefficient ~400 dB·m–1 for 2.5 MHz ultrasound). When the defect is imaged by traditional ultrasonic total focusing method (TFM), the structural noises at the boundaries between particles lead to low signal-to-noise ratio (SNR) in the FMC signals and strong background noise in reconstructed image, which will disturb the detection of cracks.To realize the high SNR imaging of crack defects in PBX, an ultrasonic imaging algorithm based on baseband nonlinear synthetic focusing (BB-NSF) is proposed. By utilizing the spatial coherence of the received signals in full matrix capture (FMC) data, the pixel intensity at defect position can be enhanced while the background noise can be drastically weakened. The delay rule of the algorithm is modified according to the characteristics of PBX surface configuration. In this way, the high SNR imaging of crack defects with different orientations of PBX surface configuration is realized, and the quality of the reconstructed images is compared and evaluated quantitatively. Meanwhile, the base band transformation in calculation process optimization could significantly reduce calculation burden and increase imaging efficiency.Experimental results show that the proposed algorithm can effectively suppress background noise and significantly improve the ability to detect the PBX cracks. The effective suppression to background noise makes the defect more highlighting and distinguished easily. For the BB-NSF algorithm, spatial coherence coefficient p is a crucial parameter used for dynamically regulating the SNR of reconstructed image. When p value is more than 2.0, the SNR of the ultrasonic reconstructed image of PBX crack defect is improved by more than 10 dB compared with that of the traditional linear synthetic focusing imaging. With the increase of p value, the SNR is further improved, while the calculation efficiency for a single image is almost kept stable. Moreover, the increase of SNR to some extent will improve the far-field detect capability.Besides, with the BB-NSF algorithm, flexible transducer inhibits different imaging characteristics of for cracks with different orientations and depths in curved PBX specimens. For defects with large orientation angle and buried depth, the tip, root and shape of cracks can be completely present. For defects with small orientation angle and buried depth, part of shape and contour features will be lost.In conclusion, the BB-NSF algorithm shows the advantage of high SNR and calculation efficiency in imaging PBX cracks, and exhibits great application prospect in imaging internal defects of other strongly attenuated composites.
      通信作者: 杨占锋, zfyang22@163.com
    • 基金项目: 国家自然科学基金(批准号: 52105566)和中国工程物理研究院创新发展基金(批准号: CX20210003)资助的课题.
      Corresponding author: Yang Zhan-Feng, zfyang22@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 52105566) and the China Academy of Engineering Physics Foundation (Grant No. CX20210003).
    [1]

    董海山, 周芬芬 1989 高能炸药及相关物性能 (北京: 科学出版社) 第20—32页

    Dong H S, Zhou F F 1989 Performance of High-energy Explosives and Related Substances (Beijing: Science Press) pp20–32 (in Chinese)

    [2]

    范航, 何冠松, 杨志剑, 聂福德, 陈鹏万 2019 物理学报 68 106201Google Scholar

    Fan H, He G S, Yang Z J, Nie F D, Chen P W 2019 Acta Phys. Sin. 68 106201Google Scholar

    [3]

    Yang Z F, Tian Y, Li W B, Zhou H Q, Zhang W B, Li J M 2017 Materials 10 660Google Scholar

    [4]

    宗和厚, 张伟斌, 肖丽, 周海强, 杨占锋 2016 含能材料 24 166Google Scholar

    Zong H H, Zhang W B, Xiao L, Zhou H Q, Yang Z F 2016 Chin. J. Energ. Mater. 24 166Google Scholar

    [5]

    江畅, 杨占锋, 李卫彬, 张伟斌, 田勇 2020 含能材料 28 749Google Scholar

    Jiang C, Yang Z F, Li W B, Zhang W B, Tian Y 2020 Chin. J. Energ. Mater. 28 749Google Scholar

    [6]

    Drinkwater B W, Wilcox P D 2006 NDT & E Int. 39 525Google Scholar

    [7]

    Li W, Zhou Z, Li Y 2019 Ultrasonics 96 75Google Scholar

    [8]

    Holmes C, Drinkwater B W, Wilcox P D 2005 NDT & E Int. 38 701Google Scholar

    [9]

    Peng C Y, Peng S, Wang Z X, Zhang J 2019 Far East NDT New Technology & Application Forum Qingdao, China, June 24–27, 2019 p11

    [10]

    Wilcox P D, Holmes C, Drinkwater B W 2007 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54 1541Google Scholar

    [11]

    Zhang J, Drinkwater B W, Wilcox P D, Hunter A J 2010 NDT & E Int. 43 123Google Scholar

