搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

室外环境中的关联成像研究进展

常宸 孙帅 杜隆坤 聂镇武 何林贵 张翼 陈鹏 鲍可 刘伟涛

引用本文:
Citation:

室外环境中的关联成像研究进展

常宸, 孙帅, 杜隆坤, 聂镇武, 何林贵, 张翼, 陈鹏, 鲍可, 刘伟涛

Research progress of correlation imaging under outdoor environment

Chang Chen, Sun Shuai, Du Long-Kun, Nie Zhen-Wu, He Lin-Gui, Zhang Yi, Chen Peng, Bao Ke, Liu Wei-Tao
PDF
HTML
导出引用
  • 光学成像是人类不可或缺的信息获取方式之一, 其在预警侦察、精确制导、交通运输和工业生产等军用和民用领域发挥着不可替代的作用. 在室外环境中, 由于背景光、杂散光和大气介质的影响, 光学成像的分辨率、信噪比和作用距离等受到限制. 近年来, 在光学、物理、信息论及计算机等多学科的交叉融合发展的支撑下, 新型光学成像技术不断涌现, 为发展远距离、大视场、高信息通量的室外光学成像带来新的契机. 关联成像作为新型主动成像技术之一, 具有高灵敏、抗干扰、信息并行获取等特点, 能够较好地应对室外光学成像中所面临的如远距离导致光功率急剧衰减、环境噪声干扰引起的低信噪比等问题, 并能在一定程度上减少散射、湍流等导致的图像模糊等问题, 是当前室外环境中光学成像的热门研究领域之一. 本文从光学成像原理出发, 分析室外环境中光学成像分辨率、信噪比、空间带宽积和成像距离的影响因素, 重点介绍和梳理室外关联成像在成像系统、信噪甄别技术和成像算法等方面的研究进展, 并浅析光学成像向更远距离、更广视场拓展的过程中需要研究的基础问题和待攻克的关键技术.
    Image, as a method of information acquisition, is indispensable for human beings, and it plays an irreplaceable role in military and civilian fields, such as detection and scouting, precision guidance, transportation, and industrial production. In the outdoor environment, the resolution, signal-to-noise ratio, and working distance of optical imaging are limited as result of the influence of background light, stray light, and atmospheric medium. In recent years, with the development of muti-discipline such as optics, physics, information theory, and computer science, the new optical imaging technologies continue to emerge, thus bringing new opportunities for outdoor optical imaging towards long-distance, large field of view and high information flux. As one of the new active imaging technologies, correlation imaging has the potential applications of robustness against turbulence and noise, and the possibility of beating the Rayleigh limit. It can deal with the problems better, such as sharp attenuation of optical power caused by long distances, detection of interference signals from environmental noise, and influence of turbulence. Based on the principle of optical imaging, this paper analyzes the factors affecting optical imaging, in terms of resolution, signal-to-noise ratio, spatial bandwidth product, and imaging distance under outdoor environment, focusing on the research progress of outdoor correlation imaging including imaging systems, signal-to-noise screening technology and imaging algorithm. In addition, we analyze the requirements of optical imaging for longer distances and broader field of view, and consider the fundamental problems and the key technologies.
      通信作者: 刘伟涛, wtliu@nudt.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62275270, 62105365)资助的课题.
      Corresponding author: Liu Wei-Tao, wtliu@nudt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62275270, 62105365).
    [1]

    Li S, Cropp F, Kabra K, Lane T J, Wetzstein G, Musumeci P, Ratner D 2018 Phys. Rev. Lett 121 114801Google Scholar

    [2]

    韩波, 梁雅琼 2020 物理学报 69 175202Google Scholar

    Han B, Liang Y Q 2020 Acta Phys. Sin. 69 175202Google Scholar

    [3]

    Mackinnon A J, Patel P K, Town R P, Edwards M J, Phillips T, Lerner S C, Price D W, Hicks D, Key M H, Hatchett S, Wilks S C, Borghesi M, Romagnani L, Kar S, Toncian T, Pretzler G, Willi O, Koenig M, Martinolli E, Lepape S, Benuzzi-Mounaix A, Audebert P, Gauthier J C, King J, Snavely R, Freeman R R, Boehlly T 2004 Rev. Sci. Instrum. 75 3531Google Scholar

    [4]

    Mackinnon A J, Patel P K, Borghesi M, Clarke R C, Freeman R R, Habara H, Hatchett S P, Hey D, Hicks D G, Kar S, Key M H, King J A, Lancaster K, Neely D, Nikkro A, Norreys P A, Notley M M, Phillips T W, Romagnani L, Snavely R A, Stephens R B, Town R P J 2006 Phys. Rev. Lett 97 045001Google Scholar

