搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Si对Inconel 718合金中γ相影响的第一性原理研究

刘郅澄 周杰 陈凡 彭彪 彭文屹 章爱生 邓晓华 罗显芝 刘日新 刘德武 黄雨 阎军

引用本文:
Citation:

Si对Inconel 718合金中γ相影响的第一性原理研究

刘郅澄, 周杰, 陈凡, 彭彪, 彭文屹, 章爱生, 邓晓华, 罗显芝, 刘日新, 刘德武, 黄雨, 阎军

First-principles study of influence of Si on γ phase in Inconel 718 alloy

Liu Zhi-Cheng, Zhou Jie, Chen Fan, Peng Biao, Peng Wen-Yi, Zhang Ai-Sheng, Deng Xiao-Hua, Luo Xian-Zhi, Liu Ri-Xin, Liu De-Wu, Huang Yu, Yan Jun
PDF
HTML
导出引用
  • 随着航空航天、能源化工等领域的快速发展, 人们对高温合金的性能提出了更高的期望. Inconel 718 (简称IN 718)是目前用量最大的镍基高温合金, 目前国内外关于Si对IN 718合金组织与性能影响的研究, 尤其是在微观尺度上的研究, 还存在大量空白. 本文从第一性原理计算出发研究了Si掺杂对IN 718合金中γ相的影响, 计算了Si掺杂前后γ相的晶格常数、总能量、缺陷形成能、形成热、结合能、态密度和差分电荷密度, 并进行了布居分析. 同时利用等离子熔覆的方法制备了IN 718涂层以及Si质量分数为2%的IN 718涂层, 并对其进行显微组织及相结构的分析. 计算结果表明, Si的掺杂改变了体系内原子的交互作用, 影响了原子之间的价电子数量、电荷密度分布及原子之间键合的强度, 从而扩大了γ相的晶胞体积, 同时降低了γ相的稳定性. 实验结果表明, Si掺杂会使得IN 718合金涂层组织发生由柱状晶向等轴晶的转变, 并降低IN 718合金中γ相的体积分数, 同时, Si掺杂会加剧合金组织内Nb和Cr元素的偏析.
    Inconel 718 (IN 718) is the most widely used nickel-based high-temperature alloy today. It is widely adopted in important fields such as aerospace, energy and chemicals, and is also one of the few high-temperature alloys, of which some can be fabricated by using additive manufacturing. There is a lack of research on the effect of Si on the structure and properties of IN 718 alloy on a microscopic scale. In this paper, the effect of Si doping on the γ phase in IN 718 alloy is investigated by first-principles calculations through using the CASTEP package. The lattice constants, total energy, defect formation energy, formation enthalpy, cohesive energy, density of states, and electron density difference of the γ phase are calculated before and after Si doping, and population analysis is performed. The calculation of the lattice constant reveals that the doping of Si atoms expands the cell volume of the γ phase supercell, which contributes to a certain solution strengthening effect, and is conducive to the improvement of the hardness of the alloy. The energy and electronic structure calculations show that the Si atoms prefer to occupy the Ni atomic positions in the γ phase. The number of valence electrons between the atoms, the distribution of the charge density, and the strength of the bonds between the atoms also change with Si doping, thus modifying the interaction of the atoms within the γ phase, reducing the stability of the γ phase, and favouring the precipitation of the second phase. Besides, uniform and dense IN 718 coatings with low-coat Si doping are successfully fabricated by using plasma cladding. The experimental results demonstrate that Si doping has no significant effect on the type of matrix structure of IN 718 coatings, but causes a slight expansion of the lattice of the alloy, which is consistent with the calculation result. The addition of Si can result in a transformation of the alloy coating from columnar crystal to equiaxed crystal, refining the grain size of the alloy, while reducing the volume fraction of the γ phase and increasing the volume fraction of the second phase. Moreover, the addition of Si exacerbates the segregation of Nb and Cr elements in the IN 718 coatings.
      通信作者: 彭文屹, wenyi.peng@163.com
    • 基金项目: 江西省重点研发项目(批准号: 20212BBE53043)、江西省大学生创新创业项目(批准号: S202110403003) 和江西省研究生创新项目(批准号: YC2022-s155)资助的课题.
      Corresponding author: Peng Wen-Yi, wenyi.peng@163.com
    • Funds: Project supported by the Key Research and Development Program of Jiangxi Province of China (Grant No. 20212BBE53043), the College Students Innovation and Entrepreneurship Training Project of Jiangxi Province, China (Grant No. S202110403003), and the Jiangxi Province Postgraduate Innovation Project, China (Grant No. YC2022-s155).
    [1]

