搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

III族氮化物半导体及其合金的原子层沉积和应用

仇鹏 刘恒 朱晓丽 田丰 杜梦超 邱洪宇 陈冠良 胡玉玉 孔德林 杨晋 卫会云 彭铭曾 郑新和

引用本文:
Citation:

III族氮化物半导体及其合金的原子层沉积和应用

仇鹏, 刘恒, 朱晓丽, 田丰, 杜梦超, 邱洪宇, 陈冠良, 胡玉玉, 孔德林, 杨晋, 卫会云, 彭铭曾, 郑新和

Atomic layer deposition and application of group III nitrides semiconductor and their alloys

Qiu Peng, Liu Heng, Zhu Xiao-Li, Tian Feng, Du Meng-Chao, Qiu Hong-Yu, Chen Guan-Liang, Hu Yu-Yu, Kong De-Lin, Yang Jin, Wei Hui-Yun, Peng Ming-Zeng, Zheng Xin-He
PDF
HTML
导出引用
  • III族氮化物半导体由于包含了宽的直接禁带宽度、高击穿场强、高电子饱和速度、高电子迁移率等优异的性质, 自从发展以来便成为半导体领域中的一个热点. 并且由于其禁带宽度可以从近紫外涵盖到红外区域, 因此在传统半导体所难以实现的短波长光电子器件领域, 也具有广阔的应用前景. 原子层沉积由于其特殊的沉积机制可以在较低的温度下实现III族氮化物半导体的高质量制备, 通过调整原子层沉积的循环比也可以方便地调整合金材料中的成分. 发展至今, 原子层沉积已经成为制备III族氮化物及其合金材料的一种重要方式. 因此, 本文着重介绍了近期使用原子层沉积进行III族氮化物半导体及其合金的沉积及应用, 包括使用不同前驱体、不同方式、不同类型原子层沉积, 在不同温度、不同衬底上进行氮化物半导体及其合金的沉积. 随后讨论了原子层沉积制备的III族氮化物材料在不同器件中的应用. 最后总结了原子层沉积在制备III族氮化物半导体中的前景和挑战.
    Group III nitride semiconductors, such as GaN, AlN, and InN, are an important class of compound semiconductor material, and have attracted much attention, because of their unique physicochemical properties. These semiconductors possess excellent characteristics, such as wide direct bandgap, high breakdown field strength, high electron mobility, and good stability, and thus are called third-generation semiconductors. Their alloy materials can adjust their bandgaps by changing the type or proportion of group III elements, covering a wide wavelength range from near-ultraviolet to infrared, thereby achieving wavelength selectivity in optoelectronic devices. Atomic layer deposition (ALD) is a unique technique that produces high-quality group III nitride films at low temperatures. The ALD has become an important method of preparing group III nitrides and their alloys. The alloy composition can be easily controlled by adjusting the ALD cycle ratio. This review highlights recent work on the growth and application of group III nitride semiconductors and their alloys by using ALD. The work is summarized according to similarities so as to make it easier to understand the progress and focus of related research. Firstly, this review summarizes binary nitrides with a focus on their mechanism and application. In the section on mechanism investigation, the review categorizes and summarizes the effects of ALD precursor material, substrate, temperature, ALD type, and other conditions on film quality. This demonstrates the effects of different conditions on film growth behavior and quality. The section on application exploration primarily introduces the use of group III nitride films in various devices through ALD, analyzes the enhancing effects of group III nitrides on these devices, and explores the underlying mechanisms. Additionally, this section discusses the growth of group III nitride alloys through ALD, summarizing different deposition methods and conditions. Regarding the ALD growth of group III nitride semiconductors, there is more research on the ALD growth of AlN and GaN, and less research on InN and its alloys. Additionally, there is less research on the ALD growth of GaN for applications, as it is still in the exploratory stage, while there is more research on the ALD growth of AlN for applications. Finally, this review points out the prospects and challenges of ALD in preparation of group III nitride semiconductors and their alloys.
      通信作者: 郑新和, xinhezheng@ustb.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2018YFA0703700)、国家自然科学基金(批准号: 52002021)和中央高校基本科研业务费(批准号: FRF-IDRY-GD22-001)资助的课题.
      Corresponding author: Zheng Xin-He, xinhezheng@ustb.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFA0703700), the National Natural Science Foundation of China (Grant No. 52002021), and the Fundamental Research Funds for the Central Universities, China (Grant No. FRF-IDRY-GD22-001).
    [1]

    Lakshmi E 1981 Thin Solid Films 83 L137Google Scholar

    [2]

    Porowski S 1997 Mater. Sci. Eng. B 44 407Google Scholar

    [3]

    Pearton S J, Ren F, Zhang A P, Lee K P 2000 Mat. Sci. Eng. R 30 55Google Scholar

    [4]

    Glavin N R, Chabak K D, Heller E R, Moore E A, Prusnick T A, Maruyama B, Walker Jr D E, Dorsey D L, Paduano Q, Snure M 2017 Adv. Mate. 29 1701838Google Scholar

    [5]

    Mizutani H, Ishikawa R, Honjo K 2017 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS) Miami, FL, USA, October 22–25, 2017 pp1–4

    [6]

    Bentini A, Palombini D, Rampazzo D 2017 12th European Microwave Integrated Circuits Conference (EuMIC) Nuremberg, Germany, October 8–10, 2017 pp125–128

    [7]

    Margomenos A, Kurdoghlian A, Micovic M, Shinohara K, Moyer H, Regan D C, Grabar R M, McGuire C, Wetzel M D, Chow D H 2014 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS) La Jolla, CA, USA, October 19–22, 2014 pp1–4

    [8]

    Bui H V, Wiggers F B, Gupta A, Nguyen M D, Aarnink A A I, Jong M P D, Kovalgin A Y 2015 J. Vac. Sci. Technol. A 33 01A111

    [9]

    Shur M 2019 Solid-State Electron. 155 65Google Scholar

    [10]

    Chabak K D, Walker D E, Johnson M R, Crespo A, Dabiran A M, Smith D J, Wowchak A M, Tetlak S K, Kossler M, Gillespie J K, Fitch R C, Trejo M 2011 IEEE Electr. Device Lett. 32 1677Google Scholar

    [11]

    Abd Rahman M N, Shuhaimi A, Abdul Khudus M I M, Anuar A, Zainorin M Z, Talik N A, Chanlek N, Abd Majid W H 2021 J. Electron. Mater. 50 2313Google Scholar

    [12]

    Slack G A, Tanzilli R A, Pohl R O, Vandersande J W 1987 J. Phys. Chem. Solids 48 641Google Scholar

    [13]

    Zhang Z P, Gao B, Fang Z, Wang X P, Tang Y Z, Sohn J, Wong H S P, Wong S S, Lo G Q 2015 IEEE Electr. Device Lett. 36 29Google Scholar

    [14]

    Eisele H, Schuppang J, Schnedler M, Duchamp M, Nenstiel C, Portz V, Kure T, Bügler M, Lenz A, Dähne M, Hoffmann A, Gwo S, Choi S, Speck J S, Dunin-Borkowski R E, Ebert P 2016 Phys. Rev. B 94 245201Google Scholar

    [15]

    Bhatta R P, Thoms B D, Alevli M, Dietz N 2007 Surf. Sci. 601 L120Google Scholar

    [16]

    Wang S L, Liu H X, Chen Q, Zhang H L 2016 J. Mater. Sci. Mater. El. 27 11353Google Scholar

    [17]

