搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

负三角形变托卡马克位形下高能量离子激发鱼骨模的模拟研究

任珍珍 申伟

引用本文:
Citation:

负三角形变托卡马克位形下高能量离子激发鱼骨模的模拟研究

任珍珍, 申伟

Numerical simulations of fishbones driven by fast ions in negative triangularity tokamak

Ren Zhen-Zhen, Shen Wei
PDF
HTML
导出引用
  • 负三角形变位形下的托卡马克具有更低的湍流输运和更好的能量约束, 被认为是未来聚变堆一个更好的选择. 为了探索负三角形变位形下高能量粒子激发不稳定性的特征, 使用动理学-磁流体混合模型程序M3D-K开展了此位形下高能量离子激发鱼骨模的线性不稳定性和非线性演化的模拟研究. 基于类EAST参数条件, 模拟发现负三角形变解稳理想内扭曲模不稳定性, 但会致稳鱼骨模不稳定性. 非线性模拟发现在没有磁流体非线性效应时, 负三角形变位形下的鱼骨模更不容易饱和, 可能的解释是相比于正三角形变位形, 在负三角形变位形下的高能量离子轨道更接近与芯部, 因而更容易驱动鱼骨模不稳定性. 这些结果表明考虑高能量粒子激发的鱼骨模不稳定性后, 负三角形变位形相比于正三角形变位形并没有明显优势.
    The discharges with negative triangularity have lower turbulence induced transport and better energy confinement, so the tokamak with negative triangularity is recognized to be a better choice for future fusion device. In order to explore the features of the energetic particle driven instabilities with negative triangularity, the kinetic-magnetohydrodynamic hybrid code M3D-K is used to investigate the linear instability and nonlinear evolution of the fishbone driven by energetic ions with different triangularity. Based on EAST-like parameters, it is found that the negative triangularity destabilizes the ideal internal kink mode, but stabilizes the fishbone instability. Nonlinear simulations show that the fishbone instability with negative triangularity is hard to saturate without fluid nonlinearity. The possible explanation is that the orbits of fast ions are located more centrally with negative triagularity, so the energy exchange between energetic ions and the fishbone is more efficient than that with positive triangularity. These simulation results demonstrate that the negative triangularity does not have an obvious advantage over the positive triangularity, with the fishbone driven by energetic particles considered.
      通信作者: 申伟, shenwei@ipp.ac.cn
    • 基金项目: 国家磁约束核聚变能发展研究专项(批准号: 2019YFE03050002)、国家自然科学基金(批准号:12005003, 11975270)和等离子体所科学基金(批准号:DSJJ-2022-04)资助的课题.
      Corresponding author: Shen Wei, shenwei@ipp.ac.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2019YFE03050002), the National Natural Science Foundation of China (Grant Nos. 12005003, 11975270), and the Science Foundation of Institute of Plasma Physics, Chinese Academy of Sciences (Grant No. DSJJ-2022-04).
    [1]

    Hofmann F, Sauter O, Reimerdes H, et al. 1998 Phys. Rev. Lett. 81 2918Google Scholar

    [2]

    Camenen Y, Pochelon A, Behn R, et al. 2007 Nucl. Fusion 47 510Google Scholar

    [3]

    Solomon W M, Snyder P B, Burrell K H, et al. 2014 Phys. Rev. Lett. 113 135001Google Scholar

    [4]

    Snyder P B, Solomon W M, Burrell K H, et al. 2015 Nucl. Fusion 55 083026Google Scholar

    [5]

    Reimerdes H, Pochelon A, Sauter O, et al. 2000 Plasma Phys. Control. Fusion 42 629Google Scholar

    [6]

    Marinoni A, Brunner S, Camenen Y, et al. 2009 Plasma Phys. Control. Fusion 51 055016Google Scholar

    [7]

    Austin M E, Marinoni A, Walker M L, et al. 2019 Phys. Rev. Lett. 122 115001Google Scholar

    [8]

    Medvedev S, Kikuchi M, Villard L, et al. 2015 Nucl. Fusion 55 063013Google Scholar

    [9]

    Chen W, Wang Z X 2020 Chin. Phys. Lett. 37 125001Google Scholar

    [10]

    McGuire K, Goldston R, Bell M, et al. 1983 Phys. Rev. Lett. 50 891Google Scholar

    [11]

    Chen L, White R B, Rosenbluth M N 1984 Phys. Rev. Lett. 52 1122Google Scholar

    [12]

    Coppi B, Porcelli F 1986 Phys. Rev. Lett. 57 2272Google Scholar

    [13]