    Pollock T M, Tin S 2006 J. Propuls. Power. 22 361Google Scholar

    [2]

    Hao L Y, Wen X Z, Lei X W, Yao W J, Wang N 2022 J. Alloys Compd. 920 165996Google Scholar

    [3]

    Pollock T M 2016 Nat. Mater. 15 809Google Scholar

    [4]

    Nnaji R N, Bodude M A, Osoba L O, Fayomi O S I, Ochulor F E 2019 Int. J. Adv. Manuf. Tech. 106 1149

    [5]

    Hosseini E, Popovich V A 2019 Addit. Manuf. 30 100877

    [6]

    Greene G A, Finfrock C C 2001 Oxid. Met. 55 505Google Scholar

    [7]

    Qiao Z, Li C, Zhang H, Liang H, Liu Y, Zhang Y 2020 Int. J. Min. Met. Mater. 27 1123Google Scholar

    [8]

    Fu S H, Dong J X, Zhang M C, Xie X S 2009 Mater. Sci. Eng. A. 499 215Google Scholar

    [9]

    赵文超, 周杰, 彭文屹, 危翔, 邓晓华, 章爱生, 于思琪, 孙祖祥, 余飞翔, 高安澜 2022 表面技术 51 103Google Scholar

    Zhao W C, Zhou J, Peng W Y, Wei X, Deng X H, Zhang A S, Yu S Q, Sun Z X, Yu F X, Gao A L 2022 Surf. Technol. 51 103Google Scholar

    [10]

    陆富刚 2019 硕士学位论文(北京: 北京交通大学)

    Lu F G 2019 M. S. Dissertation (Beijing: Beijing Jiaotong University

    [11]

    Jia Q, Gu D 2014 Opt. Laser. Technol. 62 161Google Scholar

    [12]

    Tunthawiroon P, Li Y, Tang N, Koizumi Y, Chiba A 2015 Corros. Sci. 95 88Google Scholar

    [13]

    Zhang Y L, Li J, Zhang Y Y, Kang D N 2020 J. Alloy. Compd. 827 154131Google Scholar

    [14]

    Wang A, Li Y, Fan C, Yang K, Li D, Zhao X, Shi C 1994 Scripta Metal. Mater. 31 1695Google Scholar

    [15]

    孙文儒, 郭守仁, 卢德忠, 胡壮麒 1996 航空材料学报 2 7

    Sun W R, Guo S R, Lu D Z, Hu Z Q 1996 J. Aeronaut. Mater. 2 7

    [16]

    Ma M, Han A, Zhang Z, Lian Y, Zhao C, Zhang J 2021 Corros. Sci. 185 109417Google Scholar

    [17]

    Huang D, Lu J, Zhuang Y, Tian C, Li Y 2019 Corros. Sci. 158 108088Google Scholar

    [18]

    李亚敏, 张瑶瑶, 赵旺, 周生睿, 刘洪军 2022 金属学报 58 241Google Scholar

    Li Y M, Zhang Y Y, Zhao W, Zhou S R, Liu H J 2022 Acta. Metall. Sin. 58 241Google Scholar

    [19]

    张聪 2021 硕士学位论文(昆明: 昆明理工大学)

    Zhang C 2021 M. S. Thesis (Kunming: Kunming University of Science and Technology

    [20]

    Ghosh G, Asta M 2005 Acta. Mater. 53 3225Google Scholar

    [21]

