搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

级联声光器件与回音壁模式微腔实现非对称传输

吕宇曦 王晨 段添期 赵彤 常朋发 王安帮

引用本文:
Citation:

级联声光器件与回音壁模式微腔实现非对称传输

吕宇曦, 王晨, 段添期, 赵彤, 常朋发, 王安帮

Asymmetric transmission of cascaded acousto-optic device and whispering gallery mode microcavity

Lü Yu-Xi, Wang Chen, Duan Tian-Qi, Zhao Tong, Chang Peng-Fa, Wang An-Bang
PDF
HTML
导出引用
  • 本文提出利用级联声光效应器和耦合回音壁模式微球腔的方案来实现非对称传输效果, 并进行理论和实验验证. 实验中利用加热拉锥的方式制备了两段式光纤, 可同时实现声光效应的激发和回音壁模式的耦合. 利用光纤中声光效应将纤芯基模中的矢量模式转换到包层高阶模式, 由于基模中不同矢量模式转换包层模式的矢量模式也不同, 从而产生类似双折射效果, 使输出的包层模式产生偏振变化. 而后通过耦合回音壁模式微腔将包层模式转换回纤芯基模. 由于回音壁模式的偏振选择效果, 使得相反方向入射光能量具有不同的透射特性, 其传输隔离度可达17 dB. 此外, 对两个方向传输的透射率随偏振角度变化进行测试, 测得声光效应带来的偏振变化约为80°. 本文的非对称传输方案继承了声光器件响应迅速、调谐性良好的优势, 同时具有全光纤结构和无工作阈值的特点, 在光开关、光隔离器等场景具有重要的应用潜力.
    In this paper, an asymmetric transmission scheme is proposed by cascading an acousto-optic device and a coupled whispering gallery mode (WGM) microsphere cavity, and it is demonstrated theoretically and experimentally. With the acousto-optic interaction in a fiber, the vector modes of the fundamental core mode can be converted into the different vector modes of a cladding (linear polarization, LP) mode, and because of the optical path difference between the cladding vector modes, the polarization of the cladding mode will be changed. The cladding mode can be converted back into the core fundamental mode by coupling a WGM microcavity. By calculating the overlapping of the mode fields in the tapered fiber and the microcavity at the resonance wavelength, the coupling coefficients between different LP modes and WGM will be solved. And, the transmitivities and conversion coefficients of the two fiber modes can be obtained on condition that the polarization of the incident light does not coincide with the polarization orientation of the WGM. The transmission spectra of the coupled WGM microcavity are calculated by using Matlab program for eight states, including the states at different incident directions, different incident polarizations of input, whether the acoustic wave is on or off. The results show that the conversion coefficient from the cladding mode to the core mode is completely different from that of the contrary process when the acoustic wave is working. And the forward incident light and backward incident light have completely different transmission characteristics, thus resulting in the asymmetric transmission. The transmittances of forward incidence and reverse incidence at different polarizations are also studied, both of them change periodically with the polarization angle, and their phase difference is equal to the polarization change caused by acousto-optic interaction in the fiber. In the experiment, a two-stage tapered fiber is used to realize the acousto-optic interaction and the coupling of whispering gallery mode at the same time. By controlling the working states of the system, the same 8 states as in the calculation are studied experimentally. The results show that due to the polarization-selection effect of the WGM, the light energy incident from the opposite directions will show different transmission characteristics. While the forward transmittance reaches a maximum value of about 0.505, the reverse transmittance reaches a minimum value of about 0.010, and the transmission isolation reaches about 17 dB. The transmittances in two directions are measured at different incident polarization angles, the transmission isolation is analyzed, and the polarization change of cladding mode in the fiber is verified to be about ${80^ \circ }$. The measured results coincide with the calculations from the developed theory well. Finally, the shortcomings and optimization method of the scheme are discussed. The asymmetric transmission scheme in this paper inherits the advantages of rapid response and good tuning of acousto-optic device, and has an all-fiber structure, which has important application potential in optical switch and isolator.
      通信作者: 常朋发, changpengfa@tyut.edu.cn
    • 基金项目: 国家自然科学基金青年科学基金(批准号: 62105233)、国家自然科学基金重点项目(批准号: 62035009)、山西省自然科学基金(批准号: 20210302124536, 20210302123183)和应用光学国家重点实验开放课题(批准号: SKLAO2022001A09)资助的课题.
      Corresponding author: Chang Peng-Fa, changpengfa@tyut.edu.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 62105233), the Key Program of the National Natural Science Foundation of China (Grant No. 62035009), the Natural Science Foundation of Shanxi Province, China (Grant Nos. 20210302124536, 20210302123183), and the Open Fund of State Key Laboratory of Applied Optics, China (Grant No. SKLAO2022001A09).
    [1]

