搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

哈密顿量诱导的量子演化速度

董珊珊 秦立国 刘福窑 龚黎华 黄接辉

引用本文:
Citation:

哈密顿量诱导的量子演化速度

董珊珊, 秦立国, 刘福窑, 龚黎华, 黄接辉

Quantum evolution speed induced by Hamiltonian

Dong Shan-Shan, Qin Li-Guo, Liu Fu-Yao, Gong Li-Hua, Huang Jie-Hui
PDF
HTML
导出引用
  • 在研究量子态的演化问题时, 量子演化速率往往定义为量子初态与其演化态之间的态距离随时间的变化率. 本文将量子演化的基本理论与线性代数方法相结合, 通过量子态演化的路径距离来研究量子系统的演化. 量子幺正演化系统中, 量子演化算符包含了量子演化的路径信息, 路径距离的大小则决定于演化算符本征值的幅角主值分布. 由量子态演化的路径距离随时间的变化率而得到的量子瞬时演化速率则正比于系统哈密顿量的最大与最小本征值之差. 作为应用之一, 利用量子演化的路径距离及哈密顿量诱导的瞬时演化速率, 可以给出量子演化新的时间下限. 此时间下限只与系统的演化算符及哈密顿量有关, 而与量子初态的具体形式无关, 这与量子系统真实演化时间所具有的性质一致. 严格的理论证明以及两个演化实例的数值结果均表明, 在$ [0,\ \pi/(2\omega_{\mathrm{H}})]$时间范围内, 本文给出的演化时间下限与真实演化时间重合, 是真实演化时间的准确预测. 通过量子演化的路径距离及相应演化速率来研究量子系统的演化, 为相关问题的解答提供了新的思路和方法.
    In the issue of quantum evolution, quantum evolution speed is usually quantified by the time rate of change of state distance between the initial sate and its time evolution. In this paper, the path distance of quantum evolution is introduced to study the evolution of a quantum system, through the approach combined with basic theory of quantum evolution and the linear algebra. In a quantum unitary system, the quantum evolution operator contains the path information of the quantum evolution, where the path distance is determined by the principal argument of the eigenvalues of the unitary operator. Accordingly, the instantaneous quantum evolution speed is proportional to the distance between the maximum and minimum eigenvalues of the Hamiltonian. As one of the applications, the path distance and the instantaneous quantum evolution speed could be used to form a new lower bound of the real evolution time, which depends on the evolution operator and Hamiltonian, and is independent of the initial state. It is found that the lower bound presented here is exactly equal to the real evolution time in the range $ \left[ {0, {\pi }/({{2{\omega _{\rm{H}}}}}}) \right]$. The tool of path distance and instantaneous quantum evolution speed introduced here provides new method for the related researches.
      通信作者: 黄接辉, huangjh@sues.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11664018, 12174247, U2031145)资助的课题.
      Corresponding author: Huang Jie-Hui, huangjh@sues.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11664018, 12174247, U2031145).
    [1]

    Mandelstam L, Tamm I 1945 J. Phys. (USSR) 9 249

    [2]

    Vaidman L 1992 American J. Phys. 60 182Google Scholar

    [3]

    Margolus N and Levitin L B 1998 Physica D 120 188Google Scholar

    [4]

    Lloyd S 2000 Nature 406 1047Google Scholar

    [5]

    Lloyd S 2002 Phys. Rev. Lett. 88 237901Google Scholar

    [6]

    Bekenstein J D 1981 Phys. Rev. Lett. 46 623Google Scholar

    [7]

    Murphy M, Montangero S, Giovannetti V, Calarco T 2010 Phys. Rev. A 82 022318Google Scholar

    [8]

    Mohan B, Das S, Pati A K 2022 New J. Phys. 24 065003Google Scholar

    [9]

    Giovannetti V, Lloyd S, Maccone L 2006 Phys. Rev. Lett. 96 010401Google Scholar

    [10]

    Giovannetti V, Lloyd S, Maccone L 2011 Nat. Photonics 5 222Google Scholar

    [11]

    Chin A W, Huelga S F, Plenio M B 2012 Phys. Rev. Lett. 109 233601Google Scholar

    [12]

    Binder F C, Vinjanampathy S, Modi K, Goold J 2015 New J. Phys. 17 075015Google Scholar

    [13]

    Campaioli F, Pollock F A, Binder F C, Céleri L, Goold J, Vinjanampathy S, Modi K 2017 Phys. Rev. Lett. 118 150601Google Scholar

    [14]

    Scully M O, Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press) pp204–205

    [15]

    Bures D 1969 Trans. Am. Math. Soc. 135 199

    [16]