    Van de Walle A, Ceder G 2002 Rev. Mod. Phys. 74 11Google Scholar

    [22]

    张旭昀, 郑冰洁, 郭斌, 吴戆, 王文泉, 王勇 2017 材料导报 31 146Google Scholar

    Zhang X Y, Zheng B J, Guo B, Wu Z, Wang W Q, Wang Y 2017 Mater. Rev. 31 146Google Scholar

  • 图 1  计算用晶体模型 (a) Ni19Fe6Cr6Nb; (b) Ni18Fe6Cr6NbSi

    Fig. 1.  Crystal model for calculation: (a) Ni19Fe6Cr6Nb; (b) Ni18Fe6Cr6NbSi.

    图 2  Si掺杂前后体系的态密度图 (a) Ni19Fe6Cr6Nb; (b) Ni18Fe6Cr6NbSi

    Fig. 2.  Density of state of systems before and after Si doping: (a) Ni19Fe6Cr6Nb; (b) Ni18Fe6Cr6NbSi.

    图 3  Si掺杂前后体系的差分电荷密度图 (a) Ni19Fe6Cr6Nb; (b) Ni18Fe6Cr6NbSi

    Fig. 3.  Electron density difference of systems before and after Si doping: (a) Ni19Fe6Cr6Nb; (b) Ni18Fe6Cr6NbSi.

    图 4  Si掺杂前后IN 718涂层的XRD图谱

    Fig. 4.  XRD patterns of IN 718 alloy before and after Si doping.

    图 5  Si掺杂前后合金微观组织图片 (a) IN 718; (b) 2Si-IN 718

    Fig. 5.  Microstructure of alloy before and after Si doping: (a) IN 718; (b) 2Si-IN 718.

    表 1  超晶胞模型的平衡晶格常数及晶胞体积

    Table 1.  Equilibrium lattice constant and unit cell volume of supercell model.

    System Site a/nm b/nm c/nm α/(°) β/(°) γ/(°) V/nm3
    Ni19Fe6Cr6Nb 0.71345 0.72715 0.70223 90.000 90.000 90.000 0.3643
    Ni18Fe6Cr6NbSi Ni Site 0.71915 0.71859 0.71627 90.000 90.000 90.000 0.3701
    Ni19Fe5Cr6NbSi Fe Site 0.73543 0.73499 0.68475 90.000 90.000 90.314 0.3702
    Ni19Fe6Cr5NbSi Cr Site 0.70478 0.73256 0.70599 89.592 89.991 90.003 0.3645
    Ni19Fe6Cr6Si Nb Site 6.99468 7.26214 7.01313 90.000 90.000 90.001 0.3562
    下载: 导出CSV

    表 2  体系的总能量、缺陷形成能、形成热与结合能

    Table 2.  Total energy, defect formation energy, formation enthalpy and cohesive energy of systems.

    System Site Ef/eV H/(eV·atom–1) E/(eV·atom–1) Etotal/eV
    Ni19Fe6Cr6Nb –0.213127 –2.929875 –47447.72376
    Ni18Fe6Cr6NbSi Ni Site –1.339744 –0.256865 –2.915375 –46241.16350
    Ni19Fe5Cr6NbSi Fe Site –1.322440 –0.255194 –2.880194 –46754.74620
    Ni19Fe6Cr5NbSi Cr Site –1.226650 –0.252200 –2.892825 –45218.05041
    Ni19Fe6Cr6Si Nb Site –1.112683 –0.248639 –2.948639 –45961.73644
    下载: 导出CSV

    表 3  Si掺杂前后体系的原子布居数

    Table 3.  Atomic populations of systems before and after Si doping.

