搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多量子比特WV纠缠态在Lipkin-Meshkov-Glick模型下的量子Fisher信息

李岩 任志红

引用本文:
Citation:

多量子比特WV纠缠态在Lipkin-Meshkov-Glick模型下的量子Fisher信息

李岩, 任志红

Quantum Fisher information of multi-qubit WV entangled state under Lipkin-Meshkov-Glick model

Li Yan, Ren Zhi-Hong
PDF
HTML
导出引用
  • 量子Fisher信息在参数估计理论和量子精密测量领域扮演着非常重要的角色, 不仅可以用来标定量子系统的测量精度极限, 还可用于有益量子计量的纠缠态判定. 本文从量子测量的角度出发, 对多比特WV态($\alpha \left\vert W_N \right\rangle + $$ \sqrt{1-\alpha^2}\left\vert 00...0\right\rangle$)进行研究, 通过计算其在局域操作下和Lipkin-Meshkov-Glick (LMG)非局域操作模型下的量子Fisher信息, 分析其在精密测量方面的表现. 研究发现: 在局域操作下, 随着参数α由0到1的变化, 多比特WV态的量子Fisher信息逐渐变大, 表明其量子纠缠程度在不断增加, 也体现出更强的量子测量能力. 在LMG非局域操作下, 随着相互作用强度γ的增大, $N=3$量子比特WV态的量子Fisher信息值趋于稳定, 几乎不受参数α的影响, 而当体系量子比特数$N>3$时, 量子Fisher信息值会随参数α的变大而变大; 当参数α固定时, 多比特WV态的量子Fisher信息会随着相互作用强度γ的增强而变大, 呈现出相互作用强度越大, WV态的量子测量能力越强.
    As an important quantity in the field of parameter estimation theory and quantum precision measurement, quantum Fisher information (QFI) can not only be used to set the theoretical limit of measurement precision in quantum system, but also be exploited to witness metrological useful quantum entanglement. Recently, it has also been broadly used in many aspects of quantum information science, including quantum metrology, multipartite entanglement structure detection, quantum phase transition, quantum chaos, quantum computation and etc. In this work, from the perspective of quantum measurement, we study the quantum Fisher information of an N-qubit WV state ($\alpha \left\vert W_N \right\rangle +\sqrt{1-\alpha^2}\left\vert 00\cdots0\right\rangle$) under local operation and Lipkin-Meshkov-Glick (LMG) model. Furthermore, with the general Cramér-Rao lower bound (CRLB) we analyze its performance in high-precision phase measurement. The results show that, under the local operation, the QFI of an N-qubit WV state becomes larger with the increase of parameter α. This not only means the enhanced quantum entanglement, but also implies the powerful ability in high-precision quantum measurement. In the LMG model, as the increase of interactional strength γ the QFI of $N=3$ qubits WV state gradually tends to be stable and almost not be affected by parameter α, which relaxes the requirement in the preparation of target state and indicates a great potential in achieving the relatively stable measurement precision. When the number of qubits from WV state is larger than 3, the QFI of WV state increases with the increase of parameter α. In the case of fixed parameter α, we investigate the QFI of an N-qubit WV state with respect to interaction strength γ. It is found that the QFI of WV state will increase with the increasing interaction strength, which implies that the greater the interaction strength, the stronger the quantum measurement ability of the WV state. Our work will promote the development of high-precision quantum metrology and especially the interaction-enhanced quantum measurement, and further provide new insights in quantum information processing.
      通信作者: 李岩, li8989971@163.com
    • 基金项目: 国家自然科学基金(批准号: 12305024, 12205176)和山西省应用基础研究计划(批准号: 202203021212193, 202103021223251)资助的课题.
      Corresponding author: Li Yan, li8989971@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12305024, 12205176) and the Applied Basic Research Program of Shanxi Province, China (Grant Nos. 202203021212193, 202103021223251).
    [1]

    Fisher R A 1912 Messenger of Mathematics 41 155

    [2]

    Helstrom C W 1976 Quantum Detection and Estimation Theory (New York: Academic Press) pp235–293

    [3]

    Holevo A S 1982 Probabilistic and Statistical Aspects of Quantum Theory (Amsterdam: North Holland) pp52–96