    [5]

    周天益 2019 物理学报 68 055201Google Scholar

    Zhou T Y 2019 Acta Phys. Sin. 68 055201Google Scholar

    [6]

    Benedetti M, Franceschini G, Azaro R, Massa A 2007 IEEE Antenn. Wirel. Pr. 6 271Google Scholar

    [7]

    Palmeri R, Bevacqua M T, Crocco L, Isernia T, Di Donato L 2017 IEEE T. Antenn. Propag. 65 829Google Scholar

    [8]

    代冰, 王朋, 周宇, 游承武, 胡江胜, 杨振刚, 王可嘉, 刘劲松 2017 物理学报 66 088701Google Scholar

    Dai B, Wang P, Zhou Y, You C W, Hu J S, Yang Z G, Wang K J, Liu JS 2017 Acta Phys. Sin. 66 088701Google Scholar

    [9]

    Cao B H, Zhang M Y, Fan M B, Sun F S, Liu L 2022 Chin. Opt. 15 405Google Scholar

    [10]

    Ding Li, Ding Xi, Ye Y Y, Zhu Y M 2017 Chin. Opt. 10 114Google Scholar

    [11]

    Saumya T, Kianoush F, Georgina C, Rohit B 2022 Appl. Spectrosc. 76 475Google Scholar

    [12]

    吕浩昌, 赵云驰, 杨光, 董博闻, 祁杰, 张静言, 朱照照, 孙阳, 于广华, 姜勇, 魏红祥, 王晶, 陆俊, 王志宏, 蔡建旺, 沈保根, 杨峰, 张申金, 王守国 2020 物理学报 69 096801Google Scholar

    Lü H C, Zhao Y C, Yang G, Dong B W, Qi J, Zhang J Y, Zhu Z Z, Sun Y, Yu G H, Jiang Y, Wei H X, Wang J, Lu J, Wang Z H, Cai J W, Shen B G, Yang F, Zhang S J, Wang S G 2020 Acta Phys. Sin. 69 096801Google Scholar

    [13]

    Vaithilingam S, Ma T J, Furukawa Y, Wygant I O, Zhuang X, De La Zerda A, Oralkan O, Kamaya A, Gambhir S, Jeffrey R, Khuri-yakub B 2009 IEEE T. Ultrason. Ferr. 56 2411Google Scholar

    [14]

    Tan Y, Xia K Y, Ren Q S, Li C H 2017 Opt. Express 25 8022Google Scholar

    [15]

    Li J H, Zhang F Z, Xiang Y, Pan S L 2021 Opt. Express 29 31574Google Scholar

    [16]

    Li S M, Cui Z Z, Ye X W, Feng J, Yang Y, He Z Q, Cong R, Zhu D, Zhang F Z, Pan S L 2020 Laser Photonics Rev. 14 1900239Google Scholar

    [17]

    Lord Rayleigh Sec. R S 1896 The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 42 167Google Scholar

    [18]

    Abbe E 1873 Archiv für Mikroskopische Anatomie 9 413Google Scholar

    [19]

    Zuo C, Chen Q 2022 Chin. Opt. 15 1105Google Scholar

    [20]

    Jicha O, Pechac P, Stanislav Z, Grabner M, Kvicera V 2012 Proceed. SPIE 8535 853509Google Scholar

    [21]

    Ronald R P, Richard J S 1994 J. Opt. Soc. Am. A 11 288Google Scholar

    [22]

    Darryl P G 1977 J. Opt. Soc. Am. 67 390Google Scholar

    [23]

    Hanbury Brown R, Twiss R Q 1956 Nature 177 27Google Scholar

    [24]

    Klyshko D N 1988 Sov. Phys. Usp 31 74Google Scholar

    [25]

    Pittman T B, Shih Y H, Strekalov D V, Sergienko A V 1995 Phys. Rev. A 52 R3429Google Scholar

    [26]

    Gatti A, Brambilla E, Lugiato L A 2003 Phys. Rev. Lett 90 133603Google Scholar

    [27]

    Khakimov R I, Henson B M, Shin D K, Hodgman S S, Dall R G, Baldwin K G H, Truscott A G 2016 Nature 540 100Google Scholar

    [28]

    Shapiro J H 2008 Phys. Rev. A 78 061802Google Scholar

    [29]

    Ferri F, Magatti D, Lugiato L A, Gatti A 2010 Phys. Rev. Lett. 104 253603Google Scholar

    [30]

    Sun B Q, Welsh S S, Edgar M P, Shapiro J H, Padgett M J 2012 Opt. Express 20 16892Google Scholar

    [31]