    Wootters W K 1981 Phys. Rev. D 23 357Google Scholar

    [17]

    Uhlmann A 1992 Groups and Related Topics (New York: Kluwer Academic) pp267–274

    [18]

    Uhlmann A 1976 Rep. Math. Phys. 9 273Google Scholar

    [19]

    Bhattacharyya K 1983 J. Phys. A 16 2993Google Scholar

    [20]

    Huang J H, Hu L Y, Liu F Y 2020 Phys. Rev. A 102 062221Google Scholar

    [21]

    Campaioli F, Pollock F A, Binder F C, Modi K 2018 Phys. Rev. Lett. 120 060409Google Scholar

    [22]

    Huang J H, Qin L G, Chen G L, Hu L Y, Liu F Y 2022 Chin. Phys. B 31 110307Google Scholar

    [23]

    Levitin L B, Toffoli T 2009 Phys. Rev. Lett. 103 160502Google Scholar

    [24]

    Pires D P, Cianciaruso M, Celeri L C, Adesso G, Soares-Pinto D O 2016 Phys. Rev. X 6 021031

    [25]

    Alberti A, Ness G, Sagi Y 2022 Phys. Rev. Lett. 129 140403Google Scholar

    [26]

    Shiraishi N, Funo K, Saito K 2019 New J. Phys. 21 013006Google Scholar

    [27]

    Hörnedal N, Allan D, Sönnerborn O 2022 New J. Phys. 24 055004Google Scholar

    [28]

    田聪, 鹿翔, 张英杰, 夏云杰 2019 物理学报 68 150301Google Scholar

    Tian C, Lu X, Zhang Y J, Xia Y J 2019 Acta. Phys. Sin. 68 150301Google Scholar

    [29]

    刘天, 李宗良, 张延惠, 蓝康 2023 物理学报 72 047301Google Scholar

    Liu T, Li Z L, Zhang Y H, Lan K 2023 Acta. Phys. Sin. 72 047301Google Scholar

    [30]

    Ma Y J, Gao X C, Wu S X, Yu C S 2023 Chin. Phys. B 32 040308Google Scholar

  • 图 1  在极坐标系的单位圆中, 不同半径的极角与演化算符本征值的辐角主值相对应. 具有最大夹角的两相邻半径, 其夹角平分线的反向延长线的极角即为$ \phi_0 $取值, 而$ \phi_{\rm{M}} $则为此反向延长线与前述两相邻半径的夹角. $ \phi_{\rm{M}} $也有如下等效理解: 演化算符本征值的每个辐角主值与一个半径对应, 找到能覆盖所有半径的最小扇形, 此最小扇形的圆心角的一半即为目标$ \phi_{\rm{M}} $

    Fig. 1.  In the polar coordinate system, the polar angle of a radius in the unit circle corresponds to the principal argument of an eigenvalue of the evolution operator. The angular bisector of two neighboring radii, which form the largest included angle among all neighboring radii, is the reverse extension line of the radius with polar angle $ \phi_0 $, and $ \phi_{\rm{M}} $ is equal to half the largest included angle among all neighboring radii. Equivalently speaking, the principal argument of each eigenvalue of the evolution operator corresponds to a radius in the unit circle. If we find out the smallest sector in this unit circle to cover all radii mentioned above, $ \phi_{\rm{M}} $ is then equal to half the sector angle.

    图 2  三能级量子纯态$ |\psi_0\rangle $$ t\in\left[0,\frac {\pi}{2\omega_{\mathrm{H}}}\right]$时间范围内的自由演化过程中, 本文提出的演化时间下限$ \tau_{\mathrm{H}} $始终与真实演化时间t重合, 见红色实线. 而Mandelstam-Tamm时间下限位于真实演化时间曲线的下方, 见黑色短划线

    Fig. 2.  During the evolution of a qutrit prepared in a pure state $ |\psi_0\rangle $, the lower bound of the evolution time proposed here meets the real evolution time perfectly in the range $ t\in\left[0,\frac {\pi}{2\omega_{\mathrm{H}}}\right]$. The curve of the Mandelstam-Tamm bound is below the curve of the real evolution time, see the black dashed line.