    Wu J, Walukiewicz W, Yu K M, III J W A, Haller E E, Lu H, Schaff W J, Saito Y, Nanishi Y 2002 Appl. Phys. Lett. 80 3967Google Scholar

    [18]

    Ciorga M, Bryja L, Misiewicz J, Paszkiewicz R, Korbutowicz R, Panek M, Paszkiewicz B, Tlaczala M 1999 Mater. Sci. Eng. B 59 16Google Scholar

    [19]

    Kalaitzakis F G, Konstantinidis G, Sygellou L, Kennou S, Ladas S, Pelekanos N T 2012 Microelectron. Eng. 90 115Google Scholar

    [20]

    Nakada Y, Aksenov I, Okumura H 1998 Appl. Phys. Lett. 73 827Google Scholar

    [21]

    Hemmingsson C, Paskov P P, Pozina G, Heuken M, Schineller B, Monemar B 2007 J. Cryst. Growth 300 32Google Scholar

    [22]

    Zhang J X, Qu Y, Chen Y Z, Uddin A, Yuan S 2005 J. Cryst. Growth 282 137Google Scholar

    [23]

    Etzkorn E V, Clarke D R 2004 Int. J. High Speed Electron. Syst. 14 63Google Scholar

    [24]

    Ozturk M K, Arslan E, Kars I, Ozcelik S, Ozbay E 2013 Mat. Sci. Semicond. Process. 16 83Google Scholar

    [25]

    Kizir S, Haider A, Biyikli N 2016 J. Vac. Sci. Technol. A 34 041511Google Scholar

    [26]

    Ozgit C, Donmez I, Alevli M, Biyikli N 2012 J. Vac. Sci. Technol. A 30 01A124Google Scholar

    [27]

    Maeng W J, Choi D W, Park J, Park J S 2015 J. Alloys Compd. 649 216Google Scholar

    [28]

    Shih H Y, Lin M C, Chen L Y, Chen M J 2014 Nanotechnology 26 014002Google Scholar

    [29]

    Lee S H, Kwon J D, Ahn J H, Park J S 2017 Ceram. Int. 43 6580Google Scholar

    [30]

    Asif Khan M, Skogman R A, Van Hove J M, Olson D T, Kuznia J N 1992 Appl. Phys. Lett. 60 1366Google Scholar

    [31]

    Karam N H, Parodos T, Colter P, McNulty D, Rowland W, Schetzina J, El-Masry N, Bedair S M 1995 Appl. Phys. Lett. 67 94Google Scholar

    [32]

    Liu S J, He Y F, Wei H Y, Qiu P, Song Y M, An Y L, Rehman A, Peng M Z, Zheng X H 2019 Chin. Phys. B 28 026801Google Scholar

    [33]

    Liu S J, Zhao G, He Y F, Wei H Y, Li Y F, Qu P, Song Y M, An Y L, Wang X Y, Wang X X, Cheng J D, Peng M Z, Zheng X H 2019 ACS Appl. Mater. Interfaces 11 35382Google Scholar

    [34]

    Liu S J, Zhao G, He Y F, Li Y F, Wei H Y, Qiu P, Wang X Y, Wang X X, Cheng J D, Peng M Z, Zaera F, Zheng X H 2020 Appl. Phys. Lett. 116 211601Google Scholar

    [35]

    Ozgit-Akgun C, Donmez I, Biyikli N 2013 ECS Trans. 58 289Google Scholar

    [36]

    Gungor N, Alevli M 2018 J. Vac. Sci. Technol. A. 36 021514Google Scholar

    [37]

    Shukla D, Mohammad A, Ilhom S, Willis B G, Okyay A K, Biyikli N 2021 J. Vac. Sci. Technol. A. 39 022406Google Scholar

    [38]

    Gungor N, Alevli M 2019 J. Vac. Sci. Technol. A. 37 050901Google Scholar

    [39]

    Deminskyi P, Hsu C W, Bakhit B, Rouf P, Pedersen H 2021 J. Vac. Sci. Technol. A. 39 012411Google Scholar

    [40]

    Lee W H, Yin Y T, Cheng P H, Shyue J J, Shiojiri M, Lin H C, Chen M J 2018 ACS Sustain. Chem. Eng. 7 487

    [41]

    Rouf P, O’Brien N J, Buttera S C, Martinovic I, Bakhit B, Martinsson E, Palisaitis J, Hsu C W, Pedersen H 2020 J. Mater. Chem. C 8 8457Google Scholar

    [42]

    Rouf P, Samii R, Rönnby K, Bakhit B, Buttera S C, Martinovic I, Ojamäe L, Hsu C W, Palisaitis J, Kessler V, Pedersen H, O’Brien N J 2021 Chem. Mater. 33 3266Google Scholar

    [43]

    He Y F, Li M L, Liu S J, Wei H Y, Ye H Y, Song Y M, Qiu P, An Y L, Peng M Z, Zheng X H 2019 Acta Metall Sin-Engl 32 1530Google Scholar

    [44]

    He Y F, Song Y M, Wei H, Qiu P, Liu H, Zhu X, Tian F, Peng M Z, Zheng X H 2023 Appl. Phys. Lett. 122 041602Google Scholar

    [45]

    He Y F, Si Z, Shi Y A, Wei H, Peng M Z, Zheng X H 2023 Mater. Lett. 350 134801Google Scholar

    [46]

    He Y F, Li M, Wei H, Song Y M, Qiu P, Peng M Z, Zheng X H 2021 Appl. Surf. Sci. 566 150684Google Scholar

    [47]

    Song Y M, He Y F, Li Y F, Wei H Y, Qiu P, Huang Q M, He Z Q, Die J H, Peng M Z, Zheng X H 2021 Cryst. Growth Des. 21 1778Google Scholar

    [48]

    Song Y M, Li Y F, He Y F, Wei H Y, Qiu P, Hu X T, Su Z L, Jiang Y, Peng M Z, Zheng X H 2022 ACS Appl. Mater. Interfaces 14 16866Google Scholar

    [49]

    Qiu P, Wei H Y, An Y L, Wu Q, Du W, Jiang Z, Zhou L, Gao C, Liu S J, He Y F, Song Y M, Peng M Z, Zheng X H 2020 Ceram. Int. 46 5765Google Scholar

    [50]

    Wei H Y, Wu J, Qiu P, Liu S J, He Y F, Peng M Z, Li D, Meng Q, Zaera F, Zheng X H 2019 J. Mater. Chem. A 7 25347Google Scholar

    [51]

    Qiu P, Wei H Y, Huang Q, Yu M, Hu Y, Zhu X, Liu H, Zheng X H 2023 Ceram. Int. 49 22030Google Scholar

    [52]

    Lee Y J, Kang S W 2004 Thin Solid Films 446 227Google Scholar

    [53]

    Liu S J, Peng M Z, Hou C, He Y F, Li M, Zheng X H 2017 Nanoscale Res. Lett. 12 279Google Scholar

    [54]

    Liu S J, Li Y F, Tao J, Tang R, Zheng X H 2023 Crystals 13 910

    [55]

    Zhang X Y, Peng D C, Han J, Ren F B, Jiang S C, Tseng M C, Ruan Y J, Zuo J, Wu W Y, Wuu D S, Huang C J, Lien S Y, Zhu W Z 2023 Surf. Interface 36 102589Google Scholar

    [56]

    Schilirò E, Giannazzo F, Bongiorno C, Di Franco S, Greco G, Roccaforte F, Prystawko P, Kruszewski P, Leszczyński M, Krysko M, Michon A, Cordier Y, Cora I, Pecz B, Gargouri H, Nigro R L 2019 Mat. Sci. Semicond. Process. 97 35Google Scholar

