搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

50 mK多级绝热去磁制冷机的实验研究

李珂 王亚男 刘萍 禹芳秋 戴巍 沈俊

引用本文:
Citation:

50 mK多级绝热去磁制冷机的实验研究

李珂, 王亚男, 刘萍, 禹芳秋, 戴巍, 沈俊

Experimental research on a 50 mK multi-stage adiabatic demagnetization refrigerator

Li Ke, Wang Ya-Nan, Liu Ping, Yu Fang-Qiu, Dai Wei, Shen Jun
PDF
HTML
导出引用
  • 随着近年来凝聚态物理、空间观测与量子技术的不断发展, 极低温制冷需求也日益增多. 绝热去磁制冷具有不依赖重力、结构紧凑、成本较低等特点, 可同时满足空间和地面应用. 本文设计并研制了一台50 mK多级绝热去磁制冷机. 该机为三级串联架构, 由一台GM型脉管制冷机提供4 K预冷; 采用钆镓石榴石和十二水合硫酸铬钾作为制冷工质; 研制的主动式/被动式气隙热开关, 用以控制级间传热; 针对磁屏蔽、恒温控制等构建了多个数值模型进行辅助设计. 目前该机获得的最低制冷温度为38 mK, 100 mK时制冷量约71 mJ, 温度波动10.6 μK. 本研究为后续开展50 mK连续绝热去磁制冷奠定了重要基础.
    With the development of condensed matter physics, space observation, and quantum technology in recent years, the demand for ultra-low temperature refrigeration has increased. The adiabatic demagnetization refrigerator (ADR) has the advantages of being unaffected by gravity, compact structure, and relatively low cost, which can meet the needs of space and ground applications.In this paper, a 50 mK multi-stage ADR is designed and developed which comprises a GM-type pulse tube cryocooler for precooling and three ADR stages connected in series. For easy installation and maintenance, the three ADR stages are placed on a separate cold plate which is connected to the 4 K cold plate via copper columns. The Dy3Ga5O12 (GGG) is employed as the refrigerant in the first stage, whereas CrK(SO4)2 · 12H2O (CPA) is utilized for the second stage and third stage. To control heat transfer between stages and the 4 K heat sink, active gas-gap heat switch and passive gas-gap heat switch are developed, with the latter having a switching ratio over 1000.The 4 T, 2 T and 1 T superconducting magnets are utilized in the 1st, 2nd and 3rd stage, respectively, and a numerical model is used to optimize the design of magnetic shielding. In addition, an ADR simulation model with a proportional-integral-derivative (PID) controller is constructed to assist in tuning the controller parameters in the experiment. The lowest temperature achieved in the experiment is 38 mK, with a temperature fluctuation of 10.6 μK. The durations of different cooling power (1, 2 and 3 μW) at 100 mK are also measured. It is calculated that the no-load maintenance time is about 4.3 h, the leakage heat power is about 4.5 μW, and the total cooling capacity is about 71 mJ. This refrigerator is the first Chinese multi-stage ADR that can reach a temperature under 50 mK, which lays an important foundation for subsequent research on continuous adiabatic demagnetization refrigeration.
      通信作者: 戴巍, cryodw@mail.ipc.ac.cn ; 沈俊, jshen@mail.ipc.ac.cn
    • 基金项目: 国家重点研究计划(批准号: 2021YFC2203303)、中国科学院仪器设备研制项目(批准号: GJJSTD20190001)和中国科学院理化技术研究所所长基金(批准号: 2022-DW)资助的课题.
      Corresponding author: Dai Wei, cryodw@mail.ipc.ac.cn ; Shen Jun, jshen@mail.ipc.ac.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2021YFC2203303), the Scientific Instrument Developing Project of the Chinese Academy of Sciences, China (Grant No. GJJSTD20190001), and the Foundation of Director of Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, China (Grant No. 2022-DW).
    [1]

    Serlemitsos A T, Sansebastian M, Kunes E 1992 Cryogenics 32 117Google Scholar

    [2]