    Heidbrink W W, Bol K, Buchenauer D, et al. 1986 Phys. Rev. Lett. 57 835Google Scholar

    [14]

    Heidbrink W W, Sager G 1990 Nucl. Fusion 30 1015Google Scholar

    [15]

    Nave M F F, Campbell D J, Joffrin E, et al. 1991 Nucl. Fusion 31 697Google Scholar

    [16]

    von Goeler S, Roquemore A L, Johnson L C, et al. 1996 Rev. Sci. Instrum 67 473Google Scholar

    [17]

    Kass T, Bosch H S, Hoenen F, et al. 1998 Nucl. Fusion 38 807Google Scholar

    [18]

    Chen W, Ding X T, Liu Y, et al. 2010 Nucl. Fusion 50 084008Google Scholar

    [19]

    Xu L Q, Zhang J Z, Chen K Y, et al. 2015 Phys. Plasmas 22 122510

    [20]

    Shi P W, Chen W, Duan X R 2021 Chin. Phys. Lett. 38 035202Google Scholar

    [21]

    Van Zeeland M A, Collins C S, Heidbrink W W, et al. 2019 Nucl. Fusion 59 086028Google Scholar

    [22]

    Park W, Belova E V, Fu G Y, et al. 1999 Phys. Plasmas 6 1796Google Scholar

    [23]

    Fu G Y, Park W, Strauss H R, et al. 2006 Phys. Plasmas 13 052517Google Scholar

    [24]

    Lang J Y, Fu G Y, Chen Y 2010 Phys. Plasmas 17 042309Google Scholar

    [25]

    Cai H S, Fu G Y 2012 Phys. Plasmas 19 072506Google Scholar

    [26]

    Shen W, Fu G Y, Sheng Z M, et al. 2014 Phys. Plasmas 21 092514Google Scholar

    [27]

    Shen W, Wang F, Fu G Y, et al. 2017 Nucl. Fusion 57 116035Google Scholar

    [28]

    Wang F, Fu G Y, Shen W 2017 Nucl. Fusion 57 016034Google Scholar

    [29]

    Wang F, Yu L M, Fu G Y, et al. 2017 Nucl. Fusion 57 056013Google Scholar

    [30]

    Ren Z Z, Wang F, Fu G Y, et al. 2017 Phys. Plasmas 24 052501Google Scholar

    [31]

    Ren Z Z, Fu G Y, Van Zeeland M A, et al. 2018 Phys. Plasmas 25 122504Google Scholar

    [32]

    Shen W, Porcelli F 2018 Nucl. Fusion 58 106035Google Scholar

    [33]

    Chen W, Zhu X L, Wang F, et al. 2019 Nucl. Fusion 59 096037Google Scholar

    [34]

    Shen W, Wang F, Fu G Y, et al. 2020 Nucl. Fusion 60 106016Google Scholar

    [35]

    Xu L Q, Shen W, Ren Z Z, et al. 2021 Nucl. Fusion 61 076005Google Scholar

    [36]

    Ren Z Z, Shen W, Li G Q, et al. 2022 AIP Advances 12 075318Google Scholar

    [37]

    Porcelli F 1991 Plasma Phys. Control. Fusion 33 1601Google Scholar

    [38]

    Wang X Q, Wang X G 2016 Nucl. Fusion 56 036024Google Scholar

    [39]

    Wang X Q, Wang X G 2017 Nucl. Fusion 57 016039Google Scholar

    [40]

    Eriksson H G, Wahlberg C 2002 Phys. Plasmas 9 1606Google Scholar

    [41]

    Martynov A, Graves J P, Sauter O 2005 Plasma Phys. Control. Fusion 47 1743Google Scholar

    [42]

    Bussac M N, Pellat R, Edery D, et al. 1975 Phys. Rev. Lett. 35 1638Google Scholar

  • 图 1  安全因子与总压强平衡剖面

    Fig. 1.  Equilibrium profiles of safety factor and total pressure.

    图 2  不同三角形变下模频率和线性增长率与快离子压强比值$ P_{{\rm{hot}}, 0}/P_{{\rm{total}}, 0} $的关系

    Fig. 2.  Mode frequency and linear growth rate as a function of the fast ion pressure fraction $ P_{{\rm{hot}}, 0}/P_{{\rm{total}}, 0} $.

