搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于序列二次规划算法的超小尺寸微纳波长分束器的逆向设计

李家祥 王慧琴 徐和庆 张华 冯艳 董美彤

引用本文:
Citation:

基于序列二次规划算法的超小尺寸微纳波长分束器的逆向设计

李家祥, 王慧琴, 徐和庆, 张华, 冯艳, 董美彤

Reverse design of ultracompact micro-nano wavelength beam splitter based on quadratic programming algorithm

Li Jia-Xiang, Wang Hui-Qin, Xu He-Qing, Zhang Hua, Feng Yan, Dong Mei-Tong
PDF
HTML
导出引用
  • 微纳波长分束器是光子芯片中一种重要的分光器件. 本文运用序列二次规划智能算法, 设计了尺寸为1.5 μm × 1.5 μm的多个超小波长分束器, 其中Y型双通道分束器可同时实现TE/TM模式的双波长分束, TE模1140和1200 nm两波长的传输效率分别为80%和81%, 消光比分别为18.1和16.3 dB, TM模传输效率分别为70%和67%, 消光比为18.3和15.9 dB; T型分束器实现了光束的180°相向分离, 待分波长1100和1170 nm的传输效率均达到了88%, 消光比分别为16.6和15.0 dB, 是目前尺寸最小的片上波分器; 十字型三通道分束器实现了波长间隔为50 nm的分束, 待分波长1100, 1150和1200 nm传输效率分别为73%, 66%和70%, 消光比分别为17.2, 13.8和13.8 dB; 非对称三通道分束器分束波长间隔仅为20 nm, 待分波长1200, 1220和1240 nm的传输效率分别为61%, 56%和57%, 消光比分别为10.8, 7.9和8.9 dB. 本方法的设计周期短、设计效率高, 且所设计的结构简单、易加工, 本方法适用于多种片上集成元器件的设计, 为微纳片上集成光子器件的设计提供了一种新思路.
    Micro-nano wavelength beam splitter is an important beam-splitting device in photonic chips. In this study, the sequence quadratic program is used to design ultra-compact wavelength beam splitters with footprints of 1.5 μm × 1.5 μm. The Y-type dual channel beam splitter can realize TE/TM mode splitting at the same time, the transmissions of TE mode light at 1140 nm and 1200 nm are 80% and 81%, and the extinction ratios are 18.1 dB and 16.3 dB, respectively. The transmissions of TM mode light are 70% and 67%, and the extinction ratios are 18.3 dB and 15.9 dB, respectively. The T-type beam splitter realizes 180° separation angle splitting, and the transmissions of optical power at the wavelengths of 1100 nm and 1170 nm both reach 88%, and the extinction ratios are 16.6 dB and 15.0 dB, respectively. It is the smallest size chip-integrated wavelength beam splitter. The cross-type three-channel beam splitter realizes splitting with a wavelength interval of 50 nm. The transmissions at the wavelengths of 1100, 1150 and 1200 nm are 73%, 66% and 70%, and the extinction ratios are 17.2, 13.8 and 13.8 dB, respectively. The asymmetric three-channel beam splitter realizes splitting with the wavelength interval of 20 nm. The transmissions at the wavelengths of 1200, 1220 and 1240 nm are 61%, 56% and 57%, and the extinction ratios are 10.8, 7.9 and 8.9 dB, respectively. This method has the advantages of a short design period, high design efficiency, simple structure, easy processing, and suitability for designing chip-integrated photonic components. It is expected that it can provide a new idea for designing chip-integrated photonic devices.
      通信作者: 王慧琴, wanghq@sues.edu.cn
    • 基金项目: 上海工程技术大学高层次引进人才科研启动项目(批准号: 2023RC-GC09)和上海工程技术大学高水平地方高校建设创新人才培养项目(批准号: 23XSZ001)资助的课题.
      Corresponding author: Wang Hui-Qin, wanghq@sues.edu.cn
    • Funds: Project supported by the High-Level Local University Construction Innovative Talents Training Program of Shanghai University of Engineering Science, China (Grant No. 2023RC-GC09) and the High-Level Local University Construction Innovative Talents Training Project of Shanghai University of Engineering Science, China (Grant No. 23XSZ001).
    [1]

    Yang Y, Huang H Y, Guo C S 2020 Opt. Express 28 14762Google Scholar

    [2]

    Mehrabi K, Zarifkar A, Miri M 2021 Opt. Commun. 479 126474Google Scholar

    [3]

    Tanomura R, Tanemura T, Nakano Y 2023 Jpn. J. Appl. Phys. 62 SC1029Google Scholar

    [4]