    Fujii Y, Member S 1991 J. Lightwave Technol. 9 1238Google Scholar

    [2]

    Li Z, Zhang J J, Zhi Y Y, Li L Z, Liao B L, Yao J P 2022 Commun. Phys. 5 332Google Scholar

    [3]

    Jalas D, Petrov A, Eich M, et al. 2013 Nat. Photon. 7 579Google Scholar

    [4]

    Bi L, Hu J J, Jiang P, Kim D H, Dionne G F, Kimerling L C, Ross C A 2011 Nat. Photon. 5 758Google Scholar

    [5]

    Cakmakyapan S, Serebryannikov A E, Caglayan H, Ozbay E 2010 Opt. Lett. 35 2597Google Scholar

    [6]

    Cakmakyapan S, Serebryannikov A E, Caglayan H, Ozbay E 2012 Opt. Express 20 26636Google Scholar

    [7]

    Cicek A, Yucel M B, Kaya O A, Ulug B 2012 Opt. Lett. 37 2937Google Scholar

    [8]

    Xu T, Lezec H J 2014 Nat. Commun. 5 4141Google Scholar

    [9]

    Zhu Z H, Liu K, Xu W, Luo Z, Guo C C, Yang B, Ma T, Yuan X D, Ye W M 2012 Opt. Lett. 37 4008Google Scholar

    [10]

    Mutlu M, Akosman A E, Serebryannikov A E, Ozbay E 2012 Phys. Rev. Lett. 108 213905Google Scholar

    [11]

    Chang L, Jiang X, Hua S, Yang C, Wen J, Jiang L, Li G, Wang G, Xiao M 2014 Nat. Photon. 8 524Google Scholar

    [12]

    Dong C H, Shen Z, Zou C L, Zhang Y L, Fu W, Guo G C 2015 Nat. Commun. 6 6193Google Scholar

    [13]

    Huang X Y, Liu Y C 2023 Phys. Rev. A 107 023703Google Scholar

    [14]

    Zhang W, Huang L, Gao F, Bo F, Zhang G, Xu J 2013 Opt. Express 21 16621Google Scholar

    [15]

    Lu J F, Meng L H, Shi F, et al. 2018 Opt. Lett. 43 5841Google Scholar

    [16]

    Zhang W D, Huang L G, Gao F, Bo F, Xuan L, Zhang G Q, Xu J J 2012 Opt. Lett. 37 1241Google Scholar

    [17]

    Kim B Y, Blake J N, Engan H E, Shaw H J 1986 Opt. Lett. 11 389Google Scholar

    [18]

    Zhu Y, Guo A B, Xu J T, Zhang Z W, Pang F F, Zhang W J, Zeng X L, Sun J F 2023 Nanophotonics 12 3229Google Scholar

    [19]

    Huang L G, Zhang W D, Li Y J, Han H N, Li X T, Chang P F, Gao F, Zhang G Q, Gao L, Zhu T 2018 Opt. Lett. 43 5431Google Scholar

    [20]

