搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种无偏差的多通道多尺度样本熵算法

李惟嘉 申晓红 李亚安

引用本文:
Citation:

一种无偏差的多通道多尺度样本熵算法

李惟嘉, 申晓红, 李亚安

Unbiased multivariate multiscale sample entropy

Li Wei-Jia, Shen Xiao-Hong, Li Ya-An
PDF
HTML
导出引用
  • 多通道数据采集技术的发展为复杂系统非线性动力学特性研究提供了更加丰富的先验信息. 然而传统的非线性特征量只能处理单通道数据, 无法直接提取多通道数据的非线性特征. 近年来, 有学者对多尺度样本熵算法进行了一般化处理, 提出了多通道多尺度样本熵算法. 该算法不仅可以对多通道数据整体的复杂度进行表征, 还可以有效提取通道内和通道间隐含的相关性信息. 但是, 该算法缺乏相应的理论支撑, 在实际应用中无法兼顾性能和稳定性. 针对以上问题, 本文提出了一种无偏差的多通道多尺度样本熵算法, 并利用概率论从理论上分析了多通道多尺度样本熵算法不稳定以及性能差的原因. 后续的仿真实验证明改进后的算法不但可以有效地提取通道内和通道间的相关性信息, 同时在处理复杂数据时表现出了良好的稳定性. 该算法为诸如模糊熵、排列熵等非线性特征量的算法一般化提供了思路和理论依据.
    The development of multi-channel data acquisition techniques has provided richer prior information for studying the nonlinear dynamic characteristics of complex systems. However, conventional nonlinear feature extraction algorithms prove unsuitable in the context of multi-channel data. Previously, the multivariate multiscale sample entropy (MMSE) algorithm was introduced for multi-channel data analysis. Although the MMSE algorithm generalized the multiscale sample entropy algorithm, presenting a novel method for multidimensional data analysis, it remains deficient in theoretical underpinning and suffers from shortcomings, such as missing cross-channel correlation information and having biased estimation results. In this paper, unbiased multivariate multiscale sample entropy algorithm (UMMSE) is proposed. UMMSE increases the embedding dimension from M to M + p. This increasing strategy facilitates the reconstruction of a deterministic phase space. By virtue of theoretical scrutiny grounded in probability theory and subsequent experimental validation, this paper illustrates the algorithm's effectiveness in extracting inter-channel correlation information through the integration of cross-channel conditional probabilities. The computation of similarities between sample points across different channels is recognized as a potential source of bias and instability in algorithms.Through simulation experiments, this study delineates the parameter selection range for the UMMSE algorithm. Subsequently, diverse simulation signals are employed to showcase the UMMSE algorithm’s efficacy in extracting both within-channel and cross-channel correlation information. Ultimately, this paper demonstrates that the new algorithm has the lowest computational cost compared with traditional MMSE algorithms.
      通信作者: 申晓红, xhshen@nwpu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11874302, 62031021)资助的课题.
      Corresponding author: Shen Xiao-Hong, xhshen@nwpu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11874302, 62031021).
    [1]

    Fowler A C, Gibbon J D, McGuinness M J 1982 Physica D 4 139Google Scholar

    [2]

    Gao Z, Jin N 2009 Chaos 19 033137Google Scholar

    [3]

    López C, Naranjo á, Lu S, Moore K 2022 J. Sound Vib. 528 116890Google Scholar

    [4]

    Wang Q B, Yang Y J, Zhang X 2020 Chaos, Solitons Fractals 137 109832Google Scholar

    [5]

    Kunze M 2007 Non-Smooth Dynamical Systems (Heidelberg: Springer Berlin) pp63–140

    [6]

    Zarei A, Asl B M 2018 IEEE J. Biomed. Health 23 1011Google Scholar

    [7]

    He H, Tan Y 2017 Appl. Soft Comput. 55 238Google Scholar

    [8]

    刘秉正, 彭建华 2004 非线性动力学(北京: 高等教育出版社) 第301—466页

    Liu B Z, Peng J H 2004 Nonlinear Dynamics (Beijing: Higher Education Press) pp301–466

    [9]

    Cranch G A, Nash P J, Kirkendall C K 2003 IEEE Sens. J. 3 19Google Scholar

    [10]

    Zhu X, Murch R D 2002 IEEE Trans. Commun. 50 187Google Scholar

    [11]