    Li D D, Tang Y L, Zhao Y K, Zhou L, Zhao Y, Tang S B 2022 Photonics 9 527Google Scholar

    [5]

    Ammari M, Benmerkhi A, Bouchemat M 2022 Opt. Appl. 52 613Google Scholar

    [6]

    柯航, 李培丽, 施伟华 2022 物理学报 71 144204Google Scholar

    Ke H, Li P L, Shi W H 2022 Acta Phys. Sin. 71 144204Google Scholar

    [7]

    Faghani A A, Rafiee Z, Amanzadeh H, Yaghoubi E, Yaghoubi E 2022 Optik 257 168824Google Scholar

    [8]

    Butt M A, Shahbaz M, Kozlowski L, Kazmierczak A, Piramidowicz R 2023 Photonics 10 208Google Scholar

    [9]

    Melati D, Xu D X, Cheriton R, Wang S R, Vachon M, Schmid J H, Cheben P, Janz S 2022 Opt. Express 30 14202Google Scholar

    [10]

    Butt M A, Kazanskiy N L, Khonina S N 2023 Plasmonics 18 635Google Scholar

    [11]

    汪静丽, 陈子玉, 陈鹤鸣 2021 物理学报 70 014202Google Scholar

    Wang J L, Chen Z Y, Chen H M 2021 Acta Phys. Sin. 70 014202Google Scholar

    [12]

    Andonegui I, Calvo I, Garcia-Adeva A J 2014 Appl. Phys. A 115 433Google Scholar

    [13]

    张佳, 徐旭明, 何灵娟, 于天宝, 郭浩 2012 物理学报 61 054213Google Scholar

    Zhang J, Xu X M, He L J, Yu T B, Guo H 2012 Acta Phys. Sin. 61 054213Google Scholar

    [14]

    Shen B, Wang P, Polson R, Menon R 2015 Nat. Photonics 9 378Google Scholar

    [15]

    Huang J, Yang J B, Chen D B, Bai W, Han J M, Zhang Z J, Zhang J J, He X, Han Y X, Liang L M 2020 Nanophotonics 9 159Google Scholar

    [16]

    Wang K Y, Ren X S, Chang W J, Lu L H, Liu D M, Zhang M M 2020 Photonics Res. 8 528Google Scholar

    [17]

    Liu Z H, Liu X H, Xiao Z Y, Lu C C, Wang H Q, Wu Y, Hu X Y, Liu Y C, Zhang H Y, Zhang X D 2019 Optica 6 1367Google Scholar

    [18]

    Huang H, Xu H Q, Wang H Q, Feng Y, Zhang H, Li J X 2022 Opt. Eng. 61 015105Google Scholar

    [19]

    黄辉, 胡晨岩, 田梓聪, 缪秋霞, 王慧琴 2021 物理学报 70 234102Google Scholar

    Huang H, Hu C Y, Tian Z C, Miu Q X, Wang H Q 2021 Acta Phys. Sin. 70 234102Google Scholar

    [20]

    Lu J, Vuckovic J 2012 Opt. Express 20 7221Google Scholar

    [21]

    Qi H X, Du Z C, Hu X Y, Yang J Y, Chu S S, Gong Q H 2022 Opto. Electron. 5 210061Google Scholar

    [22]

    Piggott A Y, Lu J, Lagoudakis K G, Petykiewicz J, Babinec T M, Vuckovic J 2015 Nat. Photonics 9 374Google Scholar

    [23]

    Ma L F, Li J, Liu Z H, Zhang Y X, Zhang N N, Zheng S Q, Lu C C 2021 Chin. Opt. Lett. 19 011301Google Scholar

    [24]

    Su L, Piggott A Y, Sapra N V, Petykiewicz J, Vuckovic J 2018 ACS Photonics 5 301Google Scholar

    [25]

    Han J M, Huang J, Wu J G, Yang J B 2020 Opt. Commun. 465 125606Google Scholar

    [26]

    Yilmaz Y A, Alpkilic A M, Yeltik A, Kurt H 2020 Opt. Commun. 454 124522Google Scholar

    [27]

    Yuan H, Huang J, Wang Z H, Zhang J P, Deng Y, Lin G L, Wu J G, Yang J B 2021 Results Phys. 27 104489Google Scholar

    [28]

    Rojas-Labanda S, Stolpe M 2016 Struct. Multidiscipl. Optim. 53 1315Google Scholar

    [29]

    Gu Q, Barbato M, Conte J P, Gill P E, McKenna F 2012 J. Struct. Eng. 138 822Google Scholar

    [30]

    Izmailov A F, Solodov M V 2011 Math. Program 126 231Google Scholar

    [31]

    Azizi D, Gholami A 2013 IEEE Electr. Insul. M. 29 69Google Scholar

    [32]

    Wang F L, Xu X, Zhang C, Sun C L, Zhao J 2022 IEEE Photonics J. 14 6621606Google Scholar

    [33]

    Yuan M W, Yang G, Song S J, Zhou L P, Minasian R, Yi X K 2022 Opt. Express 30 26201Google Scholar

  • 图 1  波分器的设计流程图 (a) 初始基片; (b) 优化结构; (c) 最终结构

    Fig. 1.  Design flow chart of the wave splitter: (a) Initial substrate; (b) optimized structure; (c) final structure.