    图 3  不同高能量离子压强比值$ P_{{\rm{hot}}, 0}/P_{{\rm{total}}, 0} $下的流函数$ U $  (a) $ \delta = - 0.436 $, $ P_{{\rm{hot}}, 0}/P_{{\rm{total}}, 0} = 0 $; (b) $ \delta = - 0.436 $, $ P_{{\rm{hot}}, 0}/P_{{\rm{total}}, 0} = 0.15 $; (c) $ \delta = - 0.436 $, $ P_{{\rm{hot}}, 0}/P_{{\rm{total}}, 0} = $$ 0.4 $; (d) $ \delta=0.436 $, $ P_{{\rm{hot}}, 0}/P_{{\rm{total}}, 0} = 0.4 $

    Fig. 3.  Velocity stream function $ U $ at different fast ion pressure fraction $ P_{{\rm{hot}}, 0}/P_{{\rm{total}}, 0} $: (a) $ \delta = - 0.436 $, $ P_{{\rm{hot}}, 0}/ P_{{\rm{total}}, 0} = $$ 0 $; (b) $ \delta = - 0.436 $, $ P_{{\rm{hot}}, 0}/P_{{\rm{total}}, 0} = 0.15 $; (c) $ \delta = - 0.436 $, $ P_{{\rm{hot}}, 0}/P_{{\rm{total}}, 0} = 0.4 $; (d) $ \delta = 0.436 $, $ P_{{\rm{hot}}, 0}/ P_{{\rm{total}}, 0} $$ = 0.4 $.

    图 4  芯部压强剖面平坦下模频率和线性增长率与快离子压强比值$ P_{{\rm{hot}}, 0}/P_{{\rm{total}}, 0} $的关系

    Fig. 4.  Mode frequency and linear growth rate as a function of the fast ion pressure fraction $ P_{{\rm{hot}}, 0}/P_{{\rm{total}}, 0} $ with flat pressure profile.

    图 5  没有磁流体非线性效应的鱼骨模非线性演化 (a) 动能的$ n = 1 $分量的演化; (b) 模频率演化

    Fig. 5.  Time evolution of the fishbone without fluid nonlinearity: (a) $ n = 1 $ kinetic energy; (b) mode frequency.

    图 6  动能和磁能的$ n = 1 $分量随时间演化

    Fig. 6.  Time evolutions of $ n = 1 $ kinetic energy and magnetic energy.

    图 7  不同三角形变参数下的鱼骨模动能的$ n = 1 $分量的演化 (a) $ \beta_{{\rm{total}}, 0} = $$ 4.61 {\text{%}}$; (b) $ \beta_{{\rm{total}}, 0} = 3.91{\text{%}} $

    Fig. 7.  The $ n = 1 $ kinetic energy evolution of the fishbone with different triangularity: (a) $ \beta_{{\rm{total}}, 0} = 4.61{\text{%}} $; (b) $ \beta_{{\rm{total}}, 0} = $$ 3.91{\text{%}} $.

    图 8  不同三角形变位形下的捕获高能量离子轨道 (a) $ \delta = $$ - 0.436 $, $ \beta_{{\rm{total}}, 0} = 3.91{\text{%}}$; (b) $ \delta = 0.436 $, $ \beta_{{\rm{total}}, 0} = 4.61{\text{%}} $

    Fig. 8.  Orbits of trapped fast ions with different triangularity: (a) $ \delta = - 0.436 $, $ \beta_{{\rm{total}}, 0} = 3.91{\text{%}} $; (b) $ \delta = 0.436 $, $ \beta_{{\rm{total}}, 0} = $$ 4.61{\text{%}} $.

  • [1]

    Hofmann F, Sauter O, Reimerdes H, et al. 1998 Phys. Rev. Lett. 81 2918Google Scholar

    [2]

    Camenen Y, Pochelon A, Behn R, et al. 2007 Nucl. Fusion 47 510Google Scholar

    [3]

    Solomon W M, Snyder P B, Burrell K H, et al. 2014 Phys. Rev. Lett. 113 135001Google Scholar

    [4]

    Snyder P B, Solomon W M, Burrell K H, et al. 2015 Nucl. Fusion 55 083026Google Scholar

    [5]

    Reimerdes H, Pochelon A, Sauter O, et al. 2000 Plasma Phys. Control. Fusion 42 629Google Scholar

    [6]

    Marinoni A, Brunner S, Camenen Y, et al. 2009 Plasma Phys. Control. Fusion 51 055016Google Scholar

    [7]

    Austin M E, Marinoni A, Walker M L, et al. 2019 Phys. Rev. Lett. 122 115001Google Scholar

    [8]

    Medvedev S, Kikuchi M, Villard L, et al. 2015 Nucl. Fusion 55 063013Google Scholar

    [9]