    Serlemitsos A T, Sansebastian M, Kunes E S 1998 Advance in Cryogenic Engineering (Boston, MA: Springer) pp957–963

    [3]

    Shirron P, Wegel D, Dipirro M 2006 Proceedings of 24th International Conference on Low Temperature Physics Orlando, Florida (USA), August 10–17, 2006 p1573

    [4]

    Shirron P J, Kimball M O, Dipirro M J, Bials T G 2015 Phys. Procedia 67 250Google Scholar

    [5]

    Bartlett J, Hardy G, Hepburn I D, Blatt C B, Coker P, Crofts E, Winter B, Milward S, Aller R S, Brownhill M, Reed J, Linder M, Rando N 2010 Cryogenics 50 582Google Scholar

    [6]

    Bartlett J, Hardy G, Hepburn I, Milward S, Coker P, Theobald C 2012 Proceedings of SPIE Amsterdam Netherlands, September 24, 2012 p84521O

    [7]

    Brasiliano D A P, Duval J M, Luchier N, Eserivan S D, Andre J 2016 International Cryocoolers Conference San Diego, California (USA) June 20–23, 2016 p479

    [8]

    Shinozaki K, Mitsuda K, Yamasaki N Y, Takei Y, Dipirro M, Ezoe Y, Fujimoto R, den Herder J W, Hirabayashi M, Ishisaki Y, Kanao K, Kawaharada M, Kelley R, Kilbourne C, Kitamoto S, McCammon D, Mihara T, Murakami M, Nakagawa T, Ohashi T, Porter F S, Satoh Y, Shirron P, Sugita H, Tamagawa T, Tashiro M, Yoshida S 2008 Prococeedings of SPIE Marseille France, July 15, 2008 p70113R

    [9]

    Shinozaki K, Mitsuda K, Yamasaki N Y, Takei Y, Masui K, Asano K, Ohashi T, Ezoe Y, Ishisaki Y, Fujimoto R, Sato K, Kanao K, Yoshida S 2010 Cryogenics 50 597Google Scholar

    [10]

    Shirron P J, Canavan E R, Dipirro M J, Tuttle J G, Yeager C J 2000 Advance in Cryogenics Engineering. (Boston, MA: Springer) p1629

    [11]

    ADR Cryostats, Formfactor https://www.formfactor.com/products/quantum- cryo/?_all_filters=adr-cryostats [2023-7-4

    [12]

    Adiabatic Demagnetization Refrigerator, Entropy https://www.entropy- cryogenics.com/products/ [2023-7-4

    [13]

    万绍宁, 容锡燊 1987 低温物理学报 9 133Google Scholar

    Wan S N, Rong X S 1987 Chin. J. Low Temp. Phys. 9 133Google Scholar

    [14]

    冉启泽, 李金万 1990 低温物理学报 12 131Google Scholar

    Ran Q Z, Li J W 1990 Chin. J. Low Temp. Phys. 12 131Google Scholar

    [15]

    王昌, 李珂, 沈俊, 戴巍, 王亚男, 罗二仓, 沈保根, 周远 2021 物理学报 70 090702Google Scholar

    Wang C, Li K, Shen J, Dai W, Wang Y N, Luo E C, Shen B G, Zhou Y 2021 Acta Phys. Sin. 70 090702Google Scholar

    [16]

    王昌 2022 博士学位论文 (北京: 中国科学院大学)

    Wang C 2022 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences

    [17]

    禹芳秋, 沈俊, 戴巍, 李珂, 刘萍, 王昌 2022 中国工程热物理学会工程热力学与能源利用学术年会(2021)中国长沙, 4月9—10日, 2022

    Yu F Q, Shen J, Dai W, Li K, Liu P, Wang C 2022 Annual Conference of Engineering Thermodynamics and Energy Utilization of The Chinese Society of Engineering Thermophysics (2021) Changsha, April 9–10, 2022