    图 2  Y型双通道波分器 (a) 结构图; (b) TE模1140 nm的光场分布; (c) TE模1200 nm的光场分布; (d) TE模传输效率图; (e) TE模的消光比图; (f) TM模1140 nm的光场分布; (g) TM模1200 nm的光场分布; (h) TM模传输效率图; (i) TM模消光比图

    Fig. 2.  Y-type dual-channel wavelength beam splitter: (a) Structure; (b) optical field distribution at 1140 nm in TE mode; (c) optical field distribution at 1200 nm in TE mode; (d) transmission efficiency in TE mode; (e) extinction ratio in TE mode; (f) optical field distribution at 1140 nm in TM mode; (g) optical field distribution at 1200 nm in TM mode; (h) transmission efficiency in TM mode; (i) extinction ratio in TM mode.

    图 3  波导宽度对传输效率的影响

    Fig. 3.  Influence of the waveguide width on transmission efficiency.

    图 4  T型双通道波分器 (a) 结构图; (b) 1100 nm的光场分布; (c) 1170 nm的光场分布; (d) 传输效率图; (e) 消光比图

    Fig. 4.  T-type dual-channel wave beam splitter: (a) Structure; (b) optical field distribution at 1100 nm; (c) optical field distribution at 1170 nm; (d) transmission efficiency; (e) extinction ratio.

    图 5  十字型三通道波分器 (a) 结构图; (b) 1100 nm的光场分布; (c) 1150 nm的光场分布; (d) 1200 nm的光场分布; (e) 传输效率图; (f) 消光比

    Fig. 5.  Cross-type three-channel wavelength beam splitter: (a) Structure; (b) optical field distribution at 1100 nm; (c) optical field distribution at 1150 nm; (d) optical field distribution at 1200 nm; (e) transmission efficiency; (f) extinction ratio.

    图 6  不对称型结构三通道波分器 (a) 结构图; (b) 1200 nm的光场分布; (c) 1220 nm的光场分布; (d) 1240 nm的光场分布; (e) 传输效率图; (f) 消光比图

    Fig. 6.  Asymmetric structure three-channel wave splitter: (a) Structure; (b) optical field distribution at 1200 nm; (c) optical field distribution at 1220 nm; (d) optical field distribution at 1240 nm; (e) transmission efficiency; (f) extinction ratio.

  • [1]

    Yang Y, Huang H Y, Guo C S 2020 Opt. Express 28 14762Google Scholar

    [2]

    Mehrabi K, Zarifkar A, Miri M 2021 Opt. Commun. 479 126474Google Scholar

    [3]

    Tanomura R, Tanemura T, Nakano Y 2023 Jpn. J. Appl. Phys. 62 SC1029Google Scholar

    [4]

    Li D D, Tang Y L, Zhao Y K, Zhou L, Zhao Y, Tang S B 2022 Photonics 9 527Google Scholar

    [5]

    Ammari M, Benmerkhi A, Bouchemat M 2022 Opt. Appl. 52 613Google Scholar

    [6]

    柯航, 李培丽, 施伟华 2022 物理学报 71 144204Google Scholar

    Ke H, Li P L, Shi W H 2022 Acta Phys. Sin. 71 144204Google Scholar

    [7]

    Faghani A A, Rafiee Z, Amanzadeh H, Yaghoubi E, Yaghoubi E 2022 Optik 257 168824Google Scholar

    [8]

    Butt M A, Shahbaz M, Kozlowski L, Kazmierczak A, Piramidowicz R 2023 Photonics 10 208Google Scholar

    [9]

    Melati D, Xu D X, Cheriton R, Wang S R, Vachon M, Schmid J H, Cheben P, Janz S 2022 Opt. Express 30 14202Google Scholar

    [10]

    Butt M A, Kazanskiy N L, Khonina S N 2023 Plasmonics 18 635Google Scholar

    [11]