    [12]

    张海燕, 宋佳昕, 任燕, 朱琦, 马雪芬 2021 物理学报 70 114301Google Scholar

    Zhang H Y, Song J X, Ren Y, Zhu Q, Ma X F 2021 Acta Phys. Sin. 70 114301Google Scholar

    [13]

    Nakahata K, Tokumasu S, Sakai A, Iwata Y, Ohira K, Ogura Y 2016 NDT & E Int. 82 13Google Scholar

    [14]

    Pan Q, Xu X, Xu L, Jia Y, Liu X, Xiao D, Chang M 2019 IEEE International Conference on Mechatronics and Automation Tianjin, China, August 4–7, 2019 p2041

    [15]

    李萌, 徐尧, 肖盼, 张伟斌, 李丽, 蔡文路, 周海强, 陈振茂 2020 含能材料 29 29Google Scholar

    Li M, Xu Y, Xiao P, Zhang W B, Li L, Cai W L, Zhou H Q, Chen Z M 2020 Chin. J. Energ. Mater. 29 29Google Scholar

    [16]

    Jeon S, Park E Y, Choi W, Managuli R, Jong Lee K, Kim C 2019 Photoacoustics 15 100136Google Scholar

    [17]

    Mozaffarzadeh M, Mahloojifar A, Periyasamy V, Pramanik M, Orooji M 2018 IEEE J. Sel. Top. Quantum Electron. 25 1Google Scholar

    [18]

    Yang G, Amidi E, Zhu Q 2021 Biomed. Opt. Express 12 2250Google Scholar

    [19]

    Mozaffarzadeh M, Mahloojifar A, Orooji M 2017 Iranian Conference on Electrical Engineering Tehran, Iran, May 2–4, 2017 p65

    [20]

    Matrone G, Savoia A S, Caliano G, Magenes G 2015 IEEE Trans. Med. Imaging 34 940Google Scholar

    [21]

    Matrone G, Savoia A S, Caliano G, Magenes G 2017 Ultrasonics 75 216Google Scholar

    [22]

    Matrone G, Ramalli A, Savoia A S, Tortoli P, Magenes G 2016 IEEE Trans. Med. Imaging 36 478Google Scholar

    [23]

    Luo L, Tan Y, Li J, Zhang Y, Gao X 2022 NDT & E Int. 127 102601Google Scholar

    [24]

    Teng D, Liu L, Xiang Y, Xuan F Z 2022 Ultrasonics 128 106881Google Scholar

    [25]

    Yu L, Song Y, Li X 2022 NDT & E Int. 130 102660Google Scholar

    [26]

    Shen C C 2020 Biomed. Signal Process. 60 101964Google Scholar

    [27]

    Shen C C 2021 Ultrasonics 96 165Google Scholar

    [28]

    Kozai R, Okubo K, Tagawa N, Irie T, Yoshizawa M 2019 IEEE International Ultrasonics Symposium Glasgow, UK, October 6–9, 2019 p320

    [29]

    Ji W, Liu L, Xing Z, Zhang D, Wang Y, Chen L, Chen Y, Sun X, Du Y 2021 IEEE Trans Ultrason. Ferroelectr. Freq. Control 68 1380Google Scholar

    [30]

    周正干, 彭地, 李洋, 胡宏伟 2015 机械工程学报 51 1Google Scholar

    Zhou Z G, Peng D, Li Y, Hu H W 2015 Chin. J. Mech. Eng. 51 1Google Scholar

    [31]

    Mozaffarzadeh M, Yan Y, Mehrmohammadi M, Makkiabadi B 2018 J. Biomed. Opt. 23 026005Google Scholar

  • 图 1  BB-NSF算法示意图

    Fig. 1.  Block diagram of BB-NSF algorithm.

    图 2  合成聚焦成像示意图

    Fig. 2.  Schematic diagram of synthetic focusing imaging.

    图 3  曲面试件后处理成像算法延迟时间计算原理图

    Fig. 3.  Schematic diagram of the time delay calculation of the post-processing imaging algorithm for curved workpiece.

    图 4  颗粒复合材料PBX的裂纹缺陷几何模型示意图

    Fig. 4.  Geometric model of PBX workpiece with cracks.

    图 5  柔性换能器在不同检测位置时缺陷的仿真成像结果 (a)—(d) 缺陷A; (e) 缺陷B; (f) 缺陷C

    Fig. 5.  Simulated images of (a)−(d) crack A, (e) crack B and (f) crack C with flexible transducers moving along surface.