    Gao Z Q, Cheng X M, Zhang L, Hu Y, Hao Q 2020 J. Opt. 22 055704Google Scholar

    [32]

    Huo Y, He H, Chen F 2016 Appl. Opt. 55 3356Google Scholar

    [33]

    Zhao S M, Zhuang P 2014 Chin. Phys. B 23 054203Google Scholar

    [34]

    Lyu M, Wang W, Li G W, Zheng S S, Situ G H 2017 Sci. Rep. 7 17865Google Scholar

    [35]

    Wang F, Wang C L, Chen M L, Gong W L, Zhang Y, Han S S, Situ G H 2022 Light-Sci. Appl. 11 1Google Scholar

    [36]

    Zhai X, Cheng Z D, Hu Y D, Chen Y, Liang Z Y, Wei Y 2019 Opt. Commun. 448 69Google Scholar

    [37]

    Sun S, Gu J H, Lin H Z, Jiang L, Liu W T 2019 Opt. Lett. 44 5594Google Scholar

    [38]

    Wang Z H, Sun Y L, Liao J L, Wang C, Cao R, Jin L, Cao C Q 2021 Opt. Express 29 39342Google Scholar

    [39]

    Yang D Y, Chang C, Wu G H, Luo B, Yin L F 2020 Appl. Sci. 10 7941Google Scholar

    [40]

    Zha L B, Shi D F, Huang J, Yuan K, Meng W W, Yang W, Jiang R B, Chen Y F, Wang Y J 2021 Opt. Express 29 30327Google Scholar

    [41]

    Du L K, Sun S, Jiang L, Chang C, Lin H Z, Liu W T 2023 Phys. Rev. Appl. 19 054014Google Scholar

    [42]

    Gong W L, Zhao C Q, Yu H, Chen M L, Xu W D, Han S S 2016 Sci. Rep. 6 26133Google Scholar

    [43]

    Deng C J, Gong W L, Han S S 2016 Opt. Express 24 25983Google Scholar

    [44]

    Deng C J, Pan L, Wang C L, Gao X, Gong W L, Han S S 2017 Photon. Res. 5 431Google Scholar

    [45]

    Sun M J, Edgar M P, Gibson G M, Sun B Q, Near L, Miles J. P 2016 Nat. Commun 7 12010Google Scholar

    [46]

    Rai T, Hashim F H, Huddin A B, Lbrahim M F, Hussain A 2020 Electronics 9 741Google Scholar

    [47]

    Xu Z H, Chen W, Penuelas J, Padgett Miles, Sun M J 2018 Opt. Express 26 2427Google Scholar

    [48]

    Wang W Q, Zhang W F, Sai T. C, Brent E. L, Yang Q H, Wang L R, Hu X H, Wang L, Wang G X, Wang Y S, Zhao W 2017 ACS Photonics 4 1677Google Scholar

    [49]

    Nitta K. Yano Y, Kitada C. Matoba O 2019 Appl. Sci 9 4807Google Scholar

    [50]

    Yusuke K, Kento K, Rui T, Yasuyuki O, Yoshiaki N, and Takuo T 2019 Opt. Express 27 3817Google Scholar

    [51]

    Cheng J 2009 Opt. Express 17 7916Google Scholar

    [52]

    Li C, Wang T, Pu J, Zhu W, Rao R 2010 Appl. Phys. B 99 599Google Scholar

    [53]

    Zhang P L, Gong W L, Shen X, Han S S 2010 Phys. Rev. A 82 033817Google Scholar

    [54]

    Chen M L, Li E R, Gong W L, Bo Z W, Xu X Y, Zhao C Q, Shen X, Xu W D, Han S S 2013 Opt. Photonics J. 3 83Google Scholar

    [55]

    Meyers R E, Deacon K S, Shih Y 2023 Appl. Phys. Lett. 122 014001.Google Scholar

    [56]

    Gong W L, Han S S 2011 Opt. Lett. 36 394Google Scholar

    [57]

    Hardy N D, Shapiro J H 2011 Phys. Rev. A 84 063824Google Scholar

    [58]

    Xu Y K, Liu W T, Zhang E F, Li Q, Dai H Y, Chen P X 2015 Opt. Express 23 32993Google Scholar

    [59]

    Meyers R E, Deacon K S, Tunick A D 2012 Appl. Phys. Lett. 100 061126Google Scholar

    [60]

    Gao Z, Yin J, Bai Y, Fu X 2020 Appl. Opt. 59 8472Google Scholar

    [61]

    Shi D F, Fan C Y, Zhang P F, Zhang J H, Shen H, Qiao C H, Wang Y J 2012 Opt. Express 20 27992Google Scholar

    [62]