    Van Trees H L 2002 Optimum Array Processing: Part IV of Detection, Estimation, and Modulation Theory (New York: John Wiley and Sons)pp17-230

    [12]

    Eren F, Pe'eri S, Thein M W, Rzhanov Y, Celikkol B, Swift M R 2017 Sensors-Basel 17 1741Google Scholar

    [13]

    Shi Q Q, Li W, Tao R, Sun X, Gao L R 2019 Remote Sens-Basel 11 419Google Scholar

    [14]

    Xing X W, Ji K F, Zou H X, Chen W T, Sun J X 2013 IEEE Geosci. Remote Sens. Lett. 10 1562Google Scholar

    [15]

    Wang Z Y, Yao L G, Cai Y W 2020 Measurement 156 107574Google Scholar

    [16]

    Thuraisingham R A, Gottwald G A 2006 Physica A 366 323Google Scholar

    [17]

    Li W J, Shen X H, Li Y A 2019 Entropy-Switz 21 793Google Scholar

    [18]

    Pincus S M 1991 P. Natl. Acad. Sci. USA 88 2297Google Scholar

    [19]

    Richman J S, Moorman J R 2000 Am. J. Physiol-Heart. C 27 H2039

    [20]

    Bandt C, Pompe B 2002 Phys. Rev. Lett 88 174102Google Scholar

    [21]

    Costa M, Goldberger A L, Peng C K 2005 Phys. Rev. E 71 021906Google Scholar

    [22]

    Ahmed M U, Mandic D P 2011 Phys. Rev. E 84 061918Google Scholar

    [23]

    Li Y, Tang B, Jiao S, Zhou Y 2024 Chaos, Solitons Fractals 179 114436Google Scholar

    [24]

    Zhao C, Sun J, Lin S, Peng Y 2022 Measurement 195 111190Google Scholar

    [25]

    Cao L Y, Mees A, Judd K 1998 Physica D 121 75Google Scholar

    [26]

    Zhang Y C 1991 J. Phys. I France 1 971Google Scholar

    [27]

    Takens F 1980 Dynamical Systems and Turbulence (Heidelberg: Springer Berlin) p366

  • 图 1  无偏差的多通道多尺度样本熵算法参数选择 (a)数据长度; (b)嵌入维数; (c)阈值系数

    Fig. 1.  The parameter selection of the unbiased multivariate multiscale sample entropy algorithm: (a) Data length; (b) embedding dimension; (c) coefficient of the threshold.

    图 2  多通道高斯白噪声和$1/f$噪声的无偏差的多通道多尺度样本熵结果

    Fig. 2.  Unbiased multivariate multiscale sample entropy results for multivariate white noise and $1/f$ noise.

    图 3  相关高斯白噪声与不相关高斯白噪声的多通道多尺度样本熵结果 (a)朴素算法; (b)严格算法; (c)无偏差算法

    Fig. 3.  The entropy results of different MMSE algorithms processing correlated and uncorrelated white noise: (a) Naive MMSE result; (b) rigorous MMSE result; (c) unbiased multivariate multiscale sample entropy results.

    图 4  严格算法与无偏差的多通道多尺度样本熵算法稳定性分析 (a)通道间方差相同时的严格算法结果; (b)通道间方差不同时的严格算法结果; (c)通道间方差相同时的无偏差算法结果; (d)通道间方差不同时的无偏差算法结果

    Fig. 4.  The robustness analysis for the different multivariate entropy algorithms: (a) Rigorous MMSE result for the same variance of each channel; (b) rigorous MMSE result for the different variance of each channel; (c) unbiased multivariate multiscale sample entropy results for the same variance of each channel; (d) unbiased multivariate multiscale sample entropy result for the different variance of each channel.

    图 5  不同多通道熵算法的计算效率对比

    Fig. 5.  Comparison of computational cost of different multi-channel entropy algorithms.