    Huang L G, Zheng B W, Liu S L, et al. 2022 J. Lightwave Technol. 40 7396Google Scholar

    [21]

    Zhang W D, Li X, Zhang L, Huang L G, Lu F F, Gao F 2020 IEEE J. Quantum Electron. 26 4Google Scholar

    [22]

    Lu J F, Shi F, Xu J T, Meng L H, Zhang L K, Cheng P K, Zhou X, Pang F F, Zeng X L 2021 Nanophotonics 10 983Google Scholar

    [23]

    Huang L G, Liu S L, Zhang C Z, Zhao Y X, Dang L Y, Gao L, Huang W, Yin G L, Zhu T 2023 Opt. Express 31 21253Google Scholar

    [24]

    Bianucci P, Fietz C R, Robertson J W, Shvets G, Shih C K 2007 Opt. Lett. 32 2224Google Scholar

    [25]

    Luo L W, Ophir N, Chen C P, Gabrielli L H, Poitras C B, Bergmen K, Lipson M 2014 Nat. Commun. 5 3069Google Scholar

    [26]

    Monifi F, Friedlein J, Ozdemir S K, Yang L 2012 J. Lightwave Technol. 30 3306Google Scholar

    [27]

    Huang L G, Wang J, Peng W H, et al. 2016 Opt. Lett. 41 638Google Scholar

    [28]

    Li X T, Chang P F, Huang L G, Gao F, Zhang W D, Bo F, Zhang G Q, Xu J J 2018 Phys. Rev. A 98 053814Google Scholar

    [29]

    Li B B, Xiao Y F, Zou C L, Liu Y C, Jiang X F, Chen Y L, Li Y, Gong Q H 2011 App. Phys. Lett. 98 021116Google Scholar

    [30]

    Chang P F, Cao B T, Huang L G, et al. 2020 Sci. China Phys, Mech. 63 214211Google Scholar

    [31]

    Chang P F, Cao B T, Gao F, et al. 2019 App. Phys. Lett. 115 211104Google Scholar

    [32]

    Wang C, Zhang M, Stern B, Lipson M, Lončar M 2018 Opt. Express 26 1547Google Scholar

  • 图 1  非对称传输原理示意图. Polarizer, 可调谐线性偏振滤波器; Horn, 声波耦合使用角锥; PZT, 压电陶瓷片; Input, 入射光; LP01, 线偏纤芯基模; LP11, 线偏包层模式; TE01, TM01为一阶横电、横磁模式; WGM, 回音壁模式; PD, 光探测器; AO effect area, 声光效应区; C-WGM area, 耦合回音壁微腔区; ${\kappa _0}$, 回音壁模式的本征损耗; ${\kappa _1}$, LP01与回音壁模式的耦合损耗; ${\kappa _2}$, LP11与回音壁模式的耦合损耗

    Fig. 1.  Schematic diagram of asymmetric transmission principle. Polarizer, tunable linear polarization filter; Horn, the corner cone for sonic coupling; PZT, piezoelectric ceramics; Input, input light; LP01, liner polarization mode in the fiber core; LP11, liner polarization mode in the fiber cladding; TE01 and TM01, first order transverse electric mode and transverse magnetic mode; WGM, whispering gallery mode cavity; PD, photodetector; AO effect area, the acousto-optic effect area; C-WGM area, coupling the WGM cavity area. ${\kappa _0}$, the intrinsic loss of WGM; $ {\kappa _1} $, the coupling loss between the LP01 and the WGM; ${\kappa _2}$, the coupling loss between the LP11 and the WGM.

    图 2  两入射方向传输归一化透射率, “F”和“B”分别指代正向和反向传输的情况; “on”(红线)和“off”(黑线)分别指代有无光效应时的情况, 角度表示入射光偏振与回音壁模式偏振取向间的夹角$\varphi $

    Fig. 2.  Transmission of the two directions. “F” and “B” refer to the cases of forward and backward transmission respectively; “on” (red line) and “off” (black line) represent the situations of with and without the acousto-optic effect respectively; the angle ($\varphi $) is determined by the angle between the polarization directions of the input light and the WGM.