    图 6  (a) TFM图像和(b) BB-NSF图像缺陷区域的像素峰值、背景噪声区域内像素强度的均方根; (c) TFM和BB-NSF缺陷的信噪比指标

    Fig. 6.  Pixel peak of the defect area and the root mean square of the pixel intensity in the background noise area of (a) TFM image and (b) BB-NSF image, respectively. (c) Comparison of SNR indictors for TFM and BB-NSF images.

    图 7  实验装置 (a) 采用柔性换能器检测的PBX试件; (b) 16阵元柔性超声换能器PMUT

    Fig. 7.  Experimental setup: (a) PBX workpiece with flexible transducers; (b) the flexible ultrasonic transducer of PMUT with 16 array elements.

    图 8  不同算法对PBX缺陷的成像结果对比 (a) 未延时修正TFM; (b) 延时修正后TFM; (c) F-DMAS; (d) BB-NSF算法; (e) 利用延时修正后BB-NSF算法重构的全场图像

    Fig. 8.  Comparison of cracks image with TFM algorithm: (a) Without time delay correction; (b) with time delay correction; (c) F-DMAS; (d) BB-NSF; (e) the reconstructed image of cracks A, B and C with BB-NSF algorithm.

    图 9  T = 6, R = 8时域信号 (a) 缺陷A; (b) 缺陷B; (c) 缺陷C

    Fig. 9.  Time domain signal transmitted by the sixth array element and received by the eighth array element for defect (a) A, (b) B and (c) C, respectively.

    图 10  不同p值时BB-NSF算法的成像信噪比和计算效率

    Fig. 10.  Calculated SNR and consuming time of BB-NSF algorithm with different p values.

    表 1  超声换能器阵列和预制缺陷埋深参数

    Table 1.  Parameters of flexible transducers and prefabricated cracks.

    换能器参数取值缺陷裂尖埋深值/mm
    阵元个数16缺陷A16
    阵元中心距/mm1.5缺陷B23
    中心频率/MHz2.5缺陷C24
    下载: 导出CSV

    表 2  不同算法的PBX裂纹缺陷实测信噪比和计算效率对比

    Table 2.  Experimental comparison of SNR and consuming time for conventional and proposed algorithms.

    算法信噪比/dB计算效率/
    (s·帧–1)
    缺陷A缺陷B缺陷C
    TFM[30]9.387.355.020.29
    指向性校正的TFM[12]12.5510.879.280.49
    相干因子的TFM[31]13.0415.0114.250.32
    F-DMAS[25]19.1919.1815.30142.29
    BB-NSF (p = 1)9.387.355.020.38
    BB-NSF (p = 1.5)14.3313.3710.590.59
    BB-NSF (p = 2.0)19.1519.1915.640.41
    BB-NSF (p = 3.0)27.9829.4324.300.60
    下载: 导出CSV
  • [1]

    董海山, 周芬芬 1989 高能炸药及相关物性能 (北京: 科学出版社) 第20—32页

    Dong H S, Zhou F F 1989 Performance of High-energy Explosives and Related Substances (Beijing: Science Press) pp20–32 (in Chinese)

    [2]

    范航, 何冠松, 杨志剑, 聂福德, 陈鹏万 2019 物理学报 68 106201Google Scholar

    Fan H, He G S, Yang Z J, Nie F D, Chen P W 2019 Acta Phys. Sin. 68 106201Google Scholar

    [3]

    Yang Z F, Tian Y, Li W B, Zhou H Q, Zhang W B, Li J M 2017 Materials 10 660Google Scholar

    [4]

    宗和厚, 张伟斌, 肖丽, 周海强, 杨占锋 2016 含能材料 24 166Google Scholar

    Zong H H, Zhang W B, Xiao L, Zhou H Q, Yang Z F 2016 Chin. J. Energ. Mater. 24 166Google Scholar

    [5]

    江畅, 杨占锋, 李卫彬, 张伟斌, 田勇 2020 含能材料 28 749Google Scholar

    Jiang C, Yang Z F, Li W B, Zhang W B, Tian Y 2020 Chin. J. Energ. Mater. 28 749Google Scholar

    [6]

    Drinkwater B W, Wilcox P D 2006 NDT & E Int. 39 525Google Scholar

    [7]

    Li W, Zhou Z, Li Y 2019 Ultrasonics 96 75Google Scholar

    [8]

    Holmes C, Drinkwater B W, Wilcox P D 2005 NDT & E Int. 38 701Google Scholar

    [9]