    Li Y Z, Deng C J, Gong W L, Han S S 2021 Acta Opt. Sin. 41 1511004Google Scholar

    [63]

    Yuan Y, Chen H 2022 New J. Phys. 24 043034Google Scholar

    [64]

    Lin L X, Cao J, Zhou D, Cui H, Hao Q 2022 Opt. Express 30 11243Google Scholar

    [65]

    Sun S, Nie Z W, Li Y G, Lin H Z, Liu W T, Chen P X 2022 arXiv: 2208.08644v3

    [66]

    Li D, Yang D, Sun S, Li Y G, Jiang L, Lin H Z, Liu W T 2021 Opt. Express 29 31068Google Scholar

    [67]

    Guan J, Cheng Y, Chang G 2017 Opt. Commun 391 82Google Scholar

    [68]

    Sun S, Liu W T, Gu J H, Lin H Z, Jiang L, Xu Y K, Chen P X 2019 Opt. Lett. 44 5993Google Scholar

    [69]

    Gong W L 2015 Photonics Res. 3 234Google Scholar

    [70]

    Zhang C, Guo S X, Cao J S, Guan J, Gao F L 2014 Opt. Express 22 30063Google Scholar

    [71]

    Katz O, Bromberg Y, Silberberg Y 2009 App. Phys. Lett 95 131110.Google Scholar

    [72]

    Zhang X, Meng X F, Yang X L, Wang Y R, Yin Y K, Li X Y, Peng X, He W H, Dong G Y, Chen H Y 2018 Opt. Express 26 12948Google Scholar

    [73]

    白旭, 李永强, 赵生妹 2013 物理学报 62 044209Google Scholar

    Bai X, Li Y Q, Zhao S M 2013 Acta Phys. Sin. 62 044209Google Scholar

    [74]

    Shimobaba T, Endo Y, Nishitsuji T, Takahashi T, Nagahama Y, Hasegawa S, Sano M, Hirayama R, Kakue T, Shiraki A, Ito T 2018 Opt. Commun. 413 147Google Scholar

    [75]

    Higham C F, Murray-Smith R, Padgett M J, Edgar M P 2018 Sci. Rep. 8 2369Google Scholar

  • 图 1  光学成像构型示意图

    Fig. 1.  Schematic of optical imaging configuration.

    图 2  艾里斑、瑞利衍射以及阿贝衍射极限[19]

    Fig. 2.  Limit of Airy disk, Rayleigh diffraction and Abbe diffraction[19].

    图 3  (a)理想图像; (b)涨落关联重构图像; (c)差分关联重构图像

    Fig. 3.  (a) Ideal image; (b) reconstructed image by fluctuation correlation; (c) reconstructed image by differential ghost imaging.

    图 4  HBT实验基础原理图[23]

    Fig. 4.  Schematic diagram of HBT[23].

    图 5  赝热光关联成像系统示意图

    Fig. 5.  Schematic diagram of ghost imaging based on pseudo-thermal light.

    图 6  湍流干扰条件下直接成像与关联成像图像质量对比[53] (a)直接成像图像; (b)关联成像图像

    Fig. 6.  Comparison of image quality between two imaging method[53]: (a) Traditional non-correlated imaging; (b) ghost imaging.

    图 7  不同天气条件下直接成像与关联成像图像对比, 其中(a)—(e)分别代表晴朗、多云、小雨、中雾、夜晚天气对应; (1)—(4)分别对应实地场景、传统成像、关联成像、基于总变分约束的关联成像[54]

    Fig. 7.  Comparison of images between two imaging method in different weather: (a) Clear; (b) cloudy; (c) light rain; (d) moderately foggy; (e) night. Where (1) scenes of field experimental, (2) traditional imaging, (3) ghost imaging, (4) ghost imaging by TV (total variation)[54]

    图 8  双缝直接成像与关联成像结果, 从(a)到(f)对应散射强度逐渐增加, β= 100%, 33.26%, 12.14%, 6.44%, 3.16%, 1.28%, $ \beta $表示散射介质的透过率, 每一对图像的左图为关联成像结果, 右图为传统直接成像结果[58]

    Fig. 8.  Imaging results of a double slit achieved with both methods. From set (a) to (f), the strength of scattering is increasing, β = 100%, 33.26%, 12.14%, 6.44%, 3.16%, 1.28%, where $ \beta $ shows the transmission ratio of the scattering media as a measure of strength of scattering. For each set, the left one is the result of ghost imaging and the right one is that of traditional non-correlated imaging[58].