    图 3  两个入射方向透射强度随入射偏振角度$\varphi $的变化情况

    Fig. 3.  Transmission of the two directions over the incident polarization angle $\varphi $.

    图 4  不同驱动频率下声光效应实现的基模滤波(转换)透射谱

    Fig. 4.  LP01 mode filtering (conversion) effect achieved by acousto-optic effect at different pump frequencies.

    图 5  有无声光效应时系统的透射谱

    Fig. 5.  Transmissions of the system with and without acousto-optic effect.

    图 6  不同情况下的传输透射谱

    Fig. 6.  Transmissions at different states.

    图 7  两方向透射率随偏振变化

    Fig. 7.  Transmission of the two directions varies with polarization.

    图 8  两方向透射率随偏振变化

    Fig. 8.  Transmission of the two directions varies with polarization.

  • [1]

    Fujii Y, Member S 1991 J. Lightwave Technol. 9 1238Google Scholar

    [2]

    Li Z, Zhang J J, Zhi Y Y, Li L Z, Liao B L, Yao J P 2022 Commun. Phys. 5 332Google Scholar

    [3]

    Jalas D, Petrov A, Eich M, et al. 2013 Nat. Photon. 7 579Google Scholar

    [4]

    Bi L, Hu J J, Jiang P, Kim D H, Dionne G F, Kimerling L C, Ross C A 2011 Nat. Photon. 5 758Google Scholar

    [5]

    Cakmakyapan S, Serebryannikov A E, Caglayan H, Ozbay E 2010 Opt. Lett. 35 2597Google Scholar

    [6]

    Cakmakyapan S, Serebryannikov A E, Caglayan H, Ozbay E 2012 Opt. Express 20 26636Google Scholar

    [7]

    Cicek A, Yucel M B, Kaya O A, Ulug B 2012 Opt. Lett. 37 2937Google Scholar

    [8]

    Xu T, Lezec H J 2014 Nat. Commun. 5 4141Google Scholar

    [9]

    Zhu Z H, Liu K, Xu W, Luo Z, Guo C C, Yang B, Ma T, Yuan X D, Ye W M 2012 Opt. Lett. 37 4008Google Scholar

    [10]

    Mutlu M, Akosman A E, Serebryannikov A E, Ozbay E 2012 Phys. Rev. Lett. 108 213905Google Scholar

    [11]

    Chang L, Jiang X, Hua S, Yang C, Wen J, Jiang L, Li G, Wang G, Xiao M 2014 Nat. Photon. 8 524Google Scholar

    [12]

    Dong C H, Shen Z, Zou C L, Zhang Y L, Fu W, Guo G C 2015 Nat. Commun. 6 6193Google Scholar

    [13]

    Huang X Y, Liu Y C 2023 Phys. Rev. A 107 023703Google Scholar

    [14]

    Zhang W, Huang L, Gao F, Bo F, Zhang G, Xu J 2013 Opt. Express 21 16621Google Scholar

    [15]

    Lu J F, Meng L H, Shi F, et al. 2018 Opt. Lett. 43 5841Google Scholar

    [16]

    Zhang W D, Huang L G, Gao F, Bo F, Xuan L, Zhang G Q, Xu J J 2012 Opt. Lett. 37 1241Google Scholar

    [17]

    Kim B Y, Blake J N, Engan H E, Shaw H J 1986 Opt. Lett. 11 389Google Scholar

    [18]

    Zhu Y, Guo A B, Xu J T, Zhang Z W, Pang F F, Zhang W J, Zeng X L, Sun J F 2023 Nanophotonics 12 3229Google Scholar

    [19]