    汪静丽, 陈子玉, 陈鹤鸣 2021 物理学报 70 014202Google Scholar

    Wang J L, Chen Z Y, Chen H M 2021 Acta Phys. Sin. 70 014202Google Scholar

    [12]

    Andonegui I, Calvo I, Garcia-Adeva A J 2014 Appl. Phys. A 115 433Google Scholar

    [13]

    张佳, 徐旭明, 何灵娟, 于天宝, 郭浩 2012 物理学报 61 054213Google Scholar

    Zhang J, Xu X M, He L J, Yu T B, Guo H 2012 Acta Phys. Sin. 61 054213Google Scholar

    [14]

    Shen B, Wang P, Polson R, Menon R 2015 Nat. Photonics 9 378Google Scholar

    [15]

    Huang J, Yang J B, Chen D B, Bai W, Han J M, Zhang Z J, Zhang J J, He X, Han Y X, Liang L M 2020 Nanophotonics 9 159Google Scholar

    [16]

    Wang K Y, Ren X S, Chang W J, Lu L H, Liu D M, Zhang M M 2020 Photonics Res. 8 528Google Scholar

    [17]

    Liu Z H, Liu X H, Xiao Z Y, Lu C C, Wang H Q, Wu Y, Hu X Y, Liu Y C, Zhang H Y, Zhang X D 2019 Optica 6 1367Google Scholar

    [18]

    Huang H, Xu H Q, Wang H Q, Feng Y, Zhang H, Li J X 2022 Opt. Eng. 61 015105Google Scholar

    [19]

    黄辉, 胡晨岩, 田梓聪, 缪秋霞, 王慧琴 2021 物理学报 70 234102Google Scholar

    Huang H, Hu C Y, Tian Z C, Miu Q X, Wang H Q 2021 Acta Phys. Sin. 70 234102Google Scholar

    [20]

    Lu J, Vuckovic J 2012 Opt. Express 20 7221Google Scholar

    [21]

    Qi H X, Du Z C, Hu X Y, Yang J Y, Chu S S, Gong Q H 2022 Opto. Electron. 5 210061Google Scholar

    [22]

    Piggott A Y, Lu J, Lagoudakis K G, Petykiewicz J, Babinec T M, Vuckovic J 2015 Nat. Photonics 9 374Google Scholar

    [23]

    Ma L F, Li J, Liu Z H, Zhang Y X, Zhang N N, Zheng S Q, Lu C C 2021 Chin. Opt. Lett. 19 011301Google Scholar

    [24]

    Su L, Piggott A Y, Sapra N V, Petykiewicz J, Vuckovic J 2018 ACS Photonics 5 301Google Scholar

    [25]

    Han J M, Huang J, Wu J G, Yang J B 2020 Opt. Commun. 465 125606Google Scholar

    [26]

    Yilmaz Y A, Alpkilic A M, Yeltik A, Kurt H 2020 Opt. Commun. 454 124522Google Scholar

    [27]

    Yuan H, Huang J, Wang Z H, Zhang J P, Deng Y, Lin G L, Wu J G, Yang J B 2021 Results Phys. 27 104489Google Scholar

    [28]

    Rojas-Labanda S, Stolpe M 2016 Struct. Multidiscipl. Optim. 53 1315Google Scholar

    [29]

    Gu Q, Barbato M, Conte J P, Gill P E, McKenna F 2012 J. Struct. Eng. 138 822Google Scholar

    [30]

    Izmailov A F, Solodov M V 2011 Math. Program 126 231Google Scholar

    [31]

    Azizi D, Gholami A 2013 IEEE Electr. Insul. M. 29 69Google Scholar

    [32]

    Wang F L, Xu X, Zhang C, Sun C L, Zhao J 2022 IEEE Photonics J. 14 6621606Google Scholar

    [33]

    Yuan M W, Yang G, Song S J, Zhou L P, Minasian R, Yi X K 2022 Opt. Express 30 26201Google Scholar