    [4]

    Kreutz C, Timmer J 2013 Optimal Experiment Design, Fisher Information. In: Dubitzky W, Wolkenhauer O, Cho K H, Yokota H, editors. Encyclopedia of Systems Biology (New York: Springer) pp1576–1579

    [5]

    Ly A, Marsman M, Verhagen J, Grasman R P, and Wagenmakers E J 2017 J. Math. Psychol. 80 40Google Scholar

    [6]

    Giovannetti V, Lloyd S, Maccone L 2006 Phys. Rev. Lett. 96 010401Google Scholar

    [7]

    Li Y, Pezzè L, Li W D, Smerzi A 2019 Phys. Rev. A 99 022324Google Scholar

    [8]

    Fiderer L J, E. Fraïsse J M, Braun D 2019 Phys. Rev. Lett. 123 250502Google Scholar

    [9]

    Li Y, Ren Z H 2023 Phys. Rev. A 107 012403Google Scholar

    [10]

    Yin P, Zhao X B, Yang Y X, Guo Y, Zhang W H, Li G C, Han Y J, Liu B H, Xu J S, Chiribella G, Chen G, Li C F, Guo G C 2023 Nat. Phys. 19 1122Google Scholar

    [11]

    Li Y, Pezze L, Gessner M, Ren Z H, Li W D, Smerzi A 2018 Entopy 20 628Google Scholar

    [12]

    Braunstein S L, Caves C M 1994 Phys. Rev. Lett. 72 3439Google Scholar

    [13]

    Wootters W K 1981 Phys. Rev. D 23 357Google Scholar

    [14]

    Pezzè L, Smerzi A 2009 Phys. Rev. Lett. 102 100401Google Scholar

    [15]

    Hyllus P, Laskowski W, Krischek R, Schwemmer C, Wieczorek W, Weinfurter H, Pezzè L, Smerzi A 2012 Phys. Rev. A 85 022321Google Scholar

    [16]

    Pezzè L, Smerzi A, Oberthaler M K, Schmied R, Treutlein P 2018 Rev. Mod. Phys. 90 035005Google Scholar

    [17]

    任志红, 李岩, 李艳娜, 李卫东 2019 物理学报 68 040601Google Scholar

    Ren Z H, Li Y, Li Y N, Li W D 2019 Acta Phys. Sin. 68 040601Google Scholar

    [18]

    Zanardi P, Paris M G A, Venuti L C 2008 Phys. Rev. A 78 042105Google Scholar

    [19]

    Hauke P, Heyl M, Tagliacozzo L, Zoller P 2016 Nat. Phys. 12 778Google Scholar

    [20]

    Gabbrielli M, Smerzi A, Pezzé L 2018 Sci. Rep. 8 15663Google Scholar

    [21]

    Gietka K, Ruks L, Busch T 2022 Quantum 6 700Google Scholar

    [22]

    Gühne O, Tòth G 2009 Phys. Rep. 474 1Google Scholar

    [23]

    Pezzè L, Li Y, Li W D, Smerzi A 2016 Proc. Natl. Acad. Sci. 113 11459Google Scholar

    [24]

    Li Y and Li P F 2020 Phys. Lett. A 384 126413Google Scholar

    [25]

    Ren Z H, Li W D, Smerzi A, Gessner M 2021 Phys. Rev. Lett. 126 080502Google Scholar

    [26]

    Li Y, Ren Z H 2022 Physica A 596 127137Google Scholar

    [27]

    宋立军, 严冬, 刘烨 2011 物理学报 60 120302Google Scholar

    Song L J, Yan D, Liu Y 2011 Acta. Phys. Sin. 60 120302Google Scholar

    [28]

    Wang X Q, Ma J, Zhang X H, Wang X G 2011 Chin. Phys. B 20 050510Google Scholar

    [29]

    Berrada K, Abdel-Khalek S, Khalil E M, Alkaoud A, Eleuch H 2022 Chaos, Solitons Fractals 164 112621Google Scholar

    [30]

    Meyer J J 2021 Quantum 5 539Google Scholar

    [31]