    图 9  字母“A”在不同强度大气湍流下的图像 (a)—(c)湍流系数分别为2.0, 3.2, 6.8时常规关联成像图像; (d)—(f)湍流系数为2.0, 3.2, 6.8时自适应关联成像图像[61]

    Fig. 9.  Obtained images of letter “A” under different strength atmospheric turbulence: (a)–(c) Images of convention ghost imaging at turbulence coefficient of 2.0, 3.2 and 6.8, respectively; (d)–(f) images of adaptive optical ghost imaging at turbulence coefficient 2.0, 3.2 and 6.8, respectively[61].

    图 10  不同算法所得重构图像对比[68]

    Fig. 10.  Images reconstructed by different algorithms[68].

    图 11  强度关联算法与伪逆鬼成像重构结果图[69,70]

    Fig. 11.  Images reconstructed by GI and PGI[69,70].

    图 12  基于互相关的运动目标成像结果[37]

    Fig. 12.  Results of CBGI with moving object[37].

    图 13  基于低阶矩的运动目标成像结果[39]

    Fig. 13.  Results of GI based on low-order moments with moving object[39].

    图 14  四象限跟踪成像方法实验结果[41] (a) 成像结果; (b)目标追踪结果; (c)成像质量随时间变化曲线

    Fig. 14.  Experimental results of GI based on four-quadrant detector[41]: (a) Results of imaging; (b) trajectory of the moving object; (c) quality of reconstructed images over time.

    图 15  实时追踪方法实验结果[40] (a)实验架构示意图; (b)相机追踪轨迹(红)与算法计算所得轨迹(蓝)

    Fig. 15.  Experimental results of the real-time online tracking of a moving object[40]: (a) Experimental framework diagram; (b) camera tracking track (red) and algorithm calculated track (blue).

  • [1]

    Li S, Cropp F, Kabra K, Lane T J, Wetzstein G, Musumeci P, Ratner D 2018 Phys. Rev. Lett 121 114801Google Scholar

    [2]

    韩波, 梁雅琼 2020 物理学报 69 175202Google Scholar

    Han B, Liang Y Q 2020 Acta Phys. Sin. 69 175202Google Scholar

    [3]

    Mackinnon A J, Patel P K, Town R P, Edwards M J, Phillips T, Lerner S C, Price D W, Hicks D, Key M H, Hatchett S, Wilks S C, Borghesi M, Romagnani L, Kar S, Toncian T, Pretzler G, Willi O, Koenig M, Martinolli E, Lepape S, Benuzzi-Mounaix A, Audebert P, Gauthier J C, King J, Snavely R, Freeman R R, Boehlly T 2004 Rev. Sci. Instrum. 75 3531Google Scholar

    [4]

    Mackinnon A J, Patel P K, Borghesi M, Clarke R C, Freeman R R, Habara H, Hatchett S P, Hey D, Hicks D G, Kar S, Key M H, King J A, Lancaster K, Neely D, Nikkro A, Norreys P A, Notley M M, Phillips T W, Romagnani L, Snavely R A, Stephens R B, Town R P J 2006 Phys. Rev. Lett 97 045001Google Scholar

    [5]

    周天益 2019 物理学报 68 055201Google Scholar

    Zhou T Y 2019 Acta Phys. Sin. 68 055201Google Scholar

    [6]

    Benedetti M, Franceschini G, Azaro R, Massa A 2007 IEEE Antenn. Wirel. Pr. 6 271Google Scholar

    [7]

    Palmeri R, Bevacqua M T, Crocco L, Isernia T, Di Donato L 2017 IEEE T. Antenn. Propag. 65 829Google Scholar

    [8]

    代冰, 王朋, 周宇, 游承武, 胡江胜, 杨振刚, 王可嘉, 刘劲松 2017 物理学报 66 088701Google Scholar

    Dai B, Wang P, Zhou Y, You C W, Hu J S, Yang Z G, Wang K J, Liu JS 2017 Acta Phys. Sin. 66 088701Google Scholar

    [9]

    Cao B H, Zhang M Y, Fan M B, Sun F S, Liu L 2022 Chin. Opt. 15 405Google Scholar

    [10]

    Ding Li, Ding Xi, Ye Y Y, Zhu Y M 2017 Chin. Opt. 10 114Google Scholar

    [11]

    Saumya T, Kianoush F, Georgina C, Rohit B 2022 Appl. Spectrosc. 76 475Google Scholar

    [12]

    吕浩昌, 赵云驰, 杨光, 董博闻, 祁杰, 张静言, 朱照照, 孙阳, 于广华, 姜勇, 魏红祥, 王晶, 陆俊, 王志宏, 蔡建旺, 沈保根, 杨峰, 张申金, 王守国 2020 物理学报 69 096801Google Scholar