  • [1] 谷同凯, 王兰兰, 国阳, 蒋维涛, 史永胜, 杨硕, 陈金菊, 刘红忠. 光盘上集成的液体微透镜阵列与可重构超分辨成像. 物理学报, 2023, 72(9): 099501. doi: 10.7498/aps.72.20222251
    [2] 张伊祎, 韦雪玲, 农洁, 马汉斯, 叶子阳, 徐文杰, 张振荣, 杨俊波. 基于直接二进制搜索算法设计的超紧凑In2Se3可调控功率分束器. 物理学报, 2023, 72(15): 154207. doi: 10.7498/aps.72.20230459
    [3] 杜特, 马汉斯, 姜鑫鹏, 赵芬, 张兆健, 王志成, 彭政, 张伊祎, 张煜青, 罗鸣宇, 邹宏新, 吴加贵, 闫培光, 朱刚毅, 于洋, 何新, 陈欢, 张振福, 杨俊波. 片上光互连器件的智能化设计研究进展. 物理学报, 2023, 72(18): 184204. doi: 10.7498/aps.72.20230705
    [4] 柯航, 李培丽, 施伟华. 基于下山单纯形算法逆向设计二维光子晶体波导型1×5分束器. 物理学报, 2022, 71(14): 144204. doi: 10.7498/aps.71.20220328
    [5] 黄辉, 胡晨岩, 田梓聪, 缪秋霞, 王慧琴. 基于移动渐近线算法的大角度偏转分束器的智能设计. 物理学报, 2021, 70(23): 234102. doi: 10.7498/aps.70.20210117
    [6] 田梓聪, 郭遗敏, 胡晨岩, 王慧琴, 路翠翠. 宽带高效聚焦的片上集成纳米透镜. 物理学报, 2020, 69(24): 244201. doi: 10.7498/aps.69.20200948
    [7] 徐平, 杨伟, 张旭琳, 罗统政, 黄燕燕. 集成化导光板下表面微棱镜二维分布设计. 物理学报, 2019, 68(3): 038502. doi: 10.7498/aps.68.20181684
    [8] 胡昌宝, 许吉, 丁剑平. 介质填充型二次柱面等离激元透镜的亚波长聚焦. 物理学报, 2016, 65(13): 137301. doi: 10.7498/aps.65.137301
    [9] 彭皓, 沈伟东, 杨陈楹, 章岳光, 刘旭. 宽波段波状多层膜结构偏振分束器的设计与优化. 物理学报, 2014, 63(13): 134212. doi: 10.7498/aps.63.134212
    [10] 安宝冉, 刘国平. 带时延与丢包的网络化多智能体系统控制器设计. 物理学报, 2014, 63(14): 140203. doi: 10.7498/aps.63.140203
    [11] 唐雄贵, 廖进昆, 李和平, 刘永, 刘永智. 基于热膨胀效应的可调光功率分束器设计. 物理学报, 2013, 62(2): 024218. doi: 10.7498/aps.62.024218
    [12] 廖清华, 张旋, 夏全, 于天宝, 陈淑文, 刘念华. 一种全光开关及任意比能量输出光分束器的设计. 物理学报, 2013, 62(4): 044220. doi: 10.7498/aps.62.044220
    [13] 李建光, 陈云琳, 张进宏. 外加电场调制二维六角位相阵列光分束器的研究. 物理学报, 2012, 61(12): 124210. doi: 10.7498/aps.61.124210
    [14] 张旋, 廖清华, 陈淑文, 胡萍, 于天宝, 刘念华. 新型高效偏振光分束器的设计. 物理学报, 2011, 60(10): 104215. doi: 10.7498/aps.60.104215
    [15] 郭浩, 吴评, 于天宝, 廖清华, 刘念华, 黄永箴. 一种新型的光子晶体偏振光分束器的设计. 物理学报, 2010, 59(8): 5547-5552. doi: 10.7498/aps.59.5547
    [16] 赵华君, 杨守良, 张东, 梁康有, 程正富, 石东平. 亚波长金属偏振分束光栅设计分析. 物理学报, 2009, 58(9): 6236-6242. doi: 10.7498/aps.58.6236
    [17] 来国军, 刘濮鲲. W波段二次谐波回旋行波管放大器的模拟与设计. 物理学报, 2007, 56(8): 4515-4522. doi: 10.7498/aps.56.4515
    [18] 杨海亮, 邱爱慈, 李静雅, 孙剑锋, 何小平, 汤俊萍, 王海洋, 黄建军, 任书庆, 邹丽丽, 杨 莉. 叠片法测量“闪光二号”加速器的高功率离子束能谱. 物理学报, 2005, 54(9): 4072-4078. doi: 10.7498/aps.54.4072
    [19] 厉以宇, 顾培夫, 李明宇. 利用基于自动复形技术的二维光子晶体模型设计宽角度宽波长偏振分束器. 物理学报, 2005, 54(8): 3889-3893. doi: 10.7498/aps.54.3889
    [20] 刘雪明, 刘 琳, 孙小菡, 张明德. 石英光纤中二次非线性级联波长转换的理论分析. 物理学报, 2000, 49(9): 1792-1797. doi: 10.7498/aps.49.1792
计量
  • 文章访问数:  2655
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-30
  • 修回日期:  2023-08-07
  • 上网日期:  2023-08-08
  • 刊出日期:  2023-10-05

/

返回文章
返回