    Yu M, Li D, Wang J, Chu Y M, Yang P, Gong M, Goldman N, Cai J M 2021 Phys. Rev. Res. 3 043122Google Scholar

    [32]

    Jin H C, Jeong S K 2015 Phys. Rev. A 92 042307Google Scholar

    [33]

    Shi X, Chen L 2020 Phys. Rev. A 101 032344Google Scholar

    [34]

    Shi X 2020 Phys. Lett. A 384 126392Google Scholar

    [35]

    Lai L M, Fei S M, Wang Z X 2021 J. Phys. A 54 425301Google Scholar

    [36]

    Jarzyna M, Demkowicz-Dobrzanski R 2015 New J. Phys. 17 013010Google Scholar

    [37]

    Lipkin H J, Meshkov N, Glick A 1965 Nucl. Phys. 62 188Google Scholar

  • 图 1  N量子比特WV态在局域操作下的量子Fisher信息随参数α的变化. 从下(黑色实线)到上(浅粉色实线)分别表示3量子比特WV态到8量子比特WV态的结果

    Fig. 1.  Quantum Fisher information of an N-qubit WV state with respect to α under local operation. From bottom (black line) to top (light pink line) it respectively denotes the result from 3-qubit WV state to 8-qubit WV state.

    图 2  量子比特WV态在LMG模型下的量子Fisher信息随参数α的变化 (a) 3比特; (b) 4比特; (c) 5比特; (d) 6比特

    Fig. 2.  Quantum Fisher information of qubit WV state with respect to α in the LMG model: (a) 3-qubit; (b) 4-qubit; (c) 5-qubit; (d) 6-qubit.

    图 3  量子比特WV态在LMG模型下的量子Fisher信息随相互作用强度γ的变化 (a) 3比特; (b) 4比特; (c) 5比特; (d) 6比特

    Fig. 3.  Quantum Fisher information of qubit WV state with respect to interactional strength γ in the LMG model: (a) 3-qubit; (b) 4-qubit; (c) 5-qubit; (d) 6-qubit.

  • [1]

    Fisher R A 1912 Messenger of Mathematics 41 155

    [2]

    Helstrom C W 1976 Quantum Detection and Estimation Theory (New York: Academic Press) pp235–293

    [3]

    Holevo A S 1982 Probabilistic and Statistical Aspects of Quantum Theory (Amsterdam: North Holland) pp52–96

    [4]

    Kreutz C, Timmer J 2013 Optimal Experiment Design, Fisher Information. In: Dubitzky W, Wolkenhauer O, Cho K H, Yokota H, editors. Encyclopedia of Systems Biology (New York: Springer) pp1576–1579

    [5]

    Ly A, Marsman M, Verhagen J, Grasman R P, and Wagenmakers E J 2017 J. Math. Psychol. 80 40Google Scholar

    [6]

    Giovannetti V, Lloyd S, Maccone L 2006 Phys. Rev. Lett. 96 010401Google Scholar

    [7]

    Li Y, Pezzè L, Li W D, Smerzi A 2019 Phys. Rev. A 99 022324Google Scholar

    [8]

    Fiderer L J, E. Fraïsse J M, Braun D 2019 Phys. Rev. Lett. 123 250502Google Scholar

    [9]

    Li Y, Ren Z H 2023 Phys. Rev. A 107 012403Google Scholar

    [10]

    Yin P, Zhao X B, Yang Y X, Guo Y, Zhang W H, Li G C, Han Y J, Liu B H, Xu J S, Chiribella G, Chen G, Li C F, Guo G C 2023 Nat. Phys. 19 1122Google Scholar

    [11]

    Li Y, Pezze L, Gessner M, Ren Z H, Li W D, Smerzi A 2018 Entopy 20 628Google Scholar

    [12]

    Braunstein S L, Caves C M 1994 Phys. Rev. Lett. 72 3439Google Scholar

    [13]

    Wootters W K 1981 Phys. Rev. D 23 357Google Scholar

    [14]

    Pezzè L, Smerzi A 2009 Phys. Rev. Lett. 102 100401Google Scholar

    [15]