    [57]

    Gungor N, Alevli M 2022 J. Vac. Sci. Technol. A 40 022404Google Scholar

    [58]

    Strnad N A, Sarney W L, Rayner G B, Benoit R R, Fox G R, Rudy R Q, Larrabee T J, Shallenberger J, Pulskamp J S 2022 J. Vac. Sci. Technol. A 40 042403Google Scholar

    [59]

    Tian L, Ponton S, Benz M, Crisci A, Reboud R, Giusti G, Volpi F, Rapenne L, Vallée C, Pons M, Mantoux A, Jiménez C, Blanquet E 2018 Surf. Coat. Technol. 347 181Google Scholar

    [60]

    Kao W C, Lee W H, Yi S H, Shen T H, Lin H C, Chen M J 2019 RSC Adv. 9 12226Google Scholar

    [61]

    Seppanen H, Kim I, Etula J, Ubyivovk E, Bouravleuv A, Lipsanen H 2019 Materials 12 610

    [62]

    Kot M, Henkel K, Naumann F, Gargouri H, Lupina L, Wilker V, Kus P, Poz´arowska E, Garain S, Rouissi Z, Schmeißer D 2019 J. Vac. Sci. Technol. A 37 020913

    [63]

    Dallaev R, Sobola D, Tofel P, Škvarenina Ľ, Sedlák P 2020 Coatings 10 954

    [64]

    Legallais M, Mehdi H, David S, Bassani F, Labau S, Pelissier B, Baron T, Martinez E, Ghibaudo G, Salem B 2020 ACS Appl. Mater. Interfaces 12 39870Google Scholar

    [65]

    Mohammad A, Shukla D, Ilhom S, Willis B, Johs B, Okyay A K, Biyikli N 2019 J. Vac. Sci. Technol. A 37 020927Google Scholar

    [66]

    Ilhom S, Shukla D, Mohammad A, Grasso J, Willis B, Biyikli N 2020 J. Vac. Sci. Technol. A 38 022405Google Scholar

    [67]

    Yun H J, Kim H, Choi B J 2020 Ceram. Int. 46 13372Google Scholar

    [68]

    Jung Y C, Hwang S M, Le D N, Kondusamy A L N, Mohan J, Kim S W, Kim J H, Lucero A T, Ravichandran A, Kim H S, Kim S J, Choi R, Ahn J, Alvarez D, Spiegelman J, Kim J 2020 Materials 13 3387Google Scholar

    [69]

    Parkhomenko R G, De Luca O, Kolodziejczyk L, Modin E, Rudolf P, Martinez Martinez D, Cunha L, Knez M 2021 Dalton Trans. 50 15062Google Scholar

    [70]

    Tiwari C, Dixit A 2021 Appl. Phys. A 127 862

    [71]

    Liu X Y, Zhao S X, Zhang L Q, Huang H F, Shi J S, Zhang C M, Lu H L, Wang P F, Zhang D W 2015 Nanoscale Res. Lett. 10 109Google Scholar

    [72]

    Zhang L Q, Wang P F 2018 Jpn. J. Appl. Phys. 57 096502Google Scholar

    [73]

    Tzou A J, Chu K H, Lin I F, Ostreng E, Fang Y S, Wu X P, Wu B W, Shen C H, Shieh J M, Yeh W K, Chang C Y, Kuo H C 2017 Nanoscale Res. Lett. 12 315Google Scholar

    [74]

    Zhao S X, Liu X Y, Zhang L Q, Huang H F, Shi J S, Wang P F 2016 Nanoscale Res. Lett. 11 137Google Scholar

    [75]

    Kim K, Hua M, Liu D, Kim J, Chen K J, Ma Z 2018 Nano Energy 43 259Google Scholar

    [76]

    Chen S W H, Yang D R, You N J, Ho W C, Tzou J, Kuo H C, Shieh J M 2021 IEEE Trans. Nanotechnol. 20 489Google Scholar

    [77]

    Kim H, Kwon Y, Choi B J 2019 Thin Solid Films 670 41Google Scholar

    [78]

    Schiliro E, Giannazzo F, Di Franco S, Greco G, Fiorenza P, Roccaforte F, Prystawko P, Kruszewski P, Leszczynski M, Cora I, Pecz B, Fogarassy Z, Lo Nigro R 2021 Nanomaterials 11 3316Google Scholar

    [79]

    Kim H, Yun H J, Choi S, Choi B J 2020 Appl. Phys. A 126 449Google Scholar

    [80]

    Boris D R, Anderson V R, Nepal N, Johnson S D, Robinson Z R, Kozen A C, Eddy Jr. C R, Walton S G 2018 J. Vac. Sci. Technol. A 36 051503Google Scholar

    [81]

    Alevli M, Gungor N 2020 J. Vac. Sci. Technol. A 38 062407Google Scholar

    [82]

    Deminskyi P, Rouf P, Ivanov I G, Pedersen H 2019 J. Vac. Sci. Technol. A 37 020926Google Scholar

    [83]

    Ilhom S, Mohammad A, Shukla D, Grasso J, Willis B G, Okyay A K, Biyikli N 2020 RSC Adv. 10 27357Google Scholar

    [84]

    Woodward J M, Rosenberg S G, Boris D R, Johnson M J, Walton S G, Johnson S D, Robinson Z R, Nepal N, Ludwig K F, Hite J K, Eddy C R 2022 J. Vac. Sci. Technol. A 40 062405Google Scholar

    [85]

    Rouf P, O’Brien N J, Rönnby K, Samii R, Ivanov I G, Ojamäe L, Pedersen H 2019 J. Phys. Chem. C 123 25691Google Scholar

    [86]

    O’Brien N J, Rouf P, Samii R, Rönnby K, Buttera S C, Hsu C-W, Ivanov I G, Kessler V, Ojamäe L, Pedersen H 2020 Chem. Mater. 32 4481Google Scholar

    [87]

    Feng X C, Peng H, Gong J H, Wang W, Liu H, Quan Z J, Pan S, Wang L 2018 J. Appl. Phys. 124 243104Google Scholar

    [88]

    Peng H, Feng X C, Gong J H, Wang W, Liu H, Quan Z J, Pan S, Wang L 2018 Appl. Surf. Sci. 459 830Google Scholar

    [89]

    Woodward J M, Rosenberg S G, Kozen A C, Nepal N, Johnson S D, Wagenbach C, Rowley A H, Robinson Z R, Joress H, Ludwig K F, Eddy C R 2019 J. Vac. Sci. Technol. A 37 030901Google Scholar

    [90]

    Hsu C W, Deminskyi P, Martinovic I, Ivanov I G, Palisaitis J, Pedersen H 2020 Appl. Phys. Lett. 117 093101Google Scholar

    [91]

    An Y L, He Y F, Wei H Y, Liu S J, Li M, Song Y M, Qiu P, Rehman A, Zheng X H, Peng M Z 2019 Results Phys. 12 804Google Scholar

    [92]

    Ho I H, Stringfellow G B 1996 MRS Online Proc. Libr. 449 871Google Scholar

    [93]

    Surender S, Prabakaran K, Loganathan R, Pradeep S, Singh S, Baskar K 2017 J. Cryst. Growth 468 249Google Scholar

    [94]

    Huang Y 2012 J. Photon. Energy 2 028501Google Scholar

    [95]