    [18]

    Model 372 AC Resistance Bridge and Temperature Controller User’s Manual Lake Shore Cryotronics, Inc., 2019

    [19]

    Model 2700 Multimeter/Switch System User’s Manual Keithley Instruments, 2016

    [20]

    李珂, 王昌, 戴巍, 沈俊 2021 中国稀土学会学术年会, 中国成都, 10月22—24日, 2021 第88页

    Li K, Wang C, Dai W, Shen J 2021 Annual Conference of the Chinese Society of Rare Earths Chengdu, October 22–24, 2021 p88

  • 图 1  ADR基本结构与工作原理 (a) 结构示意图; (b) ADR制冷循环

    Fig. 1.  Schematic and principle of ADR: (a) Schematic diagram; (b) refrigeration cycle of ADR.

    图 2  多级ADR结构示意图

    Fig. 2.  Schematic diagram of multi-stage ADR.

    图 3  磁热模块结构示意图和实物图 (a) GGG磁热模块; (b) CPA磁热模块

    Fig. 3.  Schematic diagram and photo of salt pills: (a) GGG salt pill; (b) CPA salt pill.

    图 4  气隙式热开关示意图与实物图 (a)主动式气隙热开关[17]; (b)被动式气隙热开关

    Fig. 4.  Schematic diagrams and photos of gas-gap heat switches: (a) Active gas-gap heat switch[17]; (b) passive gas-gap heat switch.

    图 5  磁屏蔽的数值仿真与实验测试装置

    Fig. 5.  Numerical simulation and experimental measurement of magnetic shielding.

    图 6  多级ADR系统实物图

    Fig. 6.  Photos of multi-stage ADR.

    图 7  多级ADR运行时序及降温过程

    Fig. 7.  Operation sequence and cooling process of multi-stage ADR.

    图 8  系统的温度波动

    Fig. 8.  Temperature fluctuation of the system.

    图 9  100 mK下不同实际制冷功率的实验结果

    Fig. 9.  Experimental results of different actual cooling power at 100 mK.

  • [1]

    Serlemitsos A T, Sansebastian M, Kunes E 1992 Cryogenics 32 117Google Scholar

    [2]

    Serlemitsos A T, Sansebastian M, Kunes E S 1998 Advance in Cryogenic Engineering (Boston, MA: Springer) pp957–963

    [3]

    Shirron P, Wegel D, Dipirro M 2006 Proceedings of 24th International Conference on Low Temperature Physics Orlando, Florida (USA), August 10–17, 2006 p1573

    [4]

    Shirron P J, Kimball M O, Dipirro M J, Bials T G 2015 Phys. Procedia 67 250Google Scholar

    [5]

    Bartlett J, Hardy G, Hepburn I D, Blatt C B, Coker P, Crofts E, Winter B, Milward S, Aller R S, Brownhill M, Reed J, Linder M, Rando N 2010 Cryogenics 50 582Google Scholar

    [6]

    Bartlett J, Hardy G, Hepburn I, Milward S, Coker P, Theobald C 2012 Proceedings of SPIE Amsterdam Netherlands, September 24, 2012 p84521O

    [7]

    Brasiliano D A P, Duval J M, Luchier N, Eserivan S D, Andre J 2016 International Cryocoolers Conference San Diego, California (USA) June 20–23, 2016 p479

    [8]

    Shinozaki K, Mitsuda K, Yamasaki N Y, Takei Y, Dipirro M, Ezoe Y, Fujimoto R, den Herder J W, Hirabayashi M, Ishisaki Y, Kanao K, Kawaharada M, Kelley R, Kilbourne C, Kitamoto S, McCammon D, Mihara T, Murakami M, Nakagawa T, Ohashi T, Porter F S, Satoh Y, Shirron P, Sugita H, Tamagawa T, Tashiro M, Yoshida S 2008 Prococeedings of SPIE Marseille France, July 15, 2008 p70113R

    [9]