    图 3  在相同的哈密顿量作用下, 三能级量子纯态$ |\psi_0\rangle $和混合态$ \rho_0 $在演化过程中, 依据本文提出的时间下限$ \tau_{{\rm{H}}} $$ \left[0, {\pi}/({2\omega_{\rm{H}}})\right] $范围内与真实演化时间相等, 见红色实线. 量子纯态$ |\psi_0\rangle $演化过程中的Mandelstam-Tamm时间下限小于真实演化时间, 见黑色短划线. 对混合态$ \rho_0 $的演化而言, 其Mandelstam-Tamm时间下限与真实演化时间的偏差最大, 见蓝色点线

    Fig. 3.  During the evolution of a qutrit prepared in a pure state $ |\psi_0\rangle $ and in a mixed state $ \rho_0 $, governed by the same Hamiltonian, the lower bound of the evolution time proposed here meets the real evolution time perfectly in the range $ t\in \left[0, {\pi}/({2\omega_{\rm{{\rm{H}}}}})\right] $, see the black dashed line. In the evolution of the mixed state $ \rho_0 $, the Mandelstam-Tamm bound is deviated from the real evolution time substantially, see the blue dotted line.

  • [1]

    Mandelstam L, Tamm I 1945 J. Phys. (USSR) 9 249

    [2]

    Vaidman L 1992 American J. Phys. 60 182Google Scholar

    [3]

    Margolus N and Levitin L B 1998 Physica D 120 188Google Scholar

    [4]

    Lloyd S 2000 Nature 406 1047Google Scholar

    [5]

    Lloyd S 2002 Phys. Rev. Lett. 88 237901Google Scholar

    [6]

    Bekenstein J D 1981 Phys. Rev. Lett. 46 623Google Scholar

    [7]

    Murphy M, Montangero S, Giovannetti V, Calarco T 2010 Phys. Rev. A 82 022318Google Scholar

    [8]

    Mohan B, Das S, Pati A K 2022 New J. Phys. 24 065003Google Scholar

    [9]

    Giovannetti V, Lloyd S, Maccone L 2006 Phys. Rev. Lett. 96 010401Google Scholar

    [10]

    Giovannetti V, Lloyd S, Maccone L 2011 Nat. Photonics 5 222Google Scholar

    [11]

    Chin A W, Huelga S F, Plenio M B 2012 Phys. Rev. Lett. 109 233601Google Scholar

    [12]

    Binder F C, Vinjanampathy S, Modi K, Goold J 2015 New J. Phys. 17 075015Google Scholar

    [13]

    Campaioli F, Pollock F A, Binder F C, Céleri L, Goold J, Vinjanampathy S, Modi K 2017 Phys. Rev. Lett. 118 150601Google Scholar

    [14]

    Scully M O, Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press) pp204–205

    [15]

    Bures D 1969 Trans. Am. Math. Soc. 135 199

    [16]

    Wootters W K 1981 Phys. Rev. D 23 357Google Scholar

    [17]

    Uhlmann A 1992 Groups and Related Topics (New York: Kluwer Academic) pp267–274

    [18]

    Uhlmann A 1976 Rep. Math. Phys. 9 273Google Scholar

    [19]

    Bhattacharyya K 1983 J. Phys. A 16 2993Google Scholar

    [20]

    Huang J H, Hu L Y, Liu F Y 2020 Phys. Rev. A 102 062221Google Scholar

    [21]

    Campaioli F, Pollock F A, Binder F C, Modi K 2018 Phys. Rev. Lett. 120 060409Google Scholar

    [22]

    Huang J H, Qin L G, Chen G L, Hu L Y, Liu F Y 2022 Chin. Phys. B 31 110307Google Scholar

    [23]

    Levitin L B, Toffoli T 2009 Phys. Rev. Lett. 103 160502Google Scholar

    [24]

    Pires D P, Cianciaruso M, Celeri L C, Adesso G, Soares-Pinto D O 2016 Phys. Rev. X 6 021031

    [25]

    Alberti A, Ness G, Sagi Y 2022 Phys. Rev. Lett. 129 140403Google Scholar

    [26]

    Shiraishi N, Funo K, Saito K 2019 New J. Phys. 21 013006Google Scholar

    [27]

    Hörnedal N, Allan D, Sönnerborn O 2022 New J. Phys. 24 055004Google Scholar

    [28]

    田聪, 鹿翔, 张英杰, 夏云杰 2019 物理学报 68 150301Google Scholar

    Tian C, Lu X, Zhang Y J, Xia Y J 2019 Acta. Phys. Sin. 68 150301Google Scholar

    [29]

    刘天, 李宗良, 张延惠, 蓝康 2023 物理学报 72 047301Google Scholar

    Liu T, Li Z L, Zhang Y H, Lan K 2023 Acta. Phys. Sin. 72 047301Google Scholar

    [30]