    Huang L G, Zhang W D, Li Y J, Han H N, Li X T, Chang P F, Gao F, Zhang G Q, Gao L, Zhu T 2018 Opt. Lett. 43 5431Google Scholar

    [20]

    Huang L G, Zheng B W, Liu S L, et al. 2022 J. Lightwave Technol. 40 7396Google Scholar

    [21]

    Zhang W D, Li X, Zhang L, Huang L G, Lu F F, Gao F 2020 IEEE J. Quantum Electron. 26 4Google Scholar

    [22]

    Lu J F, Shi F, Xu J T, Meng L H, Zhang L K, Cheng P K, Zhou X, Pang F F, Zeng X L 2021 Nanophotonics 10 983Google Scholar

    [23]

    Huang L G, Liu S L, Zhang C Z, Zhao Y X, Dang L Y, Gao L, Huang W, Yin G L, Zhu T 2023 Opt. Express 31 21253Google Scholar

    [24]

    Bianucci P, Fietz C R, Robertson J W, Shvets G, Shih C K 2007 Opt. Lett. 32 2224Google Scholar

    [25]

    Luo L W, Ophir N, Chen C P, Gabrielli L H, Poitras C B, Bergmen K, Lipson M 2014 Nat. Commun. 5 3069Google Scholar

    [26]

    Monifi F, Friedlein J, Ozdemir S K, Yang L 2012 J. Lightwave Technol. 30 3306Google Scholar

    [27]

    Huang L G, Wang J, Peng W H, et al. 2016 Opt. Lett. 41 638Google Scholar

    [28]

    Li X T, Chang P F, Huang L G, Gao F, Zhang W D, Bo F, Zhang G Q, Xu J J 2018 Phys. Rev. A 98 053814Google Scholar

    [29]

    Li B B, Xiao Y F, Zou C L, Liu Y C, Jiang X F, Chen Y L, Li Y, Gong Q H 2011 App. Phys. Lett. 98 021116Google Scholar

    [30]

    Chang P F, Cao B T, Huang L G, et al. 2020 Sci. China Phys, Mech. 63 214211Google Scholar

    [31]

    Chang P F, Cao B T, Gao F, et al. 2019 App. Phys. Lett. 115 211104Google Scholar

    [32]

    Wang C, Zhang M, Stern B, Lipson M, Lončar M 2018 Opt. Express 26 1547Google Scholar