    Peng C Y, Peng S, Wang Z X, Zhang J 2019 Far East NDT New Technology & Application Forum Qingdao, China, June 24–27, 2019 p11

    [10]

    Wilcox P D, Holmes C, Drinkwater B W 2007 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54 1541Google Scholar

    [11]

    Zhang J, Drinkwater B W, Wilcox P D, Hunter A J 2010 NDT & E Int. 43 123Google Scholar

    [12]

    张海燕, 宋佳昕, 任燕, 朱琦, 马雪芬 2021 物理学报 70 114301Google Scholar

    Zhang H Y, Song J X, Ren Y, Zhu Q, Ma X F 2021 Acta Phys. Sin. 70 114301Google Scholar

    [13]

    Nakahata K, Tokumasu S, Sakai A, Iwata Y, Ohira K, Ogura Y 2016 NDT & E Int. 82 13Google Scholar

    [14]

    Pan Q, Xu X, Xu L, Jia Y, Liu X, Xiao D, Chang M 2019 IEEE International Conference on Mechatronics and Automation Tianjin, China, August 4–7, 2019 p2041

    [15]

    李萌, 徐尧, 肖盼, 张伟斌, 李丽, 蔡文路, 周海强, 陈振茂 2020 含能材料 29 29Google Scholar

    Li M, Xu Y, Xiao P, Zhang W B, Li L, Cai W L, Zhou H Q, Chen Z M 2020 Chin. J. Energ. Mater. 29 29Google Scholar

    [16]

    Jeon S, Park E Y, Choi W, Managuli R, Jong Lee K, Kim C 2019 Photoacoustics 15 100136Google Scholar

    [17]

    Mozaffarzadeh M, Mahloojifar A, Periyasamy V, Pramanik M, Orooji M 2018 IEEE J. Sel. Top. Quantum Electron. 25 1Google Scholar

    [18]

    Yang G, Amidi E, Zhu Q 2021 Biomed. Opt. Express 12 2250Google Scholar

    [19]

    Mozaffarzadeh M, Mahloojifar A, Orooji M 2017 Iranian Conference on Electrical Engineering Tehran, Iran, May 2–4, 2017 p65

    [20]

    Matrone G, Savoia A S, Caliano G, Magenes G 2015 IEEE Trans. Med. Imaging 34 940Google Scholar

    [21]

    Matrone G, Savoia A S, Caliano G, Magenes G 2017 Ultrasonics 75 216Google Scholar

    [22]

    Matrone G, Ramalli A, Savoia A S, Tortoli P, Magenes G 2016 IEEE Trans. Med. Imaging 36 478Google Scholar

    [23]

    Luo L, Tan Y, Li J, Zhang Y, Gao X 2022 NDT & E Int. 127 102601Google Scholar

    [24]

    Teng D, Liu L, Xiang Y, Xuan F Z 2022 Ultrasonics 128 106881Google Scholar

    [25]

    Yu L, Song Y, Li X 2022 NDT & E Int. 130 102660Google Scholar

    [26]

    Shen C C 2020 Biomed. Signal Process. 60 101964Google Scholar

    [27]

    Shen C C 2021 Ultrasonics 96 165Google Scholar

    [28]

    Kozai R, Okubo K, Tagawa N, Irie T, Yoshizawa M 2019 IEEE International Ultrasonics Symposium Glasgow, UK, October 6–9, 2019 p320

    [29]

    Ji W, Liu L, Xing Z, Zhang D, Wang Y, Chen L, Chen Y, Sun X, Du Y 2021 IEEE Trans Ultrason. Ferroelectr. Freq. Control 68 1380Google Scholar

    [30]

    周正干, 彭地, 李洋, 胡宏伟 2015 机械工程学报 51 1Google Scholar

    Zhou Z G, Peng D, Li Y, Hu H W 2015 Chin. J. Mech. Eng. 51 1Google Scholar

    [31]

    Mozaffarzadeh M, Yan Y, Mehrmohammadi M, Makkiabadi B 2018 J. Biomed. Opt. 23 026005Google Scholar