    Ma Y J, Gao X C, Wu S X, Yu C S 2023 Chin. Phys. B 32 040308Google Scholar

  • [1] 蔚娟, 张岩, 吴银花, 杨文海, 闫智辉, 贾晓军. 双模压缩态量子相干性演化的实验研究. 物理学报, 2023, 72(3): 034202. doi: 10.7498/aps.72.20221923
    [2] 陈若凡. 时间演化矩阵乘积算符方法及其在量子开放系统中的应用. 物理学报, 2023, 72(12): 120201. doi: 10.7498/aps.72.20222267
    [3] 董曜, 纪爱玲, 张国锋. 关联退极化量子信道中qutrit-qutrit系统的量子相干性演化. 物理学报, 2022, 71(7): 070303. doi: 10.7498/aps.71.20212067
    [4] 邵雅婷, 严凯, 吴银忠, 郝翔. 非对称自旋-轨道耦合系统的多体量子相干含时演化. 物理学报, 2021, 70(1): 010301. doi: 10.7498/aps.70.20201199
    [5] 张科, 李兰兰, 任刚, 杜建明, 范洪义. 量子扩散通道中Wigner算符的演化规律. 物理学报, 2020, 69(9): 090301. doi: 10.7498/aps.69.20200106
    [6] 田聪, 鹿翔, 张英杰, 夏云杰. 纠缠相干光场对量子态最大演化速率的操控. 物理学报, 2019, 68(15): 150301. doi: 10.7498/aps.68.20190385
    [7] 潘登, 郑应平. 路径约束条件下车辆行为的时空演化模型. 物理学报, 2015, 64(7): 078902. doi: 10.7498/aps.64.078902
    [8] 笪诚, 范洪义. 一个描述金融投资项目演化的量子力学状态方程. 物理学报, 2014, 63(9): 098901. doi: 10.7498/aps.63.098901
    [9] 夏建平, 任学藻, 丛红璐, 王旭文, 贺树. 两量子比特与谐振子相耦合系统中的量子纠缠演化特性. 物理学报, 2012, 61(1): 014208. doi: 10.7498/aps.61.014208
    [10] 刘王云, 毕思文, 豆西博. 囚禁离子非线性Jaynes-Cummings模型量子场熵演化特性. 物理学报, 2010, 59(3): 1780-1785. doi: 10.7498/aps.59.1780
    [11] 李永放, 任立庆, 马瑞琼, 樊荣, 刘娟. 利用相位可控光场实现量子态波函数时域演化的量子控制. 物理学报, 2010, 59(3): 1671-1676. doi: 10.7498/aps.59.1671
    [12] 卢鹏, 王顺金. 两粒子自旋系统量子纠缠的时间演化. 物理学报, 2009, 58(9): 5955-5960. doi: 10.7498/aps.58.5955
    [13] 刘 清, 邹 丹, 嵇英华. 交流源作用下介观RLC电路系统量子态随时间的演化. 物理学报, 2006, 55(4): 1596-1601. doi: 10.7498/aps.55.1596
    [14] 余晓敏, 梁国栋, 钟艳花. 极化激元系统时间演化的量子涨落特性和非经典统计行为. 物理学报, 2006, 55(5): 2128-2137. doi: 10.7498/aps.55.2128
    [15] 董传华. 在与原子相互作用中光偏振态的量子描述及其演化. 物理学报, 2005, 54(2): 687-695. doi: 10.7498/aps.54.687
    [16] 邓 宁, 陈培毅, 李志坚. Si组分对SiGe量子点形状演化的影响. 物理学报, 2004, 53(9): 3136-3140. doi: 10.7498/aps.53.3136
    [17] 阮建红, 薛迅, 朱伟. 量子色动力学演化方程中的高扭度效应. 物理学报, 2002, 51(6): 1214-1220. doi: 10.7498/aps.51.1214
    [18] 李伯臧, 李玲. 量子动边界广义含时谐振子之精确的指数-正弦型演化态. 物理学报, 2001, 50(9): 1654-1660. doi: 10.7498/aps.50.1654
    [19] 李伯臧, 张德刚, 吴建华, 阎凤利. 循环量子系统中状态演化的Bloch定理和同步几何相位的统一. 物理学报, 1997, 46(2): 227-237. doi: 10.7498/aps.46.227
    [20] R. D. KHAN, 章介伦, 丁胜, 沈文达. 依赖于速度的量子受迫非简谐振子的演化. 物理学报, 1993, 42(5): 699-704. doi: 10.7498/aps.42.699
计量
  • 文章访问数:  3123
  • PDF下载量:  131
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-19
  • 修回日期:  2023-07-15
  • 上网日期:  2023-09-12
  • 刊出日期:  2023-11-20

/

返回文章
返回