    表 1  熵算法中涉及的事件及对应的符号

    Table 1.  Events involved in the entropy algorithm

    符号 事件
    A 通道1中长度为$m_{1}$的子序列相似
    B 通道2中长度为$m_{2}$的子序列相似
    C 通道1中长度为$m_{1}$的子序列在
    第$m_{1}+1$个样本点依然相似
    D 通道2中长度为$m_{2}$的子序列在
    第$m_{2}+1$个样本点依然相似
    下载: 导出CSV

    表 2  不同的嵌入维数所对应的事件

    Table 2.  Events corresponding to different embedding dimensions

    嵌入维数可能的结果$B^{M+i}(r)$
    $m_1$$m_1$$P({\rm{A}})$
    $m_1+1$$m_1+1$$P({\rm{AC}})$
    M$[m_{1}, m_{2}]$$P({\rm{AB}})$
    $M+1$$[m_{1}+1, m_{2}]$$P({\rm{ABC}})$
    $[m_{1}, m_{2}+1]$$P({\rm{ABD}})$
    $M+2$$[m_{1}+1, m_{2}+1]$$P({\rm{ABCD}})$
    下载: 导出CSV
  • [1]

    Fowler A C, Gibbon J D, McGuinness M J 1982 Physica D 4 139Google Scholar

    [2]

    Gao Z, Jin N 2009 Chaos 19 033137Google Scholar

    [3]

    López C, Naranjo á, Lu S, Moore K 2022 J. Sound Vib. 528 116890Google Scholar

    [4]

    Wang Q B, Yang Y J, Zhang X 2020 Chaos, Solitons Fractals 137 109832Google Scholar

    [5]

    Kunze M 2007 Non-Smooth Dynamical Systems (Heidelberg: Springer Berlin) pp63–140

    [6]

    Zarei A, Asl B M 2018 IEEE J. Biomed. Health 23 1011Google Scholar

    [7]

    He H, Tan Y 2017 Appl. Soft Comput. 55 238Google Scholar

    [8]

    刘秉正, 彭建华 2004 非线性动力学(北京: 高等教育出版社) 第301—466页

    Liu B Z, Peng J H 2004 Nonlinear Dynamics (Beijing: Higher Education Press) pp301–466

    [9]

    Cranch G A, Nash P J, Kirkendall C K 2003 IEEE Sens. J. 3 19Google Scholar

    [10]

    Zhu X, Murch R D 2002 IEEE Trans. Commun. 50 187Google Scholar

    [11]

    Van Trees H L 2002 Optimum Array Processing: Part IV of Detection, Estimation, and Modulation Theory (New York: John Wiley and Sons)pp17-230

    [12]

    Eren F, Pe'eri S, Thein M W, Rzhanov Y, Celikkol B, Swift M R 2017 Sensors-Basel 17 1741Google Scholar

    [13]

    Shi Q Q, Li W, Tao R, Sun X, Gao L R 2019 Remote Sens-Basel 11 419Google Scholar

    [14]

    Xing X W, Ji K F, Zou H X, Chen W T, Sun J X 2013 IEEE Geosci. Remote Sens. Lett. 10 1562Google Scholar

    [15]

    Wang Z Y, Yao L G, Cai Y W 2020 Measurement 156 107574Google Scholar

    [16]

    Thuraisingham R A, Gottwald G A 2006 Physica A 366 323Google Scholar

    [17]

    Li W J, Shen X H, Li Y A 2019 Entropy-Switz 21 793Google Scholar

    [18]

    Pincus S M 1991 P. Natl. Acad. Sci. USA 88 2297Google Scholar

    [19]

    Richman J S, Moorman J R 2000 Am. J. Physiol-Heart. C 27 H2039

    [20]

    Bandt C, Pompe B 2002 Phys. Rev. Lett 88 174102Google Scholar

    [21]

    Costa M, Goldberger A L, Peng C K 2005 Phys. Rev. E 71 021906Google Scholar

    [22]

    Ahmed M U, Mandic D P 2011 Phys. Rev. E 84 061918Google Scholar

    [23]

    Li Y, Tang B, Jiao S, Zhou Y 2024 Chaos, Solitons Fractals 179 114436Google Scholar

    [24]

    Zhao C, Sun J, Lin S, Peng Y 2022 Measurement 195 111190Google Scholar

    [25]

    Cao L Y, Mees A, Judd K 1998 Physica D 121 75Google Scholar

    [26]

    Zhang Y C 1991 J. Phys. I France 1 971Google Scholar

    [27]

    Takens F 1980 Dynamical Systems and Turbulence (Heidelberg: Springer Berlin) p366

