-
铅盐量子点的最低量子态的多重简并和胶体量子点与谐振腔耦合难度大, 阻碍了近红外胶体量子点激光器的发展. 本文利用基于Ag2Se量子点的自组装激光器解决了上述问题. 利用最低量子态二重简并的Ag2Se量子点代替铅盐量子点来实现低阈值的近红外光增益. 使用有限元法深入分析了咖啡环微腔的模场分布和振荡机制, 结果表明光场在横截面内沿之字形路径传播振荡, 量子点与腔模式实现了强耦合. 分析了腔长与自由光谱范围和激光发射波长的关系, 基于此关系以及Ag2Se量子点的增益谱特性设计了单模近红外激光器, 分析了该激光器的激光特性. 以仿真结果为指导, 实验制备了阈值低至158 μJ/cm2, 线宽为0.3 nm的单模近红外激光器. 通过增加激光器腔长, 使发射波长从1300 nm增至1323 nm. 此外, 由于Ag2Se量子点的毒性几乎可以忽略, 所以本文推进了环境友好的近红外激光器向实用型激光器发展.The development of colloidal near-infrared quantum dot (QD) lasers has been hindered by the high state degeneracy of lead salt QDs and the difficulty in coupling colloidal QDs to the resonant cavity. In this study, we show that the above challenges can be addressed by the self-assembly laser based on Ag2Se QDs. The Ag2Se QDs with the lowest quantized states 2-fold degeneracy are used to replace lead salt quantum dots to achieve low threshold near-infrared optical gain. We employ the finite element method to in depth analyze the mode field distribution and oscillation mechanism of the coffee-ring microcavity. Our results reveal that the light field oscillates in a zig-zag path along the cross-sectional area, indicating strong coupling between the QDs and the cavity mode. Furthermore, we investigate the relationship of cavity length with free spectrum range and laser emission wavelength. Using this relationship and the gain spectrum characteristics of Ag2Se QDs, we design a single-mode near-infrared laser and conduct a comprehensive analysis. The simulation results are used to fabricate a single-mode near-infrared Ag2Se QD coffee-ring microlaser, which exhibits a linewidth of 0.3 nm and a threshold of 158 μJ/cm2. Currently, it holds the record for the lowest laser threshold among near-infrared colloidal QD lasers. The increasing of the laser cavity length leads the emission wavelength to increase from 1300 nm to 1323 nm. In addition, the toxicity of Ag2Se QD is remarkably negligible. Our work promotes the development of environment-friendly near-infrared lasers toward practical lasers.
[1] Krauss G, Lohss S, Hanke T, Sell A, Eggert S, Huber R, Leitenstorfer A 2010 Nat. Photonics 4 33Google Scholar
[2] Whitworth G L, Dalmases M, Taghipour N, Konstantatos G 2021 Nat. Photonics 15 738Google Scholar
[3] Cegielski P J, Giesecke A L, Neutzner S, Porschatis C, Gandini M, Schall D, Perini C A, Bolten J, Suckow S, Kataria S 2018 Nano Lett. 18 6915Google Scholar
[4] Vollmer F, Arnold S 2008 Nat. Methods 5 591Google Scholar
[5] Chen YC, Fan X 2019 Adv. Opt. Mater. 7 1900377Google Scholar
[6] Klimov V, Mikhailovsky A, Xu S, Malko A, Hollingsworth J, Leatherdale A C, Eisler H J, Bawendi M 2000 Science 290 314Google Scholar
[7] Ahn N, Livache C, Pinchetti V, Jung H, Jin H, Hahm D, Park Y S, Klimov V I 2023 Nature 617 79Google Scholar
[8] Fan F, Voznyy O, Sabatini R P, Bicanic K T, Adachi M M, McBride J R, Reid K R, Park Y S, Li X, Jain A, Quintero-Bermudez R, Saravanapavanantham M, Liu M, Korkusinski M, Hawrylak P, Klimov V I, Rosenthal S J, Hoogland S, Sargent E H 2017 Nature 544 75Google Scholar