    System Species s p d f Total Charge
    Ni19Fe6Cr6Nb Ni 0.48 0.83 8.65 0 9.96 0.031
    Cr 2.58 6.77 4.96 0 14.32 –0.31
    Fe 0.50 0.70 6.72 0 7.92 0.08
    Nb 2.26 6.02 3.93 0 12.21 0.79
    Ni18Fe6Cr6NbSi Ni 0.49 0.83 8.65 0 9.97 0.02
    Cr 2.57 6.77 5.00 0 14.33 –0.33
    Fe 0.49 0.67 6.74 0 7.90 0.11
    Nb 2.26 6.04 3.94 0 12.24 0.76
    Si 1.21 2.61 0.00 0 3.83 0.17
    下载: 导出CSV

    表 4  Si掺杂前后体系键的布居数

    Table 4.  Overlapping populations of systems before and after Si doping.

    System Bond Population Length/nm
    Ni19Fe6Cr6Nb Fe—Ni 0.06 0.360847
    Cr—Fe –0.07 0.350106
    Cr—Ni –0.03 0.359244
    Ni—Ni –0.03 0.375966
    Fe—Nb –0.10 0.434654
    Ni—Nb –0.13 0.364001
    Cr—Nb –0.46 0.340342
    Cr—Cr –0.16 0.419928
    Fe—Fe –0.07 0.427230
    Ni18Fe6Cr6NbSi Fe—Ni 0.06 0.363710
    Cr—Fe –0.12 0.351112
    Cr—Ni –0.04 0.363071
    Ni—Ni 0.03 0.373913
    Fe—Nb –0.13 0.434897
    Ni—Nb –0.13 0.356309
    Cr—Nb –0.40 0.338983
    Cr—Cr –0.33 0.422106
    Fe—Fe –0.06 0.418588
    Ni—Si 0.02 0.386153
    下载: 导出CSV

    表 5  测量与折算的平衡晶格常数及晶胞体积

    Table 5.  Measured and converted equilibrium lattice constant and unit cell volume.

    System Measurement results Converted results α/(°) β/(°) γ/(°)
    a/nm b/nm c/nm V/nm3 a/nm b/nm c/nm V/nm3
    IN 718 0.36028 0.36021 0.35848 0.0465 0.72056 0.72042 0.71696 0.3721 90.000 90.000 90.000
    2Si-IN 718 0.35970 0.35960 0.36114 0.0467 0.71940 0.71920 0.72228 0.3737 90.000 90.000 90.000
    下载: 导出CSV

    表 6  Si掺杂前后合金涂层EDS结果(原子百分数)

    Table 6.  EDS results (atomic percent) of coating before and after Si doping.

    Coating Area Ni Fe Cr Nb Mo Ti Al Si
    IN 718 Matrix 40.85 38.46 17.42 0.53 1.14 1.28 0.32
    Second phase 36.08 28.42 14.33 6.89 2.89 1.46 0.56 9.33
    2Si-IN 718 Matrix 38.95 40.42 16.06 0.43 1.13 0.69 0.99 1.33
    Second phase 34.1 23.6 10.4 12.8 2.73 1.54 0.53 14.3
    下载: 导出CSV
  • [1]

    Pollock T M, Tin S 2006 J. Propuls. Power. 22 361Google Scholar

    [2]

    Hao L Y, Wen X Z, Lei X W, Yao W J, Wang N 2022 J. Alloys Compd. 920 165996Google Scholar

    [3]

    Pollock T M 2016 Nat. Mater. 15 809Google Scholar

    [4]

    Nnaji R N, Bodude M A, Osoba L O, Fayomi O S I, Ochulor F E 2019 Int. J. Adv. Manuf. Tech. 106 1149

    [5]

    Hosseini E, Popovich V A 2019 Addit. Manuf. 30 100877

    [6]

    Greene G A, Finfrock C C 2001 Oxid. Met. 55 505Google Scholar

    [7]

    Qiao Z, Li C, Zhang H, Liang H, Liu Y, Zhang Y 2020 Int. J. Min. Met. Mater. 27 1123Google Scholar

    [8]

    Fu S H, Dong J X, Zhang M C, Xie X S 2009 Mater. Sci. Eng. A. 499 215Google Scholar

    [9]