    Lü H C, Zhao Y C, Yang G, Dong B W, Qi J, Zhang J Y, Zhu Z Z, Sun Y, Yu G H, Jiang Y, Wei H X, Wang J, Lu J, Wang Z H, Cai J W, Shen B G, Yang F, Zhang S J, Wang S G 2020 Acta Phys. Sin. 69 096801Google Scholar

    [13]

    Vaithilingam S, Ma T J, Furukawa Y, Wygant I O, Zhuang X, De La Zerda A, Oralkan O, Kamaya A, Gambhir S, Jeffrey R, Khuri-yakub B 2009 IEEE T. Ultrason. Ferr. 56 2411Google Scholar

    [14]

    Tan Y, Xia K Y, Ren Q S, Li C H 2017 Opt. Express 25 8022Google Scholar

    [15]

    Li J H, Zhang F Z, Xiang Y, Pan S L 2021 Opt. Express 29 31574Google Scholar

    [16]

    Li S M, Cui Z Z, Ye X W, Feng J, Yang Y, He Z Q, Cong R, Zhu D, Zhang F Z, Pan S L 2020 Laser Photonics Rev. 14 1900239Google Scholar

    [17]

    Lord Rayleigh Sec. R S 1896 The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 42 167Google Scholar

    [18]

    Abbe E 1873 Archiv für Mikroskopische Anatomie 9 413Google Scholar

    [19]

    Zuo C, Chen Q 2022 Chin. Opt. 15 1105Google Scholar

    [20]

    Jicha O, Pechac P, Stanislav Z, Grabner M, Kvicera V 2012 Proceed. SPIE 8535 853509Google Scholar

    [21]

    Ronald R P, Richard J S 1994 J. Opt. Soc. Am. A 11 288Google Scholar

    [22]

    Darryl P G 1977 J. Opt. Soc. Am. 67 390Google Scholar

    [23]

    Hanbury Brown R, Twiss R Q 1956 Nature 177 27Google Scholar

    [24]

    Klyshko D N 1988 Sov. Phys. Usp 31 74Google Scholar

    [25]

    Pittman T B, Shih Y H, Strekalov D V, Sergienko A V 1995 Phys. Rev. A 52 R3429Google Scholar

    [26]

    Gatti A, Brambilla E, Lugiato L A 2003 Phys. Rev. Lett 90 133603Google Scholar

    [27]

    Khakimov R I, Henson B M, Shin D K, Hodgman S S, Dall R G, Baldwin K G H, Truscott A G 2016 Nature 540 100Google Scholar

    [28]

    Shapiro J H 2008 Phys. Rev. A 78 061802Google Scholar

    [29]

    Ferri F, Magatti D, Lugiato L A, Gatti A 2010 Phys. Rev. Lett. 104 253603Google Scholar

    [30]

    Sun B Q, Welsh S S, Edgar M P, Shapiro J H, Padgett M J 2012 Opt. Express 20 16892Google Scholar

    [31]

    Gao Z Q, Cheng X M, Zhang L, Hu Y, Hao Q 2020 J. Opt. 22 055704Google Scholar

    [32]

    Huo Y, He H, Chen F 2016 Appl. Opt. 55 3356Google Scholar

    [33]

    Zhao S M, Zhuang P 2014 Chin. Phys. B 23 054203Google Scholar

    [34]

    Lyu M, Wang W, Li G W, Zheng S S, Situ G H 2017 Sci. Rep. 7 17865Google Scholar

    [35]

    Wang F, Wang C L, Chen M L, Gong W L, Zhang Y, Han S S, Situ G H 2022 Light-Sci. Appl. 11 1Google Scholar

    [36]

    Zhai X, Cheng Z D, Hu Y D, Chen Y, Liang Z Y, Wei Y 2019 Opt. Commun. 448 69Google Scholar

    [37]

    Sun S, Gu J H, Lin H Z, Jiang L, Liu W T 2019 Opt. Lett. 44 5594Google Scholar

    [38]

    Wang Z H, Sun Y L, Liao J L, Wang C, Cao R, Jin L, Cao C Q 2021 Opt. Express 29 39342Google Scholar

    [39]

    Yang D Y, Chang C, Wu G H, Luo B, Yin L F 2020 Appl. Sci. 10 7941Google Scholar

    [40]

    Zha L B, Shi D F, Huang J, Yuan K, Meng W W, Yang W, Jiang R B, Chen Y F, Wang Y J 2021 Opt. Express 29 30327Google Scholar

    [41]

    Du L K, Sun S, Jiang L, Chang C, Lin H Z, Liu W T 2023 Phys. Rev. Appl. 19 054014Google Scholar

    [42]

    Gong W L, Zhao C Q, Yu H, Chen M L, Xu W D, Han S S 2016 Sci. Rep. 6 26133Google Scholar