    Haider A, Kizir S, Ozgit-Akgun C, Goldenberg E, Leghari S A, Okyay A K, Biyikli N 2015 J. Mater. Chem. C 3 9620Google Scholar

    [96]

    Rouf P, Palisaitis J, Bakhit B, O'Brien N J, Pedersen H 2021 J. Mater. Chem. C 9 13077Google Scholar

    [97]

    Ozgit-Akgun C, Goldenberg E, Okyay A K, Biyikli N 2014 J. Mater. Chem. C 2 2123Google Scholar

    [98]

    Nepal N, Anderson V R, Hite J K, Eddy C R 2015 Thin Solid Films 589 47Google Scholar

    [99]

    Portillo M C, Gallardo Hernández S, Panecatl Bernal Y, Martinez Velis I, Villanueva Cab J, Alcántara S, Alvarado J 2020 Opt. Mater. 108 110206Google Scholar

    [100]

    Choi S, Ansari A S, Yun H J, Kim H, Shong B, Choi B J 2021 J. Alloy. Compd. 854 157186Google Scholar

    [101]

    Kim H, Choi S, Choi B J 2020 Coatings 10 194Google Scholar

    [102]

    Kim H, Choi S, Choi B J 2020 Coatings 10 489Google Scholar

    [103]

    Kim H, Yun H J, Choi S, Choi B J 2020 Mater. Trans. 61 88Google Scholar

  • 图 1  等离子体增强原子层沉积沉积GaN的示意图

    Fig. 1.  Schematic diagram of GaN deposited by plasma-enhanced atomic layer deposition.

    图 2  (a)未经预处理的氮化镓薄膜的GIXRD曲线; (b) 预处理样品的XRD曲线; (c) (002) GaN峰的XRD ω扫描摇摆曲线; (d), (e)未经预处理和预处理的GaN/蓝宝石界面的HRTEM图像; (f) 预处理和未预处理的氮化镓的初始生长示意图; (g) 预处理的GaN薄膜的选区电子衍射图. 氮化镓是外延的, 存在$\left[ {1\bar 10} \right]$氮化镓//[100]蓝宝石平面排列; (h) 图(b)中黄色矩形所包围的GaN/蓝宝石界面区域的放大图[34]

    Fig. 2.  (a) GIXRD patterns of the non-pretreated GaN thin film; (b) XRD patterns and (c) XRD ω-scan rocking curve of the (002) GaN peak of the pretreated sample; (d), (e) HRTEM images of the non-pretreated and pretreated GaN/sapphire interfaces, respectively; (f) the schematic diagram of the initial growth of pretreated and non-pretreated GaN; (g) selected area electron diffraction of the pretreated GaN thin film, GaN is epitaxial, with a $\left[ {1\bar 10} \right]$GaN//[100]sapphire plane alignment; (h) magnification of the GaN/sapphire interface region enclosed by the yellow rectangle in panel (b) [34].

    图 3  实时测量的和平均原位椭圆光度法薄膜厚度数据显示, 即在衬底温度为(a) 120 , (b) 160, (c) 200和(d) 240 ℃时, TMG化学吸附和N2/H2/Ar等离子体辅助配体去除反应的等离子体射频功率相关性[37]

    Fig. 3.  Real-time measured and averaged in situ ellipsometric film thickness data showing the plasma rf-power dependence of TMG chemisorption and N2/H2/Ar plasma-assisted ligand removal reactions at substrate temperatures of (a) 120, (b) 160, (c) 200 and (d) 240 ℃[37].

    图 4  (a) H2O和(b) NH3预处理后的成核示意图. 蓝色区域、红色区域和a*分别代表完全羟基化状态、较高能量状态和反应性部位, 如离解的NH3[67]

    Fig. 4.  Schematics of nucleation after (a) H2O and (b) NH3 pretreatment. The blue region, the red region and a* represent the fully hydroxylated state, a higher energy state, and a reactive site such as dissociated NH3, respectively[67].

    图 5  (a) 用于InN的ALD研究的三种六价In(III)前体1—3; (b)前体3的改进的表面化学示意图, 显示与(c)前体2相比, 其iPr基团的立体和表面排斥力下降[85]

    Fig. 5.  (a) Hexacoordinated In(III) precursors 1–3 used for the ALD study of InN; schematics of the suggested improved surface chemistry for (b) precursor 3, showing the decrease in steric and surface repulsion of its iPr groups in comparison to (c) precursor 2[85].

    图 6  数字合金化的示意图

    Fig. 6.  Schematic diagram of digital alloying.

    表 1  使用ALD沉积III族二元氮化物薄膜的生长条件概述, 包括薄膜生长和器件应用

    Table 1.  Overview of growth conditions for the deposition of group III binary nitride films using ALD, including film growth and device applications.