[9] Dang C, Lee J, Breen C, Steckel J S, Coe-Sullivan S, Nurmikko A 2012 Nat. Nanotechnol. 7 335Google Scholar
[10] Wang Y, Yu D, Wang Z, Li X, Chen X, Nalla V, Zeng H, Sun H 2017 Small 13 1701587Google Scholar
[11] Ledentsov N, Ustinov V, Egorov A Y, Zhukov A, Maksimov M, Tabatadze I, Kop’ev P 1994 Semiconductors 28 832
[12] Sukhovatkin V, Musikhin S, Gorelikov I, Cauchi S, Bakueva L, Kumacheva E, Sargent E H 2005 Opt. Lett. 30 171Google Scholar
[13] Schaller R D, Petruska M A, Klimov V I 2003 J. Phys. Chem. B 107 13765Google Scholar
[14] Klimov V I, Mikhailovsky A A, McBranch D, Leatherdale C A, Bawendi M G 2000 Science 287 1011Google Scholar
[15] Wundke K, Auxier J, Schülzgen A, Peyghambarian N, Borrelli N 1999 Appl. Phys. Lett. 75 3060Google Scholar
[16] Dong B, Li C, Chen G, Zhang Y, Zhang Y, Deng M, Wang Q 2013 Chem. Mater. 25 2503Google Scholar
[17] Zhu C N, Jiang P, Zhang Z L, Zhu D L, Tian Z Q, Pang D W 2013 ACS Appl. Mater. Interfaces 5 1186Google Scholar
[18] Liao C, Tang L, Wang L, Li Y, Xu J, Jia Y 2020 Nanoscale 12 21879Google Scholar
[19] Liao C, Tang L, Li Y, Sun S, Wang L, Xu J, Jia Y, Gu Z 2022 Nanoscale 14 10169Google Scholar
[20] Chang H, Zhong Y, Dong H, Wang Z, Xie W, Pan A, Zhang L 2021 Light: Sci. Appl. 10 60Google Scholar
[21] Kahl M, Thomay T, Kohnle V, Beha K, Merlein J, Hagner M, Halm A, Ziegler J, Nann T, Fedutik Y, Woggon U, Artemyev M, Pérez-Willard F, Leitenstorfer A, Bratschitsch R 2007 Nano Lett. 7 2897Google Scholar
[22] Yang H, Zhang L, Xiang W, Lu C, Cui Y, Zhang J 2022 Adv. Sci. 9 2200395Google Scholar
[23] Duan R, Zhang Z, Xiao L, Zhao X, Thung Y T, Ding L, Liu Z, Yang J, Ta V D, Sun H 2022 Adv. Mater. 34 2270104Google Scholar
[24] Wang Y, Leck K S, Ta D, Chen R, Nalla V, Gao Y, He T, Demir H, Sun H 2015 Adv. Mater. 27 169Google Scholar
[25] Zhang L, Li H, Liao C, Yang H, Ruilin X, Jiang X, Xiao M, Lu C, Cui Y, Zhang J 2018 J. Phys. Chem. C 122 25059Google Scholar
[26] Wang Y, Ta V D, Leck K S, Tan B H I, Wang Z, He T, Ohl C D, Demir H V, Sun H 2017 Nano Lett. 17 2640Google Scholar
[27] Wang G, Jiang X, Zhao M, Ma Y, Fan H, Yang Q, Tong L, Xiao M 2012 Opt. Express 20 29472Google Scholar
[28] Min B, Kim S, Okamoto K, Yang L, Scherer A, Atwater H, Vahala K 2006 Appl. Phys. Lett. 89 191124Google Scholar
[29] Di Stasio F, Grim J Q, Lesnyak V, Rastogi P, Manna L, Moreels I, Krahne R 2015 Small 11 1328Google Scholar
[30] Zavelani-Rossi M, Krahne R, Della Valle G, Longhi S, Franchini I, Girardo S, Scotognella F, Pisignano D, Manna L, Lanzani G, Tassone F 2012 Laser Photonics Rev. 6 678Google Scholar
[31] Xu Z, Zhai T, Shi X, Tong J, Wang X, Deng J 2021 ACS Appl. Mater. Interfaces 13 19324Google Scholar
[32] Zhang C, Zou C L, Zhao Y, Dong C H, Wei C, Wang H, Liu Y, Guo G C, Yao J, Zhao Y S 2015 Sci. Adv. 1 e1500257Google Scholar
[33] Wong W W, Su Z, Wang N, Jagadish C, Tan H H 2021 Nano Lett. 21 5681Google Scholar
[34] Deegan R D, Bakajin O, Dupont T F, Huber G, Nagel S R, Witten T A 1997 Nature 389 827Google Scholar
[35] 张永建, 叶芳霞, 戴君, 何斌锋, 臧渡洋 2017 物理学报 66 066101Google Scholar