    Hyllus P, Laskowski W, Krischek R, Schwemmer C, Wieczorek W, Weinfurter H, Pezzè L, Smerzi A 2012 Phys. Rev. A 85 022321Google Scholar

    [16]

    Pezzè L, Smerzi A, Oberthaler M K, Schmied R, Treutlein P 2018 Rev. Mod. Phys. 90 035005Google Scholar

    [17]

    任志红, 李岩, 李艳娜, 李卫东 2019 物理学报 68 040601Google Scholar

    Ren Z H, Li Y, Li Y N, Li W D 2019 Acta Phys. Sin. 68 040601Google Scholar

    [18]

    Zanardi P, Paris M G A, Venuti L C 2008 Phys. Rev. A 78 042105Google Scholar

    [19]

    Hauke P, Heyl M, Tagliacozzo L, Zoller P 2016 Nat. Phys. 12 778Google Scholar

    [20]

    Gabbrielli M, Smerzi A, Pezzé L 2018 Sci. Rep. 8 15663Google Scholar

    [21]

    Gietka K, Ruks L, Busch T 2022 Quantum 6 700Google Scholar

    [22]

    Gühne O, Tòth G 2009 Phys. Rep. 474 1Google Scholar

    [23]

    Pezzè L, Li Y, Li W D, Smerzi A 2016 Proc. Natl. Acad. Sci. 113 11459Google Scholar

    [24]

    Li Y and Li P F 2020 Phys. Lett. A 384 126413Google Scholar

    [25]

    Ren Z H, Li W D, Smerzi A, Gessner M 2021 Phys. Rev. Lett. 126 080502Google Scholar

    [26]

    Li Y, Ren Z H 2022 Physica A 596 127137Google Scholar

    [27]

    宋立军, 严冬, 刘烨 2011 物理学报 60 120302Google Scholar

    Song L J, Yan D, Liu Y 2011 Acta. Phys. Sin. 60 120302Google Scholar

    [28]

    Wang X Q, Ma J, Zhang X H, Wang X G 2011 Chin. Phys. B 20 050510Google Scholar

    [29]

    Berrada K, Abdel-Khalek S, Khalil E M, Alkaoud A, Eleuch H 2022 Chaos, Solitons Fractals 164 112621Google Scholar

    [30]

    Meyer J J 2021 Quantum 5 539Google Scholar

    [31]

    Yu M, Li D, Wang J, Chu Y M, Yang P, Gong M, Goldman N, Cai J M 2021 Phys. Rev. Res. 3 043122Google Scholar

    [32]

    Jin H C, Jeong S K 2015 Phys. Rev. A 92 042307Google Scholar

    [33]

    Shi X, Chen L 2020 Phys. Rev. A 101 032344Google Scholar

    [34]

    Shi X 2020 Phys. Lett. A 384 126392Google Scholar

    [35]

    Lai L M, Fei S M, Wang Z X 2021 J. Phys. A 54 425301Google Scholar

    [36]

    Jarzyna M, Demkowicz-Dobrzanski R 2015 New J. Phys. 17 013010Google Scholar

    [37]