    材料 金属前驱体 氮前驱体 沉积温度/ ℃ 沉积衬底 应用 ALD类型 等离子体功率/W 参考文献
    GaNTEGAr/N2/H2 (1∶3∶6)350Si (100)薄膜生长PE-ALD60[32]
    GaNTEGAr/N2/H2 (1∶3∶6)350Si (100)薄膜生长PE-ALD60[33]
    GaNTEGAr/N2/H2 (1∶3∶6)350c-sapphire薄膜生长PE-ALD60[34]
    GaNTEGN2/H2200Si (100)薄膜生长HCPA-ALD300[36]
    GaNTMGN2/H2120—240Si (100)薄膜生长HCP-ALD50—250[37]
    GaNTEGN2/H2200sapphire薄膜生长HCPA-ALD300[38]
    GaNTEGNH3/Ar160—350Si (100)薄膜生长PE-ALD2000[39]
    GaNTEGN2/H2300sapphire (0001)薄膜生长PE-ALD50和 300[40]
    GaNGa(NMe2)3NH3/Ar130—250Si (100)
    4H-SiC (0002)
    薄膜生长PE-ALD2800[41]
    GaNGa(NMe2)3NH3/Ar130—250Si (100), 4H-SiC (0002)薄膜生长PE-ALD2800[42]
    GaNTEGAr/N2/H2 (1∶3∶6)350multilayer graphene薄膜生长PE-ALD60[43]
    GaNTEGAr/N2/H2 (1∶3∶6)300graphene薄膜生长PE-ALD60[44]
    GaNTEGAr/N2/H2 (1∶3∶6)≤290stainless steel薄膜生长PE-ALD60[45]
    GaNTEGAr/N2/H2 (1∶3∶6)200—300Kapton薄膜生长PE-ALD60[46]
    GaNTEGAr/N2/H2 (1∶3∶6)260MoS2薄膜生长PE-ALD60[47]
    GaNTEGAr/N2/H2 (1∶3∶6)260, 320MoS2薄膜生长PE-ALD60[48]
    GaNTEGAr/N2/H2 (1∶3∶6)280FTO薄膜生长PE-ALD60[49]
    GaNTEGAr/N2/H2 (1∶3∶6)280FTO钙钛矿太阳能电池PE-ALD60[50]
    GaNTEGAr/N2/H2 (1∶3∶6)200—280量子点太阳能电池PE-ALD60[51]
    AlNAlCl3NH3/Ar/H2350p-Si (100)薄膜生长PE-ALD150[52]
    AlNTMAAr/N2/H2 (1∶3∶6)350—300Si (100)薄膜生长PE-ALD60[53]
    AlNTMAAr/N2/H2 (1∶3∶6)250Si (100), Si (111)
    sapphire
    薄膜生长PE-ALD60[54]
    AlNTMANH3200—300Si, sapphire薄膜生长PE-ALD2500[55]
    AlNTMANH3300GaN薄膜生长PE-ALD200[56]
    AlNTMAN2/H2200Si (100)薄膜生长PE-ALD300[57]
    AlNTMAAr/N2300(Homemade substrates)MEMSPE-ALD975[58]
    AlNTMAH2 plasma, NH3325—350SiC薄膜生长PE-ALD1800[59]
    TMANH3325—400SiCT-ALD
    AlNTMAN2/H23004H-SiC薄膜生长PE-ALD50—300[60]
    AlNTMANH3 (Ar)300Si (100), Si (111)薄膜生长PE-ALD100, 200[61]
    AlNTMANH3350Si薄膜生长PE-ALD(ICP)200
    600
    [62]
    PE-ALD(CCP)200
    AlNAl(C4H9)3N2H5Cl200—350薄膜生长T-ALD[63]
    AlNTMAN2/H2300Si (100)薄膜生长, 电容器PE-ALD300[64]
    AlNTMAAr/N2/H2100—250Si (100)薄膜生长HCPA-ALD25—200[65]
    AlNTMAAr/N2/H2100—250Si (100)薄膜生长HCPA-ALD25—200[66]
    AlNTMANH3295—342Si, TiN薄膜生长T-ALD[67]
    AlNTMAN2H4175—350p-Si薄膜生长T-ALD[68]
    AlNTMAMonomethylhydrazine(MMH)375—475Si (100)薄膜生长T-ALD[69]
    AlN三(二甲氨基)铝NH3300p-Si薄膜生长T-ALD[70]
    AlNTMANH3400GaN/AlGaNMIS-HEMTT-ALD[71]
    AlNTMANH3360GaNMIS-HEMTT-ALD[72]
    AlNTMAN2 & NH3300, 350AlGaNHEMTPE-ALD2800[73]
    AlNTMANH3400AlGaNHEMTT-ALD[74]
    AlNTMAN2/H2300p-GaNLEDPE-ALD[75]
    AlNTMAN2350AlGaNSchottky diodesPE-ALD2800[76]
    AlNTMANH3340GaN异质结T-ALD[77]
    AlNTMANH3300GaN薄膜生长, 异质结PE-ALD200[78]
    AlNTMANH3335c-sapphire异质结T-ALD[79]
    InNTMIAr/N2250 ± 20sapphire薄膜生长PE-ALD300[80]
    InNTMIN2/H2200sapphire薄膜生长HCPA-ALD300[81]
    InNTMINH3240—320Si (100)薄膜生长PE-ALD2400—2800[82]
    InNTMIN2, Ar/N2, Ar/N2/H2120—240Si (100)薄膜生长HCP-ALD50—200[83]
    InNTMIN2/Ar250GaN (0001)薄膜生长PE-ALD300[84]
    InNTris (N, N-dimethyl-N', N''-diisopropylguanidinato)
    indium (III), Tris (N, N'-diisopropylamidinato) indium
    (III), Tris(N, N'-diisopropylformamidinato) indium (III)
    Ar/NH3200—280Si (100)薄膜生长PE-ALD2800[85]
    InNTris(1,3-diisopropyltriazenide)
    indium (III)
    NH3(Ar/NH3)200—400Si, 4H-SiC薄膜生长PE-ALD2800[86]
    InNTMIN2190—310Si (100), Al2O3 (0001), ZnO (0001)薄膜生长PE-ALD100—200[87]
    InNTMIN2(Ar)150—300glass, polyimide薄膜生长PE-ALD200[88]
    InNTMIN2180—320GaN (0001)薄膜生长PE-ALD300[89]
    InNTMINH3/Ar3204H-SiC薄膜生长PE-ALD2800[90]
    InNTMIAr/N2/H2(1∶3∶6)200—300Si (100)薄膜生长PE-ALD60[91]
    下载: 导出CSV

    表 2  使用ALD沉积III族氮化物合金薄膜的生长条件概述, 包括薄膜生长和器件应用.

    Table 2.  Overview of growth conditions for the deposition of group III nitride alloy films using ALD, including film growth and device applications.

    材料金属前驱体氮前驱体沉积温度/ ℃沉积衬底应用ALD类型等离子体功率/W参考文献
    InGaNTMI, TEGN2/H2, N2200Si, quartz薄膜生长HCPA-ALD300[95]
    InGaNGa(III) and In(III) triazenidesNH3/Ar350Si (100)
    4H-SiC (0001)
    薄膜生长PE-ALD2800[96]
    AlGaNTMA, TMGNH3/N2/H2200Si (100), Si (111), c-sapphire薄膜生长HCPA-ALD300[97]
    AlGaNTMA, TMI, TMGN2/Ar350—450Si (100), a-sapphire, GaN/a-sapphire薄膜生长PE-ALD300[98]
    InAlN340—300
    InGaN
    AlGaN
    InGaN
    TMG, TMA, TMIN2/H2220—300Si薄膜生长PE-ALD280[99]
    AlGaNTMA&TEGNH3 & N2342p-Si (100), TiN/SiO2/Si薄膜生长T-ALD[100]
    AlGaNTMA, TEGNH3335c-GaN异质结ALD[101]
    AlGaNTMA. TEGNH3335c-GaN异质结T-ALD[102]
    AlGaNTEGNH3335 ℃GaN异质结T-ALD[103]
    下载: 导出CSV
  • [1]

    Lakshmi E 1981 Thin Solid Films 83 L137Google Scholar

    [2]

    Porowski S 1997 Mater. Sci. Eng. B 44 407Google Scholar

    [3]

    Pearton S J, Ren F, Zhang A P, Lee K P 2000 Mat. Sci. Eng. R 30 55Google Scholar

    [4]

    Glavin N R, Chabak K D, Heller E R, Moore E A, Prusnick T A, Maruyama B, Walker Jr D E, Dorsey D L, Paduano Q, Snure M 2017 Adv. Mate. 29 1701838Google Scholar

    [5]

    Mizutani H, Ishikawa R, Honjo K 2017 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS) Miami, FL, USA, October 22–25, 2017 pp1–4

    [6]

    Bentini A, Palombini D, Rampazzo D 2017 12th European Microwave Integrated Circuits Conference (EuMIC) Nuremberg, Germany, October 8–10, 2017 pp125–128

    [7]

    Margomenos A, Kurdoghlian A, Micovic M, Shinohara K, Moyer H, Regan D C, Grabar R M, McGuire C, Wetzel M D, Chow D H 2014 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS) La Jolla, CA, USA, October 19–22, 2014 pp1–4

    [8]

    Bui H V, Wiggers F B, Gupta A, Nguyen M D, Aarnink A A I, Jong M P D, Kovalgin A Y 2015 J. Vac. Sci. Technol. A 33 01A111

    [9]

    Shur M 2019 Solid-State Electron. 155 65Google Scholar

    [10]

    Chabak K D, Walker D E, Johnson M R, Crespo A, Dabiran A M, Smith D J, Wowchak A M, Tetlak S K, Kossler M, Gillespie J K, Fitch R C, Trejo M 2011 IEEE Electr. Device Lett. 32 1677Google Scholar

    [11]

    Abd Rahman M N, Shuhaimi A, Abdul Khudus M I M, Anuar A, Zainorin M Z, Talik N A, Chanlek N, Abd Majid W H 2021 J. Electron. Mater. 50 2313Google Scholar

    [12]

    Slack G A, Tanzilli R A, Pohl R O, Vandersande J W 1987 J. Phys. Chem. Solids 48 641Google Scholar

    [13]

