-
各类光电设备的光学窗口中普遍存在的“猫眼效应”是激光主动探测系统的主要依据, 这对军事装备和单兵作战人员构成了极大的威胁. 然而, 在保证高可见光透过率的条件下, 针对激光主动探测的狙击隐身方案仍然有待商榷. 本文利用遗传算法对超表面减反射膜进行逆向设计, 用Si3N4和Ag组成三层减反增透膜, 并在其顶层增加长方形阵列的微纳结构金属形成波长选择性吸收器, 以实现激光波长低反射高吸收的效果. 将器件设计与遗传算法相互结合, 通过算法优化得出最符合器件目标性能的参数组合, 达到了可见光平均透过率88%, 最大透过峰值94%, 1550 nm激光波长反射率10%, 吸收率80%的效果. 本文设计的超表面减反射膜不需要增加额外装置且成像质量得以保证, 同时能有效减小激光的回波能量, 从而高质量地实现可见光透过与激光隐身的兼容, 为反猫眼探测的作战策略提供了一种行之有效的设计思路.
-
关键词:
- 电介质/金属/电介质膜系 /
- 激光隐身 /
- 表面等离极化激元 /
- 遗传算法
The “cat’s eye effect” in the optical window of all kinds of photoelectric equipment is the main basis of a laser active detection system, which poses a great threat to military equipment and combatants. However, under the condition of ensuring high visible transmittance, the sniper stealth scheme for anti-laser active detection remains to be discussed. In this paper, genetic algorithm is used to inverse design the metasurface anti-reflection film. The three-layer anti-reflection film are composed of Si3N4 and Ag , and rectangular array of metal micro-nano structures is added on the top layer to form a wavelength selective absorber, so as to achieve the effect of low reflection and high absorption at laser wavelength. By combining the device design with genetic algorithm, the parameter combination that best possesses the target performance of the device is obtained. The average transmittance in a wavelength range of 380–780 nm is 88%, and a maximum transmittance peak is 94%. The reflectance and the absorption rate at 1550 nm are achieved to be 10% and 80%, respectively. In order to better meet the requirements for practical application, we further design the cross metal array to obtain polarization insensitive characteristics. The metasurface anti-reflective membrane with improved structure can achieve an average visible transmittance of 82% and a reflectance of 5% at 1550 nm. The two metasurface anti-reflection films designed in this work do not require additional devices, and the imaging quality can be guaranteed. At the same time, it can effectively reduce the laser echo energy, so as to achieve the effect of high-quality visible light transmittance and laser stealth compatibility.-
Keywords:
- dielectric/metal/dielectric film systems /
- laser stealth /
- surface plasmon polariton /
- genetic algorithm
[1] 王雄高 2011 国外坦克 8 38
Wang X G 2011 Foreign Tanks 8 38
[2] 孙武, 王良峰 2018 电子质量 10 14Google Scholar
Sun W, Wang L F 2018 Electron Mass 10 14Google Scholar
[3] 殷科, 王良斯, 吴武明 2010 四川兵工学报 31 10
Yin K, Wang L S, Wu W M 2010 Sichuan Armam. Eng. J. 31 10
[4] 石岚, 王宏 2010 光电技术应用 25 16Google Scholar