    Chen W, Wang Z X 2020 Chin. Phys. Lett. 37 125001Google Scholar

    [10]

    McGuire K, Goldston R, Bell M, et al. 1983 Phys. Rev. Lett. 50 891Google Scholar

    [11]

    Chen L, White R B, Rosenbluth M N 1984 Phys. Rev. Lett. 52 1122Google Scholar

    [12]

    Coppi B, Porcelli F 1986 Phys. Rev. Lett. 57 2272Google Scholar

    [13]

    Heidbrink W W, Bol K, Buchenauer D, et al. 1986 Phys. Rev. Lett. 57 835Google Scholar

    [14]

    Heidbrink W W, Sager G 1990 Nucl. Fusion 30 1015Google Scholar

    [15]

    Nave M F F, Campbell D J, Joffrin E, et al. 1991 Nucl. Fusion 31 697Google Scholar

    [16]

    von Goeler S, Roquemore A L, Johnson L C, et al. 1996 Rev. Sci. Instrum 67 473Google Scholar

    [17]

    Kass T, Bosch H S, Hoenen F, et al. 1998 Nucl. Fusion 38 807Google Scholar

    [18]

    Chen W, Ding X T, Liu Y, et al. 2010 Nucl. Fusion 50 084008Google Scholar

    [19]

    Xu L Q, Zhang J Z, Chen K Y, et al. 2015 Phys. Plasmas 22 122510

    [20]

    Shi P W, Chen W, Duan X R 2021 Chin. Phys. Lett. 38 035202Google Scholar

    [21]

    Van Zeeland M A, Collins C S, Heidbrink W W, et al. 2019 Nucl. Fusion 59 086028Google Scholar

    [22]

    Park W, Belova E V, Fu G Y, et al. 1999 Phys. Plasmas 6 1796Google Scholar

    [23]

    Fu G Y, Park W, Strauss H R, et al. 2006 Phys. Plasmas 13 052517Google Scholar

    [24]

    Lang J Y, Fu G Y, Chen Y 2010 Phys. Plasmas 17 042309Google Scholar

    [25]

    Cai H S, Fu G Y 2012 Phys. Plasmas 19 072506Google Scholar

    [26]

    Shen W, Fu G Y, Sheng Z M, et al. 2014 Phys. Plasmas 21 092514Google Scholar

    [27]

    Shen W, Wang F, Fu G Y, et al. 2017 Nucl. Fusion 57 116035Google Scholar

    [28]

    Wang F, Fu G Y, Shen W 2017 Nucl. Fusion 57 016034Google Scholar

    [29]

    Wang F, Yu L M, Fu G Y, et al. 2017 Nucl. Fusion 57 056013Google Scholar

    [30]

    Ren Z Z, Wang F, Fu G Y, et al. 2017 Phys. Plasmas 24 052501Google Scholar

    [31]

    Ren Z Z, Fu G Y, Van Zeeland M A, et al. 2018 Phys. Plasmas 25 122504Google Scholar

    [32]

    Shen W, Porcelli F 2018 Nucl. Fusion 58 106035Google Scholar

    [33]

    Chen W, Zhu X L, Wang F, et al. 2019 Nucl. Fusion 59 096037Google Scholar

    [34]

    Shen W, Wang F, Fu G Y, et al. 2020 Nucl. Fusion 60 106016Google Scholar

    [35]

    Xu L Q, Shen W, Ren Z Z, et al. 2021 Nucl. Fusion 61 076005Google Scholar

    [36]

    Ren Z Z, Shen W, Li G Q, et al. 2022 AIP Advances 12 075318Google Scholar

    [37]

    Porcelli F 1991 Plasma Phys. Control. Fusion 33 1601Google Scholar

    [38]

    Wang X Q, Wang X G 2016 Nucl. Fusion 56 036024Google Scholar

    [39]

    Wang X Q, Wang X G 2017 Nucl. Fusion 57 016039Google Scholar

    [40]

    Eriksson H G, Wahlberg C 2002 Phys. Plasmas 9 1606Google Scholar

    [41]

    Martynov A, Graves J P, Sauter O 2005 Plasma Phys. Control. Fusion 47 1743Google Scholar

    [42]

    Bussac M N, Pellat R, Edery D, et al. 1975 Phys. Rev. Lett. 35 1638Google Scholar