Zhang Y J, Ye F X, Dai J, He B F, Zang D Y 2017 Acta Phys. Sin. 66 066101Google Scholar
[36] Zavelani-Rossi M, Lupo M G, Krahne R, Manna L, Lanzani G 2010 Nanoscale 2 931Google Scholar
[37] Ma J, Xiao L, Gu J, Li H, Cheng X, He G, Jiang X, Xiao M 2019 Photonics Res. 7 573Google Scholar
[38] Park Y S, Roh J, Diroll B T, Schaller R D, Klimov V I 2021 Nat. Rev. Mater. 6 382Google Scholar
[39] Ahn N, Livache C, Pinchetti V, Klimov V I 2023 Chem. Rev. 123 8251Google Scholar
[40] Taghipour N, Dalmases M, Whitworth G L, Dosil M, Othonos A, Christodoulou S, Liga S M, Konstantatos G 2023 Adv. Mater. 35 2207678Google Scholar
[41] Kozlov O V, Park Y S, Roh J, Fedin I, Nakotte T, Klimov V I 2019 Science 365 672Google Scholar
-
图 1 (a) Ag2Se 量子点的TEM图和高分辨率TEM图(插图); (b) Ag2Se量子点在四氯乙烯中的吸收(Abs)光谱和荧光(PL)光谱; (c) Ag2Se 量子点咖啡环的光学显微镜图; (d)图(c)中咖啡环左上部分AFM图
Fig. 1. (a) TEM and high-resolution TEM (inset) images of Ag2Se QDs; (b) absorption and PL spectra of Ag2Se QDs in tetrachloroethylene; (c) optical microscope image of an Ag2Se quantum dots coffee-ring; (d) AFM image of the top-left part of the coffee-ring shown in panel (c).
图 2 (a)净模式增益
$ {g_{{\text{mod}}}} = 0 $ 时咖啡环微腔的光场分布图; (b)微腔的驻波场分布图; (c)腔长分别为9.2, 7.9和7.1 μm的咖啡环微腔的发射谱; (d)咖啡环微腔的FSR与腔长的关系(圆点), 实线是标准F-P腔的FSRFig. 2. (a) Optical field distribution of the coffee-ring microcavity with the net mode gain
$ {g_{{\text{mod}}}} = 0 $ ; (b) standing wave field distribution in coffee-ring microcavity; (c) emission spectra with different cavity lengths of 9.2, 7.9 and 7.1 μm, respectively; (d) relationship between the FSR of the coffee-ring microcavity and the cavity length (dots). The solid line is the FSR of the standard F-P cavity图 3 (a) Ag2Se量子点的线性吸收谱(实线)以及考虑可变高斯型增益的吸收谱; (b)不同净模式增益的微腔发射谱; (c)
$ {g_{{\text{mod, 1310 nm}}}} = $ $ 650{\text{ c}}{{\text{m}}^{{{ - 1}}}} $ 的咖啡环微腔的光场分布图; (d)不同腔长的咖啡环微腔的归一化发射谱Fig. 3. (a) Linear absorption spectrum of Ag2Se quantum dot (solid line) and absorption spectrum with variable Gaussian gain; (b) emission spectra of microcavity with different net mode gain; (c) light field distribution of the coffee-ring microcavity spectrum with
$ {g_{{\text{mod, 1310 nm}}}} = 650{\text{ c}}{{\text{m}}^{{ { - 1}}}} $ ; (d) normalized emission spectra with different cavity lengths.图 4 (a)咖啡环微型激光器性能表征示意图; (b)腔长为9.2 μm的咖啡环微型激光器在激光阈值以上的发射谱; (c)腔长为7.9 μm的咖啡环微型激光器在不同光强泵浦下的发射谱. 插图: 激光峰处发射强度随泵浦光强的变化; (d)不同腔长的咖啡环微型激光器的归一化激光发射谱; (e)激光阈值(圆点)与峰值波长的关系; (f)咖啡环微型激光器的激光发射峰处的发射强度随激光脉冲数的变化
Fig. 4. (a) Sketch of coffee-ring microlaser performance characterization; (b) emission spectrum of a coffee-ring microlaser with a cavity length of 9.2 μm; (c) emission spectra of the cavity length of 7.9 μm coffee-ring microlaser with different pump fluence. The inset shows emission intensity versus pump fluence at the position of lasing peak; (d) normalized laser emission spectra of the coffee-ring microlaser with different cavity lengths; (e) lasing threshold (circles) versus peak wavelength; (f) emission intensity versus laser shots at position of laser peak observed for a coffee-ring microlaser.