Shi L, Wang H 2010 Ele-Optic Technol. Appl. 25 16Google Scholar
[5] 谢家豪, 黄树彩, 韦道知, 张曌宇 2022 光学学报 42 85
Xie J H, Huang S C, Wei D Z, Zhang Z Y 2022 Acta Opt. Sin. 42 85
[6] 张权, 林涛, 邓泽霖, 解天鹏, 姜成昊, 朱精果, 叶征宇 2019 中国安全防范技术与应用 01 66Google Scholar
Zhang Q, Lin T, Deng Z L, Xie T P, Jiang C H, Zhu J G, Ye Z Y 2019 Security techn. Appl. China 01 66Google Scholar
[7] 李旭东, 王立平, 米建军, 李双全2022 激光与红外 52 559Google Scholar
Li X D, Wang L P, Mi J J, Li S Q 2022 Laser Infrared 52 559Google Scholar
[8] 刑俊红, 焦明星, 刘芸2014 中国激光 41 39
Xing J H, Jiao M X, Liu Y 2014 Chin. Opt. Lett. 41 39
[9] 程鑫, 姜华卫, 冯衍 2022 红外与激光工程 51 99
Cheng X, Jiang H W, Feng Y 2022 Infrared Laser Eng. 51 99
[10] 李亚飞, 刘志伟, 张天宇, 郑传涛, 王一丁 2020 光学学报 40 144
Li Y F, Liu Z W, Zhang T Y, Zheng C T, Wang Y D 2020 Acta Opt. Sin. 40 144
[11] 常津源, 熊聪, 祁琼, 王翠鸾, 朱凌妮, 潘智鹏, 王振诺, 刘素平, 马骁宇 2023 光学学报 43 112
Chang J Y, Xiong C, Hao Q, Wang C L, Zhu L N, Pan Z P, Wang Z N, Liu S P, Ma X Y 2023 Acta Opt. Sin. 43 112
[12] 温强, 王超梅, 李尧, 余洋, 张昆, 张浩彬, 朱辰 2020激光与红外 50 948Google Scholar
Wen Q, Wang C M, Li Y, Yu Y, Zhang K, Zhang H B, Zhu C 2020 Laser Infrared 50 948Google Scholar
[13] 李攀, 朱良秋, 卢宏 2021光学技术 47 28
Li P, Zhu L Q, Lu H 2021 Opt. Techn. 47 28
[14] 季雪淞, 张锦, 杨鹏飞, 孙国斌, 蒋世磊, 杨柳 2021激光与光电子学进展 58 124
Ji X S, Zhang M, Yang P F, Sun G B, Jiang S L, Yang L 2021 Laser Optoelectron. P. 58 124
[15] 郑臻荣, 顾培夫, 陈海星, 陶占辉, 艾曼灵, 张梅骄, 唐晋发 2009光学学报 29 2026Google Scholar
Zheng Z R, Gu P F, Chen H X, Tao Z H, Ai M L, Zhang M J, Tang J F 2009 Acta Opt. Sin. 29 2026Google Scholar
[16] 寇立选, 郭兴忠, 蒋文山, 吴兰, 刘盛浦, 杨海涛 2019中国陶瓷工业 26 5
Kou L X, Guo X Z, Jiang W S, Wu L, Liu S P, Yang H T 2019 Chinese ceramic Industry 26 5
[17] 贺才美, 付秀华, 孙钰林, 李美萱 2009 中国激光 36 1550
He C M, Fu X H, Sun Y L, Li M X 2009 Chin. Opt. Lett. 36 1550
[18] 唐晋发, 顾培夫, 刘旭 著 2006 现代光学薄膜技术 (杭州: 浙江大学出版社) 第154页
Tang J F, Gu P F 2006 Modern Optical Thin Film Technology (Hangzhou: Zhejiang University Press) p154
[19] 王子君 2018 博士学位论文 (合肥: 中国科学技术大学)
Wang Z J 2018 Ph. D. Dissertation (Hefei: University of Science and Technology of China
[20] Wu Y J, Luo J, Pu M B, Liu B, Jin J J, Li X, Ma X L, Guo Y H, Guo Y C 2022 Opt. Express 37 17259Google Scholar
[21] 刘耀东, 李志华, 余金中 2019 物理 48 82Google Scholar
Liu Y D, Li Z H, Yu J Z 2019 Physics 48 82Google Scholar
-
图 3 算法优化前后性能对比 (a) 算法优化前后380—780 nm透过率对比; (b) 算法优化前后1550 nm反射率/吸收率对比
Fig. 3. Performance comparison before and after algorithm optimization: (a) Comparison of transmittance between 380 nm and 780 nm before and after optimization; (b) reflectance/absorption ratio of 1550 nm before and after optimization is compared.