    Zhang Z P, Gao B, Fang Z, Wang X P, Tang Y Z, Sohn J, Wong H S P, Wong S S, Lo G Q 2015 IEEE Electr. Device Lett. 36 29Google Scholar

    [14]

    Eisele H, Schuppang J, Schnedler M, Duchamp M, Nenstiel C, Portz V, Kure T, Bügler M, Lenz A, Dähne M, Hoffmann A, Gwo S, Choi S, Speck J S, Dunin-Borkowski R E, Ebert P 2016 Phys. Rev. B 94 245201Google Scholar

    [15]

    Bhatta R P, Thoms B D, Alevli M, Dietz N 2007 Surf. Sci. 601 L120Google Scholar

    [16]

    Wang S L, Liu H X, Chen Q, Zhang H L 2016 J. Mater. Sci. Mater. El. 27 11353Google Scholar

    [17]

    Wu J, Walukiewicz W, Yu K M, III J W A, Haller E E, Lu H, Schaff W J, Saito Y, Nanishi Y 2002 Appl. Phys. Lett. 80 3967Google Scholar

    [18]

    Ciorga M, Bryja L, Misiewicz J, Paszkiewicz R, Korbutowicz R, Panek M, Paszkiewicz B, Tlaczala M 1999 Mater. Sci. Eng. B 59 16Google Scholar

    [19]

    Kalaitzakis F G, Konstantinidis G, Sygellou L, Kennou S, Ladas S, Pelekanos N T 2012 Microelectron. Eng. 90 115Google Scholar

    [20]

    Nakada Y, Aksenov I, Okumura H 1998 Appl. Phys. Lett. 73 827Google Scholar

    [21]

    Hemmingsson C, Paskov P P, Pozina G, Heuken M, Schineller B, Monemar B 2007 J. Cryst. Growth 300 32Google Scholar

    [22]

    Zhang J X, Qu Y, Chen Y Z, Uddin A, Yuan S 2005 J. Cryst. Growth 282 137Google Scholar

    [23]

    Etzkorn E V, Clarke D R 2004 Int. J. High Speed Electron. Syst. 14 63Google Scholar

    [24]

    Ozturk M K, Arslan E, Kars I, Ozcelik S, Ozbay E 2013 Mat. Sci. Semicond. Process. 16 83Google Scholar

    [25]

    Kizir S, Haider A, Biyikli N 2016 J. Vac. Sci. Technol. A 34 041511Google Scholar

    [26]

    Ozgit C, Donmez I, Alevli M, Biyikli N 2012 J. Vac. Sci. Technol. A 30 01A124Google Scholar

    [27]

    Maeng W J, Choi D W, Park J, Park J S 2015 J. Alloys Compd. 649 216Google Scholar

    [28]

    Shih H Y, Lin M C, Chen L Y, Chen M J 2014 Nanotechnology 26 014002Google Scholar

    [29]

    Lee S H, Kwon J D, Ahn J H, Park J S 2017 Ceram. Int. 43 6580Google Scholar

    [30]

    Asif Khan M, Skogman R A, Van Hove J M, Olson D T, Kuznia J N 1992 Appl. Phys. Lett. 60 1366Google Scholar

    [31]

    Karam N H, Parodos T, Colter P, McNulty D, Rowland W, Schetzina J, El-Masry N, Bedair S M 1995 Appl. Phys. Lett. 67 94Google Scholar

    [32]

    Liu S J, He Y F, Wei H Y, Qiu P, Song Y M, An Y L, Rehman A, Peng M Z, Zheng X H 2019 Chin. Phys. B 28 026801Google Scholar

    [33]

    Liu S J, Zhao G, He Y F, Wei H Y, Li Y F, Qu P, Song Y M, An Y L, Wang X Y, Wang X X, Cheng J D, Peng M Z, Zheng X H 2019 ACS Appl. Mater. Interfaces 11 35382Google Scholar

    [34]

    Liu S J, Zhao G, He Y F, Li Y F, Wei H Y, Qiu P, Wang X Y, Wang X X, Cheng J D, Peng M Z, Zaera F, Zheng X H 2020 Appl. Phys. Lett. 116 211601Google Scholar

    [35]

    Ozgit-Akgun C, Donmez I, Biyikli N 2013 ECS Trans. 58 289Google Scholar

    [36]

    Gungor N, Alevli M 2018 J. Vac. Sci. Technol. A. 36 021514Google Scholar

    [37]

    Shukla D, Mohammad A, Ilhom S, Willis B G, Okyay A K, Biyikli N 2021 J. Vac. Sci. Technol. A. 39 022406Google Scholar

    [38]

    Gungor N, Alevli M 2019 J. Vac. Sci. Technol. A. 37 050901Google Scholar

    [39]

    Deminskyi P, Hsu C W, Bakhit B, Rouf P, Pedersen H 2021 J. Vac. Sci. Technol. A. 39 012411Google Scholar

    [40]

    Lee W H, Yin Y T, Cheng P H, Shyue J J, Shiojiri M, Lin H C, Chen M J 2018 ACS Sustain. Chem. Eng. 7 487

    [41]

    Rouf P, O’Brien N J, Buttera S C, Martinovic I, Bakhit B, Martinsson E, Palisaitis J, Hsu C W, Pedersen H 2020 J. Mater. Chem. C 8 8457Google Scholar

    [42]

    Rouf P, Samii R, Rönnby K, Bakhit B, Buttera S C, Martinovic I, Ojamäe L, Hsu C W, Palisaitis J, Kessler V, Pedersen H, O’Brien N J 2021 Chem. Mater. 33 3266Google Scholar

    [43]

    He Y F, Li M L, Liu S J, Wei H Y, Ye H Y, Song Y M, Qiu P, An Y L, Peng M Z, Zheng X H 2019 Acta Metall Sin-Engl 32 1530Google Scholar

    [44]

    He Y F, Song Y M, Wei H, Qiu P, Liu H, Zhu X, Tian F, Peng M Z, Zheng X H 2023 Appl. Phys. Lett. 122 041602Google Scholar

    [45]

    He Y F, Si Z, Shi Y A, Wei H, Peng M Z, Zheng X H 2023 Mater. Lett. 350 134801Google Scholar

    [46]

    He Y F, Li M, Wei H, Song Y M, Qiu P, Peng M Z, Zheng X H 2021 Appl. Surf. Sci. 566 150684Google Scholar

    [47]

    Song Y M, He Y F, Li Y F, Wei H Y, Qiu P, Huang Q M, He Z Q, Die J H, Peng M Z, Zheng X H 2021 Cryst. Growth Des. 21 1778Google Scholar

    [48]

    Song Y M, Li Y F, He Y F, Wei H Y, Qiu P, Hu X T, Su Z L, Jiang Y, Peng M Z, Zheng X H 2022 ACS Appl. Mater. Interfaces 14 16866Google Scholar

    [49]

    Qiu P, Wei H Y, An Y L, Wu Q, Du W, Jiang Z, Zhou L, Gao C, Liu S J, He Y F, Song Y M, Peng M Z, Zheng X H 2020 Ceram. Int. 46 5765Google Scholar

    [50]

    Wei H Y, Wu J, Qiu P, Liu S J, He Y F, Peng M Z, Li D, Meng Q, Zaera F, Zheng X H 2019 J. Mater. Chem. A 7 25347Google Scholar

    [51]

    Qiu P, Wei H Y, Huang Q, Yu M, Hu Y, Zhu X, Liu H, Zheng X H 2023 Ceram. Int. 49 22030Google Scholar