-
[1] Krauss G, Lohss S, Hanke T, Sell A, Eggert S, Huber R, Leitenstorfer A 2010 Nat. Photonics 4 33Google Scholar
[2] Whitworth G L, Dalmases M, Taghipour N, Konstantatos G 2021 Nat. Photonics 15 738Google Scholar
[3] Cegielski P J, Giesecke A L, Neutzner S, Porschatis C, Gandini M, Schall D, Perini C A, Bolten J, Suckow S, Kataria S 2018 Nano Lett. 18 6915Google Scholar
[4] Vollmer F, Arnold S 2008 Nat. Methods 5 591Google Scholar
[5] Chen YC, Fan X 2019 Adv. Opt. Mater. 7 1900377Google Scholar
[6] Klimov V, Mikhailovsky A, Xu S, Malko A, Hollingsworth J, Leatherdale A C, Eisler H J, Bawendi M 2000 Science 290 314Google Scholar
[7] Ahn N, Livache C, Pinchetti V, Jung H, Jin H, Hahm D, Park Y S, Klimov V I 2023 Nature 617 79Google Scholar
[8] Fan F, Voznyy O, Sabatini R P, Bicanic K T, Adachi M M, McBride J R, Reid K R, Park Y S, Li X, Jain A, Quintero-Bermudez R, Saravanapavanantham M, Liu M, Korkusinski M, Hawrylak P, Klimov V I, Rosenthal S J, Hoogland S, Sargent E H 2017 Nature 544 75Google Scholar
[9] Dang C, Lee J, Breen C, Steckel J S, Coe-Sullivan S, Nurmikko A 2012 Nat. Nanotechnol. 7 335Google Scholar
[10] Wang Y, Yu D, Wang Z, Li X, Chen X, Nalla V, Zeng H, Sun H 2017 Small 13 1701587Google Scholar
[11] Ledentsov N, Ustinov V, Egorov A Y, Zhukov A, Maksimov M, Tabatadze I, Kop’ev P 1994 Semiconductors 28 832
[12] Sukhovatkin V, Musikhin S, Gorelikov I, Cauchi S, Bakueva L, Kumacheva E, Sargent E H 2005 Opt. Lett. 30 171Google Scholar
[13] Schaller R D, Petruska M A, Klimov V I 2003 J. Phys. Chem. B 107 13765Google Scholar
[14] Klimov V I, Mikhailovsky A A, McBranch D, Leatherdale C A, Bawendi M G 2000 Science 287 1011Google Scholar
[15] Wundke K, Auxier J, Schülzgen A, Peyghambarian N, Borrelli N 1999 Appl. Phys. Lett. 75 3060Google Scholar
[16] Dong B, Li C, Chen G, Zhang Y, Zhang Y, Deng M, Wang Q 2013 Chem. Mater. 25 2503Google Scholar
[17] Zhu C N, Jiang P, Zhang Z L, Zhu D L, Tian Z Q, Pang D W 2013 ACS Appl. Mater. Interfaces 5 1186Google Scholar
[18] Liao C, Tang L, Wang L, Li Y, Xu J, Jia Y 2020 Nanoscale 12 21879Google Scholar
[19] Liao C, Tang L, Li Y, Sun S, Wang L, Xu J, Jia Y, Gu Z 2022 Nanoscale 14 10169Google Scholar
[20] Chang H, Zhong Y, Dong H, Wang Z, Xie W, Pan A, Zhang L 2021 Light: Sci. Appl. 10 60Google Scholar
[21] Kahl M, Thomay T, Kohnle V, Beha K, Merlein J, Hagner M, Halm A, Ziegler J, Nann T, Fedutik Y, Woggon U, Artemyev M, Pérez-Willard F, Leitenstorfer A, Bratschitsch R 2007 Nano Lett. 7 2897Google Scholar