  • [1] 包健, 张文禄, 李定. 高能量电子激发比压阿尔芬本征模的全域模拟研究. 物理学报, 2023, 72(21): 215216. doi: 10.7498/aps.72.20230794
    [2] 侯玉梅, 陈伟, 邹云鹏, 于利明, 石中兵, 段旭如. HL-2A装置高能量离子驱动的比压阿尔芬本征模的扫频行为. 物理学报, 2023, 72(21): 215211. doi: 10.7498/aps.72.20230726
    [3] 秦晨晨, 牟茂淋, 陈少永. 负三角形变位型下剥离气球模的非线性演化特征. 物理学报, 2023, 72(4): 045203. doi: 10.7498/aps.72.20222138
    [4] 施培万, 朱霄龙, 陈伟, 余鑫, 杨曾辰, 何小雪, 王正汹. HL-2A装置上电子回旋共振加热沉积位置影响鱼骨模主动控制效果的实验研究. 物理学报, 2023, 72(21): 215208. doi: 10.7498/aps.72.20230696
    [5] 强进, 何开宙, 刘东妮, 卢启海, 韩根亮, 宋玉哲, 王向谦. 三角形结构中磁涡旋自旋波模式的研究. 物理学报, 2022, 71(19): 194703. doi: 10.7498/aps.71.20221128
    [6] 魏广宇, 陈凝飞, 仇志勇. 高能量粒子测地声模与Dimits区漂移波相互作用. 物理学报, 2022, 71(1): 015201. doi: 10.7498/aps.71.20211430
    [7] 魏广宇, 陈凝飞, 仇志勇. 高能量粒子测地声模与Dimits区漂移波相互作用. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211430
    [8] 孟淼, 严德贤, 李九生, 孙帅. 基于嵌套三角形包层结构负曲率太赫兹光纤的研究. 物理学报, 2020, 69(16): 167801. doi: 10.7498/aps.69.20200457
    [9] 胡锐, 范志强, 张振华. 三角形石墨烯量子点阵列的磁电子学特性和磁输运性质. 物理学报, 2017, 66(13): 138501. doi: 10.7498/aps.66.138501
    [10] 田子建, 李玮祥, 樊京. 基于双三角形金属条的二维可衍生超材料性能分析. 物理学报, 2015, 64(3): 034102. doi: 10.7498/aps.64.034102
    [11] 刘志刚, 刘伟龙, 赵海军. 量子计算正三角形腔内的氢负离子光剥离截面. 物理学报, 2015, 64(16): 163202. doi: 10.7498/aps.64.163202
    [12] 李晶, 宁提纲, 裴丽, 简伟, 郑晶晶, 油海东, 孙剑, 王一群, 李超. 基于谐波拟合产生周期性三角形光脉冲串的实验研究. 物理学报, 2014, 63(15): 154210. doi: 10.7498/aps.63.154210
    [13] 张志东, 高思敏, 王辉, 王红艳. 三角缺口正三角形纳米结构的共振模式. 物理学报, 2014, 63(12): 127301. doi: 10.7498/aps.63.127301
    [14] 谢辰, 胡明列, 张大鹏, 柴路, 王清月. 基于多通单元的高能量耗散孤子锁模光纤振荡器. 物理学报, 2013, 62(5): 054203. doi: 10.7498/aps.62.054203
    [15] 王华. 三角形光脉冲在正色散光纤中产生的实验研究. 物理学报, 2012, 61(12): 124212. doi: 10.7498/aps.61.124212
    [16] 刘祥龙, 朱满座, 路璐. 等腰直角三角形的二维量子谱和经典轨道. 物理学报, 2012, 61(22): 220301. doi: 10.7498/aps.61.220301
    [17] 宋有建, 胡明列, 刘博文, 柴 路, 王清月. 高能量掺Yb偏振型大模场面积光子晶体光纤孤子锁模飞秒激光器. 物理学报, 2008, 57(10): 6425-6429. doi: 10.7498/aps.57.6425
    [18] 施 勇, 马善钧. 利用杨辉三角形对称性推导高阶运动微分方程. 物理学报, 2006, 55(10): 4991-4994. doi: 10.7498/aps.55.4991
    [19] 吴青松, 赵 岩, 张彩碚, 李 峰. 片状三角形银纳米颗粒的自组织行为与光学特性. 物理学报, 2005, 54(3): 1452-1456. doi: 10.7498/aps.54.1452
    [20] 潘立宙. 边缘简支等边三角形板平衡问题的影响函数. 物理学报, 1956, 12(6): 632-642. doi: 10.7498/aps.12.632
计量
  • 文章访问数:  2268
  • PDF下载量:  89
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-23
  • 修回日期:  2023-07-17
  • 上网日期:  2023-08-19
  • 刊出日期:  2023-11-05

/

返回文章
返回