  • [1] 智文强, 费宏明, 韩雨辉, 武敏, 张明达, 刘欣, 曹斌照, 杨毅彪. 漏斗型完全光子带隙光波导单向传输. 物理学报, 2022, 71(3): 038501. doi: 10.7498/aps.71.20211299
    [2] 王明军, 王婉柔, 李勇俊. 利用平面声场对非均匀大气介质光波传输相位的调控. 物理学报, 2022, 71(16): 164302. doi: 10.7498/aps.71.20220484
    [3] 杨家濠, 张傲岩, 夏长明, 邓志鹏, 刘建涛, 黄卓元, 康嘉健, 曾浩然, 蒋仁杰, 莫志峰, 侯峙云, 周桂耀. 窄带空芯反谐振光纤的制备及其模式转换应用研究. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20212194
    [4] 杨家濠, 张傲岩, 夏长明, 邓志鹏, 刘建涛, 黄卓元, 康嘉健, 曾浩然, 蒋仁杰, 莫志峰, 侯峙云, 周桂耀. 窄带空芯反谐振光纤的制备及其模式转换应用研究. 物理学报, 2022, 71(13): 134207. doi: 10.7498/aps.70.20212194
    [5] 武敏, 费宏明, 林瀚, 赵晓丹, 杨毅彪, 陈智辉. 基于二维六方氮化硼材料的光子晶体非对称传输异质结构设计. 物理学报, 2021, 70(2): 028501. doi: 10.7498/aps.70.20200741
    [6] 智文强, 费宏明, 韩雨辉, 武敏, 张明达, 刘欣, 曹斌照, 杨毅彪. 漏斗型完全光子带隙光波导单向传输研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211299
    [7] 张若羽, 李培丽. 基于一维耦合腔光子晶体的声光可调谐平顶滤波器的研究. 物理学报, 2021, 70(5): 054208. doi: 10.7498/aps.70.20201461
    [8] 董慧莹, 秦晓茹, 薛文瑞, 程鑫, 李宁, 李昌勇. 涂覆石墨烯的非对称椭圆电介质纳米并行线的模式分析. 物理学报, 2020, 69(23): 238102. doi: 10.7498/aps.69.20201041
    [9] 王梦宇, 孟令俊, 杨煜, 钟汇凯, 吴涛, 刘彬, 张磊, 伏燕军, 王克逸. 扁长型微瓶腔中的回音壁模式选择及Fano谐振. 物理学报, 2020, 69(23): 234203. doi: 10.7498/aps.69.20200817
    [10] 张若羽, 李培丽, 高辉. 基于光学tamm态的声光开关的研究. 物理学报, 2020, 69(16): 164204. doi: 10.7498/aps.69.20200396
    [11] 邱克鹏, 骆越, 张卫红. 新型手性电磁超材料非对称传输性能设计分析. 物理学报, 2020, 69(21): 214101. doi: 10.7498/aps.69.20200728
    [12] 费宏明, 严帅, 徐瑜成, 林瀚, 武敏, 杨毅彪, 陈智辉, 田媛, 张娅敏. 可实现宽频带光波非对称传输的自准直效应光子晶体异质结构. 物理学报, 2020, 69(18): 184214. doi: 10.7498/aps.69.20200538
    [13] 彭艳玲, 薛文瑞, 卫壮志, 李昌勇. 涂覆石墨烯的非对称并行电介质纳米线波导的模式特性分析. 物理学报, 2018, 67(3): 038102. doi: 10.7498/aps.67.20172016
    [14] 陈华俊, 方贤文, 陈昌兆, 李洋. 基于双回音壁模式腔光力学系统的光学传播特性和超高分辨率光学质量传感. 物理学报, 2016, 65(19): 194205. doi: 10.7498/aps.65.194205
    [15] 王涛, 杨旭, 刘晓斐, 雷府川, 高铭, 胡蕴琪, 龙桂鲁. 基于回音壁微腔拉曼激光的纳米粒子探测. 物理学报, 2015, 64(16): 164212. doi: 10.7498/aps.64.164212
    [16] 祝昆, 周丽, 尤洪海, 江楠, 普小云. 光纤回音壁模式激光产生长度的实验与理论研究. 物理学报, 2011, 60(5): 054205. doi: 10.7498/aps.60.054205
    [17] 张远宪, 冯永利, 周丽, 普小云. 偏斜光线抽运下的回音壁模式光纤激光辐射特性. 物理学报, 2010, 59(3): 1802-1808. doi: 10.7498/aps.59.1802
    [18] 普小云, 白然, 向文丽, 杜飞, 江楠. 消逝波激励的双波段光纤回音壁模式激光辐射. 物理学报, 2009, 58(6): 3923-3928. doi: 10.7498/aps.58.3923
    [19] 张远宪, 普小云, 祝昆, 韩德昱, 江楠. 回音壁模式光纤激光器的阈值特性研究. 物理学报, 2009, 58(5): 3179-3184. doi: 10.7498/aps.58.3179
    [20] 杨 睿, 於文华, 鲍 洋, 张远宪, 普小云. 消逝场耦合圆柱形微腔中回音壁模式结构的实验研究. 物理学报, 2008, 57(10): 6412-6418. doi: 10.7498/aps.57.6412
计量
  • 文章访问数:  2003
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-23
  • 修回日期:  2023-09-05
  • 上网日期:  2023-10-09
  • 刊出日期:  2024-01-05

/

返回文章
返回