    [52]

    Lee Y J, Kang S W 2004 Thin Solid Films 446 227Google Scholar

    [53]

    Liu S J, Peng M Z, Hou C, He Y F, Li M, Zheng X H 2017 Nanoscale Res. Lett. 12 279Google Scholar

    [54]

    Liu S J, Li Y F, Tao J, Tang R, Zheng X H 2023 Crystals 13 910

    [55]

    Zhang X Y, Peng D C, Han J, Ren F B, Jiang S C, Tseng M C, Ruan Y J, Zuo J, Wu W Y, Wuu D S, Huang C J, Lien S Y, Zhu W Z 2023 Surf. Interface 36 102589Google Scholar

    [56]

    Schilirò E, Giannazzo F, Bongiorno C, Di Franco S, Greco G, Roccaforte F, Prystawko P, Kruszewski P, Leszczyński M, Krysko M, Michon A, Cordier Y, Cora I, Pecz B, Gargouri H, Nigro R L 2019 Mat. Sci. Semicond. Process. 97 35Google Scholar

    [57]

    Gungor N, Alevli M 2022 J. Vac. Sci. Technol. A 40 022404Google Scholar

    [58]

    Strnad N A, Sarney W L, Rayner G B, Benoit R R, Fox G R, Rudy R Q, Larrabee T J, Shallenberger J, Pulskamp J S 2022 J. Vac. Sci. Technol. A 40 042403Google Scholar

    [59]

    Tian L, Ponton S, Benz M, Crisci A, Reboud R, Giusti G, Volpi F, Rapenne L, Vallée C, Pons M, Mantoux A, Jiménez C, Blanquet E 2018 Surf. Coat. Technol. 347 181Google Scholar

    [60]

    Kao W C, Lee W H, Yi S H, Shen T H, Lin H C, Chen M J 2019 RSC Adv. 9 12226Google Scholar

    [61]

    Seppanen H, Kim I, Etula J, Ubyivovk E, Bouravleuv A, Lipsanen H 2019 Materials 12 610

    [62]

    Kot M, Henkel K, Naumann F, Gargouri H, Lupina L, Wilker V, Kus P, Poz´arowska E, Garain S, Rouissi Z, Schmeißer D 2019 J. Vac. Sci. Technol. A 37 020913

    [63]

    Dallaev R, Sobola D, Tofel P, Škvarenina Ľ, Sedlák P 2020 Coatings 10 954

    [64]

    Legallais M, Mehdi H, David S, Bassani F, Labau S, Pelissier B, Baron T, Martinez E, Ghibaudo G, Salem B 2020 ACS Appl. Mater. Interfaces 12 39870Google Scholar

    [65]

    Mohammad A, Shukla D, Ilhom S, Willis B, Johs B, Okyay A K, Biyikli N 2019 J. Vac. Sci. Technol. A 37 020927Google Scholar

    [66]

    Ilhom S, Shukla D, Mohammad A, Grasso J, Willis B, Biyikli N 2020 J. Vac. Sci. Technol. A 38 022405Google Scholar

    [67]

    Yun H J, Kim H, Choi B J 2020 Ceram. Int. 46 13372Google Scholar

    [68]

    Jung Y C, Hwang S M, Le D N, Kondusamy A L N, Mohan J, Kim S W, Kim J H, Lucero A T, Ravichandran A, Kim H S, Kim S J, Choi R, Ahn J, Alvarez D, Spiegelman J, Kim J 2020 Materials 13 3387Google Scholar

    [69]

    Parkhomenko R G, De Luca O, Kolodziejczyk L, Modin E, Rudolf P, Martinez Martinez D, Cunha L, Knez M 2021 Dalton Trans. 50 15062Google Scholar

    [70]

    Tiwari C, Dixit A 2021 Appl. Phys. A 127 862

    [71]

    Liu X Y, Zhao S X, Zhang L Q, Huang H F, Shi J S, Zhang C M, Lu H L, Wang P F, Zhang D W 2015 Nanoscale Res. Lett. 10 109Google Scholar

    [72]

    Zhang L Q, Wang P F 2018 Jpn. J. Appl. Phys. 57 096502Google Scholar

    [73]

    Tzou A J, Chu K H, Lin I F, Ostreng E, Fang Y S, Wu X P, Wu B W, Shen C H, Shieh J M, Yeh W K, Chang C Y, Kuo H C 2017 Nanoscale Res. Lett. 12 315Google Scholar

    [74]

    Zhao S X, Liu X Y, Zhang L Q, Huang H F, Shi J S, Wang P F 2016 Nanoscale Res. Lett. 11 137Google Scholar

    [75]

    Kim K, Hua M, Liu D, Kim J, Chen K J, Ma Z 2018 Nano Energy 43 259Google Scholar

    [76]

    Chen S W H, Yang D R, You N J, Ho W C, Tzou J, Kuo H C, Shieh J M 2021 IEEE Trans. Nanotechnol. 20 489Google Scholar

    [77]

    Kim H, Kwon Y, Choi B J 2019 Thin Solid Films 670 41Google Scholar

    [78]

    Schiliro E, Giannazzo F, Di Franco S, Greco G, Fiorenza P, Roccaforte F, Prystawko P, Kruszewski P, Leszczynski M, Cora I, Pecz B, Fogarassy Z, Lo Nigro R 2021 Nanomaterials 11 3316Google Scholar

    [79]

    Kim H, Yun H J, Choi S, Choi B J 2020 Appl. Phys. A 126 449Google Scholar

    [80]

    Boris D R, Anderson V R, Nepal N, Johnson S D, Robinson Z R, Kozen A C, Eddy Jr. C R, Walton S G 2018 J. Vac. Sci. Technol. A 36 051503Google Scholar

    [81]

    Alevli M, Gungor N 2020 J. Vac. Sci. Technol. A 38 062407Google Scholar

    [82]

    Deminskyi P, Rouf P, Ivanov I G, Pedersen H 2019 J. Vac. Sci. Technol. A 37 020926Google Scholar

    [83]

    Ilhom S, Mohammad A, Shukla D, Grasso J, Willis B G, Okyay A K, Biyikli N 2020 RSC Adv. 10 27357Google Scholar

    [84]

    Woodward J M, Rosenberg S G, Boris D R, Johnson M J, Walton S G, Johnson S D, Robinson Z R, Nepal N, Ludwig K F, Hite J K, Eddy C R 2022 J. Vac. Sci. Technol. A 40 062405Google Scholar

    [85]

    Rouf P, O’Brien N J, Rönnby K, Samii R, Ivanov I G, Ojamäe L, Pedersen H 2019 J. Phys. Chem. C 123 25691Google Scholar

    [86]

    O’Brien N J, Rouf P, Samii R, Rönnby K, Buttera S C, Hsu C-W, Ivanov I G, Kessler V, Ojamäe L, Pedersen H 2020 Chem. Mater. 32 4481Google Scholar

    [87]

    Feng X C, Peng H, Gong J H, Wang W, Liu H, Quan Z J, Pan S, Wang L 2018 J. Appl. Phys. 124 243104Google Scholar

    [88]

    Peng H, Feng X C, Gong J H, Wang W, Liu H, Quan Z J, Pan S, Wang L 2018 Appl. Surf. Sci. 459 830Google Scholar

    [89]

    Woodward J M, Rosenberg S G, Kozen A C, Nepal N, Johnson S D, Wagenbach C, Rowley A H, Robinson Z R, Joress H, Ludwig K F, Eddy C R 2019 J. Vac. Sci. Technol. A 37 030901Google Scholar