[22] Yang H, Zhang L, Xiang W, Lu C, Cui Y, Zhang J 2022 Adv. Sci. 9 2200395Google Scholar
[23] Duan R, Zhang Z, Xiao L, Zhao X, Thung Y T, Ding L, Liu Z, Yang J, Ta V D, Sun H 2022 Adv. Mater. 34 2270104Google Scholar
[24] Wang Y, Leck K S, Ta D, Chen R, Nalla V, Gao Y, He T, Demir H, Sun H 2015 Adv. Mater. 27 169Google Scholar
[25] Zhang L, Li H, Liao C, Yang H, Ruilin X, Jiang X, Xiao M, Lu C, Cui Y, Zhang J 2018 J. Phys. Chem. C 122 25059Google Scholar
[26] Wang Y, Ta V D, Leck K S, Tan B H I, Wang Z, He T, Ohl C D, Demir H V, Sun H 2017 Nano Lett. 17 2640Google Scholar
[27] Wang G, Jiang X, Zhao M, Ma Y, Fan H, Yang Q, Tong L, Xiao M 2012 Opt. Express 20 29472Google Scholar
[28] Min B, Kim S, Okamoto K, Yang L, Scherer A, Atwater H, Vahala K 2006 Appl. Phys. Lett. 89 191124Google Scholar
[29] Di Stasio F, Grim J Q, Lesnyak V, Rastogi P, Manna L, Moreels I, Krahne R 2015 Small 11 1328Google Scholar
[30] Zavelani-Rossi M, Krahne R, Della Valle G, Longhi S, Franchini I, Girardo S, Scotognella F, Pisignano D, Manna L, Lanzani G, Tassone F 2012 Laser Photonics Rev. 6 678Google Scholar
[31] Xu Z, Zhai T, Shi X, Tong J, Wang X, Deng J 2021 ACS Appl. Mater. Interfaces 13 19324Google Scholar
[32] Zhang C, Zou C L, Zhao Y, Dong C H, Wei C, Wang H, Liu Y, Guo G C, Yao J, Zhao Y S 2015 Sci. Adv. 1 e1500257Google Scholar
[33] Wong W W, Su Z, Wang N, Jagadish C, Tan H H 2021 Nano Lett. 21 5681Google Scholar
[34] Deegan R D, Bakajin O, Dupont T F, Huber G, Nagel S R, Witten T A 1997 Nature 389 827Google Scholar
[35] 张永建, 叶芳霞, 戴君, 何斌锋, 臧渡洋 2017 物理学报 66 066101Google Scholar
Zhang Y J, Ye F X, Dai J, He B F, Zang D Y 2017 Acta Phys. Sin. 66 066101Google Scholar
[36] Zavelani-Rossi M, Lupo M G, Krahne R, Manna L, Lanzani G 2010 Nanoscale 2 931Google Scholar
[37] Ma J, Xiao L, Gu J, Li H, Cheng X, He G, Jiang X, Xiao M 2019 Photonics Res. 7 573Google Scholar
[38] Park Y S, Roh J, Diroll B T, Schaller R D, Klimov V I 2021 Nat. Rev. Mater. 6 382Google Scholar
[39] Ahn N, Livache C, Pinchetti V, Klimov V I 2023 Chem. Rev. 123 8251Google Scholar
[40] Taghipour N, Dalmases M, Whitworth G L, Dosil M, Othonos A, Christodoulou S, Liga S M, Konstantatos G 2023 Adv. Mater. 35 2207678Google Scholar
[41] Kozlov O V, Park Y S, Roh J, Fedin I, Nakotte T, Klimov V I 2019 Science 365 672Google Scholar
计量
- 文章访问数: 2369
- PDF下载量: 69
- 被引次数: 0