    Lipkin H J, Meshkov N, Glick A 1965 Nucl. Phys. 62 188Google Scholar

  • [1] 任亚雷, 周涛. 运动参考系中量子Fisher信息. 物理学报, 2024, 73(5): 050601. doi: 10.7498/aps.73.20231394
    [2] 屠秉晟. 少电子离子束缚态电子g因子精密测量. 物理学报, 2024, 73(20): 203103. doi: 10.7498/aps.73.20240683
    [3] 李竞, 丁海涛, 张丹伟. 非厄米哈密顿量中的量子Fisher信息与参数估计. 物理学报, 2023, 72(20): 200601. doi: 10.7498/aps.72.20230862
    [4] 刘然, 吴泽, 李宇晨, 陈昱全, 彭新华. 基于量子Fisher信息测量的实验多体纠缠刻画. 物理学报, 2023, 72(11): 110305. doi: 10.7498/aps.72.20230356
    [5] 贺志, 蒋登魁, 李艳. 一种与开放系统初态无关的非马尔科夫度量. 物理学报, 2022, 71(21): 210303. doi: 10.7498/aps.71.20221053
    [6] 刘鑫, 周晓鹏, 汶伟强, 陆祺峰, 严成龙, 许帼芹, 肖君, 黄忠魁, 汪寒冰, 陈冬阳, 邵林, 袁洋, 汪书兴, 马万路, 马新文. 电子束离子阱光谱标定和Ar13+离子M1跃迁波长精密测量. 物理学报, 2022, 71(3): 033201. doi: 10.7498/aps.71.20211663
    [7] 牛明丽, 王月明, 李志坚. 基于量子Fisher信息的耗散相互作用光-物质耦合常数的估计. 物理学报, 2022, 71(9): 090601. doi: 10.7498/aps.71.20212029
    [8] 刘鑫, 周晓鹏, 汶伟强, 陆祺峰, 严成龙, 许帼芹, 肖君, 黄忠魁, 汪寒冰, 陈冬阳, 邵林, 袁洋, 汪书兴, 马万路(Wan-Lu MA), 马新文. 电子束离子阱光谱标定和Ar13+离子M1跃迁波长精密测量. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211663
    [9] 赵天择, 杨苏辉, 李坤, 高彦泽, 王欣, 张金英, 李卓, 赵一鸣, 刘宇哲. 频域反射法光纤延时精密测量. 物理学报, 2021, 70(8): 084204. doi: 10.7498/aps.70.20201075
    [10] 任志红, 李岩, 李艳娜, 李卫东. 基于量子Fisher信息的量子计量进展. 物理学报, 2019, 68(4): 040601. doi: 10.7498/aps.68.20181965
    [11] 刘建平, 邬俊飞, 黎卿, 薛超, 毛德凯, 杨山清, 邵成刚, 涂良成, 胡忠坤, 罗俊. 万有引力常数G精确测量实验进展. 物理学报, 2018, 67(16): 160603. doi: 10.7498/aps.67.20181381
    [12] 王磊, 郭浩, 陈宇雷, 伍大锦, 赵锐, 刘文耀, 李春明, 夏美晶, 赵彬彬, 朱强, 唐军, 刘俊. 基于金刚石色心自旋磁共振效应的微位移测量方法. 物理学报, 2018, 67(4): 047601. doi: 10.7498/aps.67.20171914
    [13] 彭世杰, 刘颖, 马文超, 石发展, 杜江峰. 基于金刚石氮-空位色心的精密磁测量. 物理学报, 2018, 67(16): 167601. doi: 10.7498/aps.67.20181084
    [14] 赵军龙, 张译丹, 杨名. 噪声对一种三粒子量子探针态的影响. 物理学报, 2018, 67(14): 140302. doi: 10.7498/aps.67.20180040
    [15] 武莹, 李锦芳, 刘金明. 基于部分测量增强量子隐形传态过程的量子Fisher信息. 物理学报, 2018, 67(14): 140304. doi: 10.7498/aps.67.20180330
    [16] 穆秀丽, 李传亮, 邓伦华, 汪海玲. 用于α和μ常数变化测量的碘离子光谱研究. 物理学报, 2017, 66(23): 233301. doi: 10.7498/aps.66.233301
    [17] 郭红. Bose-Hubbard模型中系统初态对量子关联的影响. 物理学报, 2015, 64(22): 220301. doi: 10.7498/aps.64.220301
    [18] 常锋, 王晓茜, 盖永杰, 严冬, 宋立军. 光与物质相互作用系统中的量子Fisher信息和自旋压缩. 物理学报, 2014, 63(17): 170302. doi: 10.7498/aps.63.170302
    [19] 王金涛, 刘子勇. 基于静力悬浮原理的单晶硅球间微量密度差异精密测量方法研究. 物理学报, 2013, 62(3): 037702. doi: 10.7498/aps.62.037702
    [20] 宋立军, 严冬, 刘烨. 玻色-爱因斯坦凝聚系统的量子Fisher信息与混沌. 物理学报, 2011, 60(12): 120302. doi: 10.7498/aps.60.120302
计量
  • 文章访问数:  2690
  • PDF下载量:  90
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-20
  • 修回日期:  2023-08-20
  • 上网日期:  2023-09-05
  • 刊出日期:  2023-11-20

/

返回文章
返回