  • [1] 胡恒儒, 龚志强, 王健, 乔盼节, 刘莉, 封国林. ENSO气温关联网络结构特征差异及成因分析. 物理学报, 2021, 70(24): 249201. doi: 10.7498/aps.70.20210825
    [2] 符晓倩, 吕思远, 王鹿霞. 双分子链中非线性多激子态的动力学研究. 物理学报, 2020, 69(19): 197301. doi: 10.7498/aps.69.20200104
    [3] 党小宇, 李洪涛, 袁泽世, 胡文. 基于数模混合的混沌映射实现. 物理学报, 2015, 64(16): 160501. doi: 10.7498/aps.64.160501
    [4] 于洁, 郭霞生, 屠娟, 章东. 超声造影剂微泡非线性动力学响应的机理及相关应用. 物理学报, 2015, 64(9): 094306. doi: 10.7498/aps.64.094306
    [5] 廖志贤, 罗晓曙. 基于小世界网络模型的光伏微网系统同步方法研究. 物理学报, 2014, 63(23): 230502. doi: 10.7498/aps.63.230502
    [6] 雷鹏飞, 张家忠, 王琢璞, 陈嘉辉. 非定常瞬态流动过程中的Lagrangian拟序结构与物质输运作用. 物理学报, 2014, 63(8): 084702. doi: 10.7498/aps.63.084702
    [7] 刘岩, 张文明, 仲作阳, 彭志科, 孟光. 光梯度力驱动纳谐振器的非线性动力学特性研究. 物理学报, 2014, 63(2): 026201. doi: 10.7498/aps.63.026201
    [8] 李鹏, 刘澄玉, 李丽萍, 纪丽珍, 于守元, 刘常春. 多尺度多变量模糊熵分析. 物理学报, 2013, 62(12): 120512. doi: 10.7498/aps.62.120512
    [9] 余洋, 米增强. 机械弹性储能机组储能过程非线性动力学模型与混沌特性. 物理学报, 2013, 62(3): 038403. doi: 10.7498/aps.62.038403
    [10] 唐荣荣. 一类多频激励相对转动非线性动力学模型的重正规化解. 物理学报, 2012, 61(20): 200201. doi: 10.7498/aps.61.200201
    [11] 王从庆, 吴鹏飞, 周鑫. 基于最小关节力矩优化的自由浮动空间刚柔耦合机械臂混沌动力学建模与控制. 物理学报, 2012, 61(23): 230503. doi: 10.7498/aps.61.230503
    [12] 郑安杰, 吴正茂, 邓涛, 李小坚, 夏光琼. 偏振保持光反馈下1550 nm垂直腔面发射激光器的非线性动力学特性研究. 物理学报, 2012, 61(23): 234203. doi: 10.7498/aps.61.234203
    [13] 郑桂波, 金宁德. 两相流流型多尺度熵及动力学特性分析. 物理学报, 2009, 58(7): 4485-4492. doi: 10.7498/aps.58.4485
    [14] 吕玉祥, 孙帅, 杨星. 基于光注入Fabry-Perot半导体激光器实现同步全光分路时钟提取与波长转换. 物理学报, 2009, 58(4): 2467-2475. doi: 10.7498/aps.58.2467
    [15] 董 芳, 金宁德, 宗艳波, 王振亚. 两相流流型动力学特征多尺度递归定量分析. 物理学报, 2008, 57(10): 6145-6154. doi: 10.7498/aps.57.6145
    [16] 陈 军, 徐 云, 陈栋泉, 孙锦山. 冲击作用下纳米孔洞动力学行为的多尺度方法模拟研究. 物理学报, 2008, 57(10): 6437-6443. doi: 10.7498/aps.57.6437
    [17] 牛生晓, 张明江, 安 义, 贺虎成, 李静霞, 王云才. 外光注入半导体激光器实现重复速率可调全光时钟分频. 物理学报, 2008, 57(11): 6998-7004. doi: 10.7498/aps.57.6998
    [18] 盛正卯, 王 庸, 马 健, 郑思波. 静电波对磁化等离子体的共振加热的理论及数值模拟研究. 物理学报, 2006, 55(3): 1301-1306. doi: 10.7498/aps.55.1301
    [19] 李新霞, 唐 翌. 阻尼作用下一维体系热传导性质的研究. 物理学报, 2006, 55(12): 6556-6561. doi: 10.7498/aps.55.6556
    [20] 姜可宇, 蔡志明. 变尺度概率净化法的优化. 物理学报, 2005, 54(10): 4596-4601. doi: 10.7498/aps.54.4596
计量
  • 文章访问数:  469
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-14
  • 修回日期:  2024-04-07
  • 上网日期:  2024-04-13
  • 刊出日期:  2024-06-05

/

返回文章
返回