  • [1] 刘淑倩, 张海燕, 张辉, 朱文发, 陈祎婷, 刘雅洁. 融合环形统计矢量的复合材料褶皱缺陷超声相位迁移成像. 物理学报, 2024, 73(17): 174301. doi: 10.7498/aps.73.20240714
    [2] 王子豪, 龙烨, 仇轲, 徐佳木, 孙艳玲, 范修宏, 马琳, 廖家莉, 康永强. 基于Adam算法的光学相控阵输出光束校准方法. 物理学报, 2024, 73(9): 094206. doi: 10.7498/aps.73.20231772
    [3] 程双毅, 郁钧瑾, 付亚鹏, 他得安, 许凯亮. 非线性造影超声成像数值仿真方法. 物理学报, 2023, 72(15): 154302. doi: 10.7498/aps.72.20230323
    [4] 肖宏宇, 李勇, 鲍志刚, 佘彦超, 王应, 李尚升. 触媒组分对高温高压金刚石大单晶生长及裂纹缺陷的影响. 物理学报, 2023, 72(2): 020701. doi: 10.7498/aps.72.20221841
    [5] 朱琦, 许多, 张元军, 李玉娟, 王文, 张海燕. 基于卷积神经网络的白蚀缺陷超声探测. 物理学报, 2022, 71(24): 244301. doi: 10.7498/aps.71.20221504
    [6] 杨浩楠, 曹祥玉, 高军, 杨欢欢, 李桐. 基于宽波束磁电偶极子天线的宽角扫描线性相控阵列. 物理学报, 2021, 70(1): 014101. doi: 10.7498/aps.70.20201104
    [7] 李明飞, 袁梓豪, 刘院省, 邓意成, 王学锋. 光纤相控阵稀疏排布优化算法对比. 物理学报, 2021, 70(8): 084205. doi: 10.7498/aps.70.20201768
    [8] 张海燕, 宋佳昕, 任燕, 朱琦, 马雪芬. 碳纤维增强复合材料褶皱缺陷的超声成像. 物理学报, 2021, 70(11): 114301. doi: 10.7498/aps.70.20210032
    [9] 范航, 何冠松, 杨志剑, 聂福德, 陈鹏万. 三氨基三硝基苯基高聚物粘结炸药热力学性质的理论计算研究. 物理学报, 2019, 68(10): 106201. doi: 10.7498/aps.68.20190075
    [10] 刘昊华, 王少华, 李波波, 李桦林. 缺陷致非线性电路孤子非对称传输. 物理学报, 2017, 66(10): 100502. doi: 10.7498/aps.66.100502
    [11] 刘宸, 孙宏祥, 袁寿其, 夏建平, 钱姣. 基于热声相控阵列的声聚焦效应. 物理学报, 2017, 66(15): 154302. doi: 10.7498/aps.66.154302
    [12] 杨斌, 魏烁, 史开元. 基于等效弹性模量的微裂纹-超声波非线性作用多阶段模型. 物理学报, 2017, 66(13): 134301. doi: 10.7498/aps.66.134301
    [13] 孙健明, 于洁, 郭霞生, 章东. 基于分数导数研究高强度聚焦超声的非线性声场. 物理学报, 2013, 62(5): 054301. doi: 10.7498/aps.62.054301
    [14] 丁亚军, 钱盛友, 胡继文, 邹孝. 超声相控阵在多层媒质中的声场模式优化. 物理学报, 2012, 61(14): 144301. doi: 10.7498/aps.61.144301
    [15] 陆怀宝, 黎军顽, 倪玉山, 梅继法, 王洪生. 体心立方金属钽Ⅱ型裂纹尖端缺陷萌生的多尺度分析. 物理学报, 2011, 60(10): 106101. doi: 10.7498/aps.60.106101
    [16] 孙芳, 曾周末, 王晓媛, 靳世久, 詹湘琳. 界面条件下线型超声相控阵声场特性研究. 物理学报, 2011, 60(9): 094301. doi: 10.7498/aps.60.094301
    [17] 徐丰, 陆明珠, 万明习, 方飞. 256阵元高强度聚焦超声相控阵系统误差与多焦点模式精确控制. 物理学报, 2010, 59(2): 1349-1356. doi: 10.7498/aps.59.1349
    [18] 王敬时, 徐晓东, 刘晓峻, 许钢灿. 利用激光超声技术研究表面微裂纹缺陷材料的低通滤波效应. 物理学报, 2008, 57(12): 7765-7769. doi: 10.7498/aps.57.7765
    [19] 张碧星, 王文龙. 凹面相控阵聚焦声场在液固界面上的反射和折射. 物理学报, 2008, 57(6): 3613-3619. doi: 10.7498/aps.57.3613
    [20] 陆明珠, 万明习, 施雨. 相控阵超声热疗场共轭直接合成的模式优化研究. 物理学报, 2001, 50(2): 347-353. doi: 10.7498/aps.50.347
计量
  • 文章访问数:  3390
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-04
  • 修回日期:  2023-05-30
  • 上网日期:  2023-06-02
  • 刊出日期:  2023-08-05

/

返回文章
返回