    赵文超, 周杰, 彭文屹, 危翔, 邓晓华, 章爱生, 于思琪, 孙祖祥, 余飞翔, 高安澜 2022 表面技术 51 103Google Scholar

    Zhao W C, Zhou J, Peng W Y, Wei X, Deng X H, Zhang A S, Yu S Q, Sun Z X, Yu F X, Gao A L 2022 Surf. Technol. 51 103Google Scholar

    [10]

    陆富刚 2019 硕士学位论文(北京: 北京交通大学)

    Lu F G 2019 M. S. Dissertation (Beijing: Beijing Jiaotong University

    [11]

    Jia Q, Gu D 2014 Opt. Laser. Technol. 62 161Google Scholar

    [12]

    Tunthawiroon P, Li Y, Tang N, Koizumi Y, Chiba A 2015 Corros. Sci. 95 88Google Scholar

    [13]

    Zhang Y L, Li J, Zhang Y Y, Kang D N 2020 J. Alloy. Compd. 827 154131Google Scholar

    [14]

    Wang A, Li Y, Fan C, Yang K, Li D, Zhao X, Shi C 1994 Scripta Metal. Mater. 31 1695Google Scholar

    [15]

    孙文儒, 郭守仁, 卢德忠, 胡壮麒 1996 航空材料学报 2 7

    Sun W R, Guo S R, Lu D Z, Hu Z Q 1996 J. Aeronaut. Mater. 2 7

    [16]

    Ma M, Han A, Zhang Z, Lian Y, Zhao C, Zhang J 2021 Corros. Sci. 185 109417Google Scholar

    [17]

    Huang D, Lu J, Zhuang Y, Tian C, Li Y 2019 Corros. Sci. 158 108088Google Scholar

    [18]

    李亚敏, 张瑶瑶, 赵旺, 周生睿, 刘洪军 2022 金属学报 58 241Google Scholar

    Li Y M, Zhang Y Y, Zhao W, Zhou S R, Liu H J 2022 Acta. Metall. Sin. 58 241Google Scholar

    [19]

    张聪 2021 硕士学位论文(昆明: 昆明理工大学)

    Zhang C 2021 M. S. Thesis (Kunming: Kunming University of Science and Technology

    [20]

    Ghosh G, Asta M 2005 Acta. Mater. 53 3225Google Scholar

    [21]

    Van de Walle A, Ceder G 2002 Rev. Mod. Phys. 74 11Google Scholar

    [22]

    张旭昀, 郑冰洁, 郭斌, 吴戆, 王文泉, 王勇 2017 材料导报 31 146Google Scholar

    Zhang X Y, Zheng B J, Guo B, Wu Z, Wang W Q, Wang Y 2017 Mater. Rev. 31 146Google Scholar