    [90]

    Hsu C W, Deminskyi P, Martinovic I, Ivanov I G, Palisaitis J, Pedersen H 2020 Appl. Phys. Lett. 117 093101Google Scholar

    [91]

    An Y L, He Y F, Wei H Y, Liu S J, Li M, Song Y M, Qiu P, Rehman A, Zheng X H, Peng M Z 2019 Results Phys. 12 804Google Scholar

    [92]

    Ho I H, Stringfellow G B 1996 MRS Online Proc. Libr. 449 871Google Scholar

    [93]

    Surender S, Prabakaran K, Loganathan R, Pradeep S, Singh S, Baskar K 2017 J. Cryst. Growth 468 249Google Scholar

    [94]

    Huang Y 2012 J. Photon. Energy 2 028501Google Scholar

    [95]

    Haider A, Kizir S, Ozgit-Akgun C, Goldenberg E, Leghari S A, Okyay A K, Biyikli N 2015 J. Mater. Chem. C 3 9620Google Scholar

    [96]

    Rouf P, Palisaitis J, Bakhit B, O'Brien N J, Pedersen H 2021 J. Mater. Chem. C 9 13077Google Scholar

    [97]

    Ozgit-Akgun C, Goldenberg E, Okyay A K, Biyikli N 2014 J. Mater. Chem. C 2 2123Google Scholar

    [98]

    Nepal N, Anderson V R, Hite J K, Eddy C R 2015 Thin Solid Films 589 47Google Scholar

    [99]

    Portillo M C, Gallardo Hernández S, Panecatl Bernal Y, Martinez Velis I, Villanueva Cab J, Alcántara S, Alvarado J 2020 Opt. Mater. 108 110206Google Scholar

    [100]

    Choi S, Ansari A S, Yun H J, Kim H, Shong B, Choi B J 2021 J. Alloy. Compd. 854 157186Google Scholar

    [101]

    Kim H, Choi S, Choi B J 2020 Coatings 10 194Google Scholar

    [102]

    Kim H, Choi S, Choi B J 2020 Coatings 10 489Google Scholar

    [103]

    Kim H, Yun H J, Choi S, Choi B J 2020 Mater. Trans. 61 88Google Scholar

  • [1] 瞿子涵, 赵洋, 马飞, 游经碧. 原子层沉积金属氧化物缓冲层制备高性能大面积钙钛矿太阳电池. 物理学报, 2024, 73(9): 098802. doi: 10.7498/aps.73.20240218
    [2] 李中祥, 王淑亚, 黄自强, 王晨, 穆清. 原子级控制的约瑟夫森结中Al2O3势垒层制备工艺. 物理学报, 2022, 71(21): 218102. doi: 10.7498/aps.71.20220820
    [3] 郭秦敏, 秦志辉. 气相沉积技术在原子制造领域的发展与应用. 物理学报, 2021, 70(2): 028101. doi: 10.7498/aps.70.20201436
    [4] 李晔, 王茜茜, 卫会云, 仇鹏, 何荧峰, 宋祎萌, 段彰, 申诚涛, 彭铭曾, 郑新和. 原子层沉积的超薄InN强化量子点太阳能电池的界面输运. 物理学报, 2021, 70(18): 187702. doi: 10.7498/aps.70.20210554
    [5] 张宇河, 牛冬梅, 吕路, 谢海鹏, 朱孟龙, 张红, 刘鹏, 曹宁通, 高永立. 2,7-二辛基[1]苯并噻吩并[3,2-b]苯并噻吩在Cu(100)上的吸附生长以及能级结构演化. 物理学报, 2016, 65(15): 157901. doi: 10.7498/aps.65.157901
    [6] 李勇, 李惠琪, 夏洋, 刘邦武. 原子层沉积方法制备核-壳型纳米材料研究. 物理学报, 2013, 62(19): 198102. doi: 10.7498/aps.62.198102
    [7] 闫大为, 李丽莎, 焦晋平, 黄红娟, 任舰, 顾晓峰. 原子层沉积Al2O3/n-GaN MOS结构的电容特性. 物理学报, 2013, 62(19): 197203. doi: 10.7498/aps.62.197203
    [8] 董亚斌, 夏洋, 李超波, 卢维尔, 饶志鹏, 张阳, 张祥, 叶甜春. 原子层沉积法 生长ZnO的性质与前驱体源量的关系研究. 物理学报, 2013, 62(14): 147306. doi: 10.7498/aps.62.147306
    [9] 鲍善永, 董武军, 徐兴, 栾田宝, 李杰, 张庆瑜. 氧分压对Mg掺杂ZnO薄膜结晶质量和光学特性的影响. 物理学报, 2011, 60(3): 036804. doi: 10.7498/aps.60.036804
    [10] 孙玄, 黄煦, 王亚洲, 冯庆荣. MgB2 超薄膜的制备和性质研究. 物理学报, 2011, 60(8): 087401. doi: 10.7498/aps.60.087401
    [11] 任树洋, 任忠鸣, 任维丽. 晶粒尺寸对气相沉积薄膜磁取向生长的影响研究. 物理学报, 2011, 60(1): 016104. doi: 10.7498/aps.60.016104
    [12] 陆杭军, 吴锋民. 非均匀基底上三维薄膜生长的模拟研究. 物理学报, 2006, 55(1): 424-429. doi: 10.7498/aps.55.424
    [13] 李 勇, 孙成伟, 刘志文, 张庆瑜. 磁控溅射ZnO薄膜生长的等离子体发射光谱研究. 物理学报, 2006, 55(8): 4232-4237. doi: 10.7498/aps.55.4232
    [14] 杨 春, 余 毅, 李言荣, 刘永华. 温度对ZnO/Al2O3(0001)界面的吸附、扩散及生长初期模式的影响. 物理学报, 2005, 54(12): 5907-5913. doi: 10.7498/aps.54.5907
    [15] 谢国锋, 王德武, 应纯同. 改进的DLA方法模拟薄膜二维生长. 物理学报, 2005, 54(5): 2212-2219. doi: 10.7498/aps.54.2212
    [16] 郑小平, 张佩峰, 刘 军, 贺德衍, 马健泰. 薄膜外延生长的计算机模拟. 物理学报, 2004, 53(8): 2687-2693. doi: 10.7498/aps.53.2687
    [17] 王晓平, 谢 峰, 石勤伟, 赵特秀. 晶格失配对异质外延超薄膜生长中成核特性的影响. 物理学报, 2004, 53(8): 2699-2704. doi: 10.7498/aps.53.2699
    [18] 钱昌吉, 高国良, 李洪, 叶高翔. 无序杂质区域对沉积在胶体基底表面的金原子凝聚体分形结构的影响. 物理学报, 2002, 51(9): 1960-1964. doi: 10.7498/aps.51.1960
    [19] 陈敏, 魏合林, 刘祖黎, 姚凯伦. 沉积粒子能量对薄膜早期生长过程的影响. 物理学报, 2001, 50(12): 2446-2451. doi: 10.7498/aps.50.2446
    [20] 杨 宁, 陈光华, 张 阳, 公维宾, 朱鹤孙. 薄膜生长的理论模型与Monte Carlo模拟. 物理学报, 2000, 49(11): 2225-2229. doi: 10.7498/aps.49.2225
计量
  • 文章访问数:  2139
  • PDF下载量:  92
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-23
  • 修回日期:  2023-12-27
  • 上网日期:  2024-01-05
  • 刊出日期:  2024-02-05

/

返回文章
返回