    [43]

    Deng C J, Gong W L, Han S S 2016 Opt. Express 24 25983Google Scholar

    [44]

    Deng C J, Pan L, Wang C L, Gao X, Gong W L, Han S S 2017 Photon. Res. 5 431Google Scholar

    [45]

    Sun M J, Edgar M P, Gibson G M, Sun B Q, Near L, Miles J. P 2016 Nat. Commun 7 12010Google Scholar

    [46]

    Rai T, Hashim F H, Huddin A B, Lbrahim M F, Hussain A 2020 Electronics 9 741Google Scholar

    [47]

    Xu Z H, Chen W, Penuelas J, Padgett Miles, Sun M J 2018 Opt. Express 26 2427Google Scholar

    [48]

    Wang W Q, Zhang W F, Sai T. C, Brent E. L, Yang Q H, Wang L R, Hu X H, Wang L, Wang G X, Wang Y S, Zhao W 2017 ACS Photonics 4 1677Google Scholar

    [49]

    Nitta K. Yano Y, Kitada C. Matoba O 2019 Appl. Sci 9 4807Google Scholar

    [50]

    Yusuke K, Kento K, Rui T, Yasuyuki O, Yoshiaki N, and Takuo T 2019 Opt. Express 27 3817Google Scholar

    [51]

    Cheng J 2009 Opt. Express 17 7916Google Scholar

    [52]

    Li C, Wang T, Pu J, Zhu W, Rao R 2010 Appl. Phys. B 99 599Google Scholar

    [53]

    Zhang P L, Gong W L, Shen X, Han S S 2010 Phys. Rev. A 82 033817Google Scholar

    [54]

    Chen M L, Li E R, Gong W L, Bo Z W, Xu X Y, Zhao C Q, Shen X, Xu W D, Han S S 2013 Opt. Photonics J. 3 83Google Scholar

    [55]

    Meyers R E, Deacon K S, Shih Y 2023 Appl. Phys. Lett. 122 014001.Google Scholar

    [56]

    Gong W L, Han S S 2011 Opt. Lett. 36 394Google Scholar

    [57]

    Hardy N D, Shapiro J H 2011 Phys. Rev. A 84 063824Google Scholar

    [58]

    Xu Y K, Liu W T, Zhang E F, Li Q, Dai H Y, Chen P X 2015 Opt. Express 23 32993Google Scholar

    [59]

    Meyers R E, Deacon K S, Tunick A D 2012 Appl. Phys. Lett. 100 061126Google Scholar

    [60]

    Gao Z, Yin J, Bai Y, Fu X 2020 Appl. Opt. 59 8472Google Scholar

    [61]

    Shi D F, Fan C Y, Zhang P F, Zhang J H, Shen H, Qiao C H, Wang Y J 2012 Opt. Express 20 27992Google Scholar

    [62]

    Li Y Z, Deng C J, Gong W L, Han S S 2021 Acta Opt. Sin. 41 1511004Google Scholar

    [63]

    Yuan Y, Chen H 2022 New J. Phys. 24 043034Google Scholar

    [64]

    Lin L X, Cao J, Zhou D, Cui H, Hao Q 2022 Opt. Express 30 11243Google Scholar

    [65]

    Sun S, Nie Z W, Li Y G, Lin H Z, Liu W T, Chen P X 2022 arXiv: 2208.08644v3

    [66]

    Li D, Yang D, Sun S, Li Y G, Jiang L, Lin H Z, Liu W T 2021 Opt. Express 29 31068Google Scholar

    [67]

    Guan J, Cheng Y, Chang G 2017 Opt. Commun 391 82Google Scholar

    [68]

    Sun S, Liu W T, Gu J H, Lin H Z, Jiang L, Xu Y K, Chen P X 2019 Opt. Lett. 44 5993Google Scholar

    [69]

    Gong W L 2015 Photonics Res. 3 234Google Scholar

    [70]

    Zhang C, Guo S X, Cao J S, Guan J, Gao F L 2014 Opt. Express 22 30063Google Scholar

    [71]

    Katz O, Bromberg Y, Silberberg Y 2009 App. Phys. Lett 95 131110.Google Scholar

    [72]

    Zhang X, Meng X F, Yang X L, Wang Y R, Yin Y K, Li X Y, Peng X, He W H, Dong G Y, Chen H Y 2018 Opt. Express 26 12948Google Scholar

    [73]

    白旭, 李永强, 赵生妹 2013 物理学报 62 044209Google Scholar

    Bai X, Li Y Q, Zhao S M 2013 Acta Phys. Sin. 62 044209Google Scholar

    [74]