    Shinozaki K, Mitsuda K, Yamasaki N Y, Takei Y, Masui K, Asano K, Ohashi T, Ezoe Y, Ishisaki Y, Fujimoto R, Sato K, Kanao K, Yoshida S 2010 Cryogenics 50 597Google Scholar

    [10]

    Shirron P J, Canavan E R, Dipirro M J, Tuttle J G, Yeager C J 2000 Advance in Cryogenics Engineering. (Boston, MA: Springer) p1629

    [11]

    ADR Cryostats, Formfactor https://www.formfactor.com/products/quantum- cryo/?_all_filters=adr-cryostats [2023-7-4

    [12]

    Adiabatic Demagnetization Refrigerator, Entropy https://www.entropy- cryogenics.com/products/ [2023-7-4

    [13]

    万绍宁, 容锡燊 1987 低温物理学报 9 133Google Scholar

    Wan S N, Rong X S 1987 Chin. J. Low Temp. Phys. 9 133Google Scholar

    [14]

    冉启泽, 李金万 1990 低温物理学报 12 131Google Scholar

    Ran Q Z, Li J W 1990 Chin. J. Low Temp. Phys. 12 131Google Scholar

    [15]

    王昌, 李珂, 沈俊, 戴巍, 王亚男, 罗二仓, 沈保根, 周远 2021 物理学报 70 090702Google Scholar

    Wang C, Li K, Shen J, Dai W, Wang Y N, Luo E C, Shen B G, Zhou Y 2021 Acta Phys. Sin. 70 090702Google Scholar

    [16]

    王昌 2022 博士学位论文 (北京: 中国科学院大学)

    Wang C 2022 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences

    [17]

    禹芳秋, 沈俊, 戴巍, 李珂, 刘萍, 王昌 2022 中国工程热物理学会工程热力学与能源利用学术年会(2021)中国长沙, 4月9—10日, 2022

    Yu F Q, Shen J, Dai W, Li K, Liu P, Wang C 2022 Annual Conference of Engineering Thermodynamics and Energy Utilization of The Chinese Society of Engineering Thermophysics (2021) Changsha, April 9–10, 2022

    [18]

    Model 372 AC Resistance Bridge and Temperature Controller User’s Manual Lake Shore Cryotronics, Inc., 2019

    [19]

    Model 2700 Multimeter/Switch System User’s Manual Keithley Instruments, 2016

    [20]

    李珂, 王昌, 戴巍, 沈俊 2021 中国稀土学会学术年会, 中国成都, 10月22—24日, 2021 第88页

    Li K, Wang C, Dai W, Shen J 2021 Annual Conference of the Chinese Society of Rare Earths Chengdu, October 22–24, 2021 p88