图 6 Si3N4/Ag/Si3N4 三层膜系xz截面的归一化电场图 (a) 380 nm处xz截面的归一化电场图; (b) 470 nm处xz截面的归一化电场图; (c) 560 nm处xz截面的归一化电场图; (d) 1550 nm处xz截面的归一化电场图
Fig. 6. Normalized electric field diagram of xz section of Si3N4/Ag/Si3N4 three-layer films: (a) Normalized electric field diagram of xz section at 380 nm; (b) normalized electric field diagram of xz section at 470 nm; (c) normalized electric field diagram of xz section at 560 nm; (d) normalized electric field diagram of xz section at 1550 nm.
图 7 1550 nm处的电磁场分布 (a) 1550 nm处xy截面电场图; (b) 1550 nm处xy截面磁场图; (c) 1550 nm处xz截面电场图; (d) 1550 nm处xz截面磁场图
Fig. 7. Electromagnetic field distribution at 1550 nm: (a) Electric field diagram of xy section at 1550 nm; (b) magnetic field diagram of xy cross section at 1550 nm; (c) electric field diagram of xz section at 1550 nm; (d) magnetic field diagram of xz cross section at 1550 nm.
图 13 不同底层电介质材料对性能的影响 (a)不同底层电介质材料对380—780 nm透过率的影响; (b)不同底层电介质材料对1550 nm吸收率的影响
Fig. 13. Effects of different bottom dielectric materials on properties: (a) Effect of different bottom dielectric materials on transmittance of 380–780 nm; (b) effect of different bottom dielectric materials on transmittance of 1550 nm.
图 14 介质层厚度t1和金属层厚度t2对性能的影响 (a) t1对380—780 nm透过率的影响; (b) t1对1550 nm吸收率的影响; (c) t2对380—780 nm透过率的影响; (d) t2对1550 nm吸收率的影响
Fig. 14. Effect of medium layer thickness t1 and metal layer thickness t2 on properties: (a) Effect of t1 on transmittance of 380–780 nm; (b) effect of t1 on absorption rate of 1550 nm; (c) effect of t2 on transmittance of 380–780 nm; (d) effect of t2 on absorption rate of 1550 nm.
图 15 图案微纳结构的长l和宽w对性能的影响 (a) l对380—780 nm透过率的影响; (b) l对1550 nm吸收率的影响; (c) w对380—780 nm透过率的影响; (d) w对1550 nm吸收率的影响
Fig. 15. Effects of length l and width w on performance of patterned micro-nano structures: (a) Effect of l on transmittance of 380–780 nm; (b) effect of l on absorption rate of 1550 nm; (c) effect of w on transmittance of 380–780 nm; (d) effect of w on absorption rate of 1550 nm.
表 1 算法优化前后结构的性能对比
Table 1. Performance comparison of the structure before and after algorithm optimization.
初始结构 优化结构 结构参数/nm t1 = 35, t2 = 10,
t3 = 35, t4 = 10,
l = 190, w = 60t1 = 41, t2 = 18,
t3 = 41, t4 = 10,
l = 166, w = 62总厚度/nm 90 110 380—780 nm
平均透过率/%84 88 1550 nm
反射率/%58 10 1550 nm
透过率/%2 10 1550 nm
吸收率/%40 80 -
[1] 王雄高 2011 国外坦克 8 38
Wang X G 2011 Foreign Tanks 8 38
[2] 孙武, 王良峰 2018 电子质量 10 14Google Scholar
Sun W, Wang L F 2018 Electron Mass 10 14Google Scholar