  • [1] 陈暾, 崔节超, 李敏, 陈文, 孙志鹏, 付宝勤, 侯氢. 合金元素Sn, Nb对锆合金腐蚀氧化膜相稳定性影响的第一性原理研究. 物理学报, 2024, 73(15): 157101. doi: 10.7498/aps.73.20240602
    [2] 潘凤春, 徐佳楠, 杨花, 林雪玲, 陈焕铭. 非掺杂锐钛矿相TiO2铁磁性的第一性原理研究. 物理学报, 2017, 66(5): 056101. doi: 10.7498/aps.66.056101
    [3] 胡洁琼, 谢明, 陈家林, 刘满门, 陈永泰, 王松, 王塞北, 李爱坤. Ti3AC2相(A = Si,Sn,Al,Ge)电子结构、弹性性质的第一性原理研究. 物理学报, 2017, 66(5): 057102. doi: 10.7498/aps.66.057102
    [4] 严顺涛, 姜振益. Cu掺杂对TiNi合金马氏体相变路径影响的第一性原理研究. 物理学报, 2017, 66(13): 130501. doi: 10.7498/aps.66.130501
    [5] 马振宁, 周全, 汪青杰, 王逊, 王磊. Mg-Y-Cu合金长周期有序相热力学稳定性及其电子结构的第一性原理研究. 物理学报, 2016, 65(23): 236101. doi: 10.7498/aps.65.236101
    [6] 李聪, 郑友进, 付斯年, 姜宏伟, 王丹. 稀土(La/Ce/Pr/Nd)掺杂锐钛矿相TiO2磁性及光催化活性的第一性原理研究. 物理学报, 2016, 65(3): 037102. doi: 10.7498/aps.65.037102
    [7] 马振宁, 蒋敏, 王磊. Mg-Y-Zn合金三元金属间化合物的电子结构及其相稳定性的第一性原理研究. 物理学报, 2015, 64(18): 187102. doi: 10.7498/aps.64.187102
    [8] 潘凤春, 林雪玲, 陈焕铭. C掺杂金红石相TiO2的电子结构和光学性质的第一性原理研究. 物理学报, 2015, 64(22): 224218. doi: 10.7498/aps.64.224218
    [9] 马蕾, 王旭, 尚家香. Pd掺杂对NiTi合金马氏体相变和热滞影响的第一性原理研究. 物理学报, 2014, 63(23): 233103. doi: 10.7498/aps.63.233103
    [10] 范开敏, 杨莉, 孙庆强, 代云雅, 彭述明, 龙兴贵, 周晓松, 祖小涛. 六角相ErAx (A=H, He)体系弹性性质的第一性原理研究. 物理学报, 2013, 62(11): 116201. doi: 10.7498/aps.62.116201
    [11] 令狐佳珺, 梁工英. In掺杂ZnTe发光性能的第一性原理计算. 物理学报, 2013, 62(10): 103102. doi: 10.7498/aps.62.103102
    [12] 张学军, 张光富, 金辉霞, 朱良迪, 柳清菊. N, Co共掺杂锐钛矿相TiO2光催化剂的第一性原理研究. 物理学报, 2013, 62(1): 017102. doi: 10.7498/aps.62.017102
    [13] 郑树凯, 吴国浩, 刘磊. P掺杂锐钛矿相TiO2的第一性原理计算. 物理学报, 2013, 62(4): 043102. doi: 10.7498/aps.62.043102
    [14] 王寅, 冯庆, 王渭华, 岳远霞. 碳-锌共掺杂锐钛矿相TiO2 电子结构与光学性质的第一性原理研究. 物理学报, 2012, 61(19): 193102. doi: 10.7498/aps.61.193102
    [15] 李聪, 侯清玉, 张振铎, 赵春旺, 张冰. Sm-N共掺杂对锐钛矿相TiO2的电子结构和吸收光谱影响的第一性原理研究. 物理学报, 2012, 61(16): 167103. doi: 10.7498/aps.61.167103
    [16] 李聪, 侯清玉, 张振铎, 张冰. Eu掺杂量对锐钛矿相TiO2电子寿命和吸收光谱影响的第一性原理研究. 物理学报, 2012, 61(7): 077102. doi: 10.7498/aps.61.077102
    [17] 张易军, 闫金良, 赵刚, 谢万峰. Si掺杂β-Ga2O3的第一性原理计算与实验研究. 物理学报, 2011, 60(3): 037103. doi: 10.7498/aps.60.037103
    [18] 胡玉平, 平凯斌, 闫志杰, 杨雯, 宫长伟. Finemet合金析出相-Fe(Si)结构与磁性的第一性原理计算. 物理学报, 2011, 60(10): 107504. doi: 10.7498/aps.60.107504
    [19] 朱建新, 李永华, 孟繁玲, 刘常升, 郑伟涛, 王煜明. NiTi合金的第一性原理研究. 物理学报, 2008, 57(11): 7204-7209. doi: 10.7498/aps.57.7204
    [20] 赵宗彦, 柳清菊, 张 瑾, 朱忠其. 3d过渡金属掺杂锐钛矿相TiO2的第一性原理研究. 物理学报, 2007, 56(11): 6592-6599. doi: 10.7498/aps.56.6592
计量
  • 文章访问数:  3183
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-12
  • 修回日期:  2023-06-09
  • 上网日期:  2023-07-13
  • 刊出日期:  2023-09-20

/

返回文章
返回