  • [1] 郑茂文, 郭浩文, 卫铃佼, 潘子杰, 邹佳润, 李瑞鑫, 赵密广, 陈厚磊, 梁惊涛. 稀释制冷技术. 物理学报, 2024, 73(23): 230701. doi: 10.7498/aps.73.20241211
    [2] 俎红叶, 程维军, 王亚男, 王晓涛, 李珂, 戴巍. 冷凝泵型稀释制冷机实验研究. 物理学报, 2023, 72(8): 080701. doi: 10.7498/aps.72.20222257
    [3] 罗进宝, VasiliyPelenovich, 曾晓梅, 郝中华, 张翔宇, 左文彬, 付德君. 离子剂量比在气体团簇多级能量平坦化模式中的作用. 物理学报, 2021, 70(22): 223601. doi: 10.7498/aps.70.20202011
    [4] 王昌, 李珂, 沈俊, 戴巍, 王亚男, 罗二仓, 沈保根, 周远. 用于亚开温区的极低温绝热去磁制冷机. 物理学报, 2021, 70(9): 090702. doi: 10.7498/aps.70.20202237
    [5] 宋志军, 吕昭征, 董全, 冯军雅, 姬忠庆, 金勇, 吕力. 极低温散粒噪声测试系统及隧道结噪声测量. 物理学报, 2019, 68(7): 070702. doi: 10.7498/aps.68.20190114
    [6] 刘桢, 黄洁, 王建涛, 赵拥军, 陈世文. 基于伪相关函数的多级电平编码符号信号通用无模糊跟踪方法. 物理学报, 2017, 66(13): 139101. doi: 10.7498/aps.66.139101
    [7] 李振兴, 李珂, 沈俊, 戴巍, 高新强, 郭小惠, 公茂琼. 室温磁制冷技术的研究进展. 物理学报, 2017, 66(11): 110701. doi: 10.7498/aps.66.110701
    [8] 高新强, 沈俊, 和晓楠, 唐成春, 戴巍, 李珂, 公茂琼, 吴剑峰. 耦合高压斯特林制冷效应的复合磁制冷循环的数值模拟. 物理学报, 2015, 64(21): 210201. doi: 10.7498/aps.64.210201
    [9] 员江娟, 陈铮, 李尚洁. 双模晶体相场研究形变诱导的多级微结构演化. 物理学报, 2014, 63(9): 098106. doi: 10.7498/aps.63.098106
    [10] 吕金光, 梁静秋, 梁中翥. 多级反射镜阵列Monte Carlo法误差合成与统计分析. 物理学报, 2012, 61(22): 220701. doi: 10.7498/aps.61.220701
    [11] 李飞, 肖刘, 刘濮鲲, 袁广江, 易红霞, 万晓声. 行波管中多级降压收集极效率评估的研究. 物理学报, 2012, 61(10): 102901. doi: 10.7498/aps.61.102901
    [12] 王波, 梁中翥, 孔延梅, 梁静秋, 付建国, 郑莹, 朱万彬, 吕金光, 王维彪, 裴舒, 张军. 用于微型光谱仪的硅基多级微反射镜设计与制作研究. 物理学报, 2010, 59(2): 907-912. doi: 10.7498/aps.59.907
    [13] 秦明, 许建平. 开关变换器多级脉冲序列控制研究. 物理学报, 2009, 58(11): 7603-7612. doi: 10.7498/aps.58.7603
    [14] 张 姗, 吴福全, 吴闻迪. 多级石英晶体旋光光学滤波器的滤波特性. 物理学报, 2008, 57(8): 5020-5026. doi: 10.7498/aps.57.5020
    [15] 杨宇光, 温巧燕, 朱甫臣. 基于纠缠交换的多方多级量子密钥分配协议. 物理学报, 2005, 54(12): 5544-5548. doi: 10.7498/aps.54.5544
    [16] 魏计林, 张立敏, 俞书勤, 蒋志平. 超高斯光束截割对多级电离产额的影响. 物理学报, 2002, 51(1): 42-48. doi: 10.7498/aps.51.42
    [17] 孟继宝, 陈兆甲, 雒建林, 白海洋, 汪卫华, 郑萍, 张杰, 苏少奎, 王玉鹏. 重费密子系统CeCu6-xNix的极低温电阻研究. 物理学报, 2001, 50(8): 1632-1636. doi: 10.7498/aps.50.1632
    [18] 黄洪斌. 抽运统计对多级联双光子关联自发辐射激光器噪声的影响(Ⅰ). 物理学报, 1995, 44(4): 545-551. doi: 10.7498/aps.44.545
    [19] 刘劲松. 基于双光束耦合的多级相干光放大. 物理学报, 1993, 42(9): 1459-1462. doi: 10.7498/aps.42.1459
    [20] 李钰, 西门纪业. 多级聚焦-偏转复合系统的相对论象差理论. 物理学报, 1982, 31(5): 604-614. doi: 10.7498/aps.31.604
计量
  • 文章访问数:  4791
  • PDF下载量:  158
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-06
  • 修回日期:  2023-07-28
  • 上网日期:  2023-08-02
  • 刊出日期:  2023-10-05

/

返回文章
返回