[3] 殷科, 王良斯, 吴武明 2010 四川兵工学报 31 10
Yin K, Wang L S, Wu W M 2010 Sichuan Armam. Eng. J. 31 10
[4] 石岚, 王宏 2010 光电技术应用 25 16Google Scholar
Shi L, Wang H 2010 Ele-Optic Technol. Appl. 25 16Google Scholar
[5] 谢家豪, 黄树彩, 韦道知, 张曌宇 2022 光学学报 42 85
Xie J H, Huang S C, Wei D Z, Zhang Z Y 2022 Acta Opt. Sin. 42 85
[6] 张权, 林涛, 邓泽霖, 解天鹏, 姜成昊, 朱精果, 叶征宇 2019 中国安全防范技术与应用 01 66Google Scholar
Zhang Q, Lin T, Deng Z L, Xie T P, Jiang C H, Zhu J G, Ye Z Y 2019 Security techn. Appl. China 01 66Google Scholar
[7] 李旭东, 王立平, 米建军, 李双全2022 激光与红外 52 559Google Scholar
Li X D, Wang L P, Mi J J, Li S Q 2022 Laser Infrared 52 559Google Scholar
[8] 刑俊红, 焦明星, 刘芸2014 中国激光 41 39
Xing J H, Jiao M X, Liu Y 2014 Chin. Opt. Lett. 41 39
[9] 程鑫, 姜华卫, 冯衍 2022 红外与激光工程 51 99
Cheng X, Jiang H W, Feng Y 2022 Infrared Laser Eng. 51 99
[10] 李亚飞, 刘志伟, 张天宇, 郑传涛, 王一丁 2020 光学学报 40 144
Li Y F, Liu Z W, Zhang T Y, Zheng C T, Wang Y D 2020 Acta Opt. Sin. 40 144
[11] 常津源, 熊聪, 祁琼, 王翠鸾, 朱凌妮, 潘智鹏, 王振诺, 刘素平, 马骁宇 2023 光学学报 43 112
Chang J Y, Xiong C, Hao Q, Wang C L, Zhu L N, Pan Z P, Wang Z N, Liu S P, Ma X Y 2023 Acta Opt. Sin. 43 112
[12] 温强, 王超梅, 李尧, 余洋, 张昆, 张浩彬, 朱辰 2020激光与红外 50 948Google Scholar
Wen Q, Wang C M, Li Y, Yu Y, Zhang K, Zhang H B, Zhu C 2020 Laser Infrared 50 948Google Scholar
[13] 李攀, 朱良秋, 卢宏 2021光学技术 47 28
Li P, Zhu L Q, Lu H 2021 Opt. Techn. 47 28
[14] 季雪淞, 张锦, 杨鹏飞, 孙国斌, 蒋世磊, 杨柳 2021激光与光电子学进展 58 124
Ji X S, Zhang M, Yang P F, Sun G B, Jiang S L, Yang L 2021 Laser Optoelectron. P. 58 124
[15] 郑臻荣, 顾培夫, 陈海星, 陶占辉, 艾曼灵, 张梅骄, 唐晋发 2009光学学报 29 2026Google Scholar
Zheng Z R, Gu P F, Chen H X, Tao Z H, Ai M L, Zhang M J, Tang J F 2009 Acta Opt. Sin. 29 2026Google Scholar
[16] 寇立选, 郭兴忠, 蒋文山, 吴兰, 刘盛浦, 杨海涛 2019中国陶瓷工业 26 5
Kou L X, Guo X Z, Jiang W S, Wu L, Liu S P, Yang H T 2019 Chinese ceramic Industry 26 5
[17] 贺才美, 付秀华, 孙钰林, 李美萱 2009 中国激光 36 1550
He C M, Fu X H, Sun Y L, Li M X 2009 Chin. Opt. Lett. 36 1550
[18] 唐晋发, 顾培夫, 刘旭 著 2006 现代光学薄膜技术 (杭州: 浙江大学出版社) 第154页
Tang J F, Gu P F 2006 Modern Optical Thin Film Technology (Hangzhou: Zhejiang University Press) p154
[19] 王子君 2018 博士学位论文 (合肥: 中国科学技术大学)
Wang Z J 2018 Ph. D. Dissertation (Hefei: University of Science and Technology of China
[20] Wu Y J, Luo J, Pu M B, Liu B, Jin J J, Li X, Ma X L, Guo Y H, Guo Y C 2022 Opt. Express 37 17259Google Scholar
[21] 刘耀东, 李志华, 余金中 2019 物理 48 82Google Scholar
Liu Y D, Li Z H, Yu J Z 2019 Physics 48 82Google Scholar
计量
- 文章访问数: 3131
- PDF下载量: 69
- 被引次数: 0