    Shimobaba T, Endo Y, Nishitsuji T, Takahashi T, Nagahama Y, Hasegawa S, Sano M, Hirayama R, Kakue T, Shiraki A, Ito T 2018 Opt. Commun. 413 147Google Scholar

    [75]

    Higham C F, Murray-Smith R, Padgett M J, Edgar M P 2018 Sci. Rep. 8 2369Google Scholar

  • [1] 邬丹丹, 潘力, 周哲, 付威威, 朱海龙, 董月芳. 近红外二区小动物活体荧光成像系统的研制. 物理学报, 2024, 73(7): 078701. doi: 10.7498/aps.73.20231910
    [2] 孙艳玲, 曹瑞, 王子豪, 廖家莉, 刘其鑫, 冯俊波, 吴蓓蓓. 基于光学相控阵双周期光场的关联成像. 物理学报, 2021, 70(23): 234203. doi: 10.7498/aps.70.20211208
    [3] 李明飞, 阎璐, 杨然, 寇军, 刘院省. 日光强度涨落自关联消湍流成像. 物理学报, 2019, 68(9): 094204. doi: 10.7498/aps.68.20182181
    [4] 王田, 牛明生, 步苗苗, 韩培高, 郝殿中, 杨敬顺, 宋连科. 新型双通道差分偏振干涉成像系统. 物理学报, 2018, 67(10): 100701. doi: 10.7498/aps.67.20172691
    [5] 卢道明. 等距离耦合腔系统中的非局域性. 物理学报, 2016, 65(10): 100301. doi: 10.7498/aps.65.100301
    [6] 王菊霞. 二能级原子与多模光场简并多光子共振相互作用系统中量子保真度的演化特性. 物理学报, 2014, 63(18): 184203. doi: 10.7498/aps.63.184203
    [7] 卢道明. 腔量子电动力学系统中耦合三原子的纠缠特性. 物理学报, 2014, 63(6): 060301. doi: 10.7498/aps.63.060301
    [8] 卢道明, 邱昌东. 弱相干场原子-腔-光纤系统中的量子失协. 物理学报, 2014, 63(11): 110303. doi: 10.7498/aps.63.110303
    [9] 李锐奇, 卢道明. 原子与耦合腔相互作用系统中的量子失协. 物理学报, 2014, 63(3): 030301. doi: 10.7498/aps.63.030301
    [10] 周彦平, 黎发军, 车驰, 谭立英, 冉启文, 于思源, 马晶. 量子点红外探测器在空间光电系统中的应用. 物理学报, 2014, 63(14): 148501. doi: 10.7498/aps.63.148501
    [11] 卢道明. 弱相干场耦合腔系统中的纠缠特性. 物理学报, 2013, 62(3): 030302. doi: 10.7498/aps.62.030302
    [12] 白旭, 李永强, 赵生妹. 基于压缩感知的差分关联成像方案研究. 物理学报, 2013, 62(4): 044209. doi: 10.7498/aps.62.044209
    [13] 姚银萍, 万仁刚, 薛玉郎, 张世伟, 张同意. 基于统计光学的正负热光非定域成像. 物理学报, 2013, 62(15): 154201. doi: 10.7498/aps.62.154201
    [14] 高强, 宋同强. 循环跃迁的Δ 型三能级系统中的无反转激光. 物理学报, 2012, 61(14): 144205. doi: 10.7498/aps.61.144205
    [15] 卢道明. 三能级原子与耦合腔相互作用系统中的纠缠特性. 物理学报, 2012, 61(3): 030301. doi: 10.7498/aps.61.030301
    [16] 卢道明. 耦合腔系统中的三体纠缠演化. 物理学报, 2012, 61(18): 180301. doi: 10.7498/aps.61.180301
    [17] 卢道明. 三个耦合腔系统中的纠缠特性. 物理学报, 2012, 61(15): 150303. doi: 10.7498/aps.61.150303
    [18] 卢道明. 原子与耦合腔相互作用系统中的纠缠特性. 物理学报, 2011, 60(9): 090302. doi: 10.7498/aps.60.090302
    [19] 张二峰, 戴宏毅. 光的偏振对热光关联成像的影响. 物理学报, 2011, 60(6): 064209. doi: 10.7498/aps.60.064209
    [20] 郭汉明, 陈家璧, 庄松林. 相干点源照明时消球差光学系统的像场结构. 物理学报, 2007, 56(2): 811-818. doi: 10.7498/aps.56.811
计量
  • 文章访问数:  4063
  • PDF下载量:  147
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-31
  • 修回日期:  2023-09-05
  • 上网日期:  2023-09-18
  • 刊出日期:  2023-09-20

/

返回文章
返回