搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

渐近安全引力下的黑洞阴影和光环

李慧玲 黄雨萌 杨承宇

引用本文:
Citation:

渐近安全引力下的黑洞阴影和光环

李慧玲, 黄雨萌, 杨承宇

Shadow and photon ring of black hole in asymptotically safe gravity

Li Hui-Ling, Huang Yu-Meng, Yang Cheng-Yu
PDF
HTML
导出引用
  • 重点讨论了薄盘吸积与渐近安全 (asymptotically safe, AS)引力修正参数对黑洞阴影和光环的影响. 对于薄盘吸积, 黑洞的暗区就是黑洞的阴影, 而明亮的光环则是由直接像、透镜环和光子环组成的. 对于吸积盘辐射源比强度, 考虑了3个不同辐射轮廓模型. 对辐射起始于最内圆轨道的二阶衰减函数模型, 直接像、透镜环和光子环可以明显区分. 直接像对黑洞光环亮度贡献最大, 透镜环对光环亮度贡献很小, 而光子环的贡献几乎可以忽略, 且对应观测强度的峰值随AS引力参数的增加而减小, 即对应光环亮度随修正参数的增大而变暗. 对于辐射起始于光子球半径的三阶衰减函数模型, 透镜环和光子环叠加在直接像上, 使观测强度出现新的极值. 这一极值随AS引力修正参数的增加而增加, 且使得黑洞光环的亮度更亮. 对辐射起始于事件视界的反三角衰减函数模型, 透镜环和光子环在直接像上的叠加范围更大, 观测到的光环更宽, 且AS引力参数值越小, 透镜环和光子环越难区分, 黑洞光环的亮度越大. 总之, 研究表明, 黑洞阴影半径的大小随AS修正参数的增加而减小, 对于不同的AS引力修正参数, 辐射源光强度、尤其是观测强度的辐射轮廓存在显著差异, 导致黑洞的阴影和亮环明显不同.
    In this paper, we discuss the influence of thin disk accretion and asymptotically safe (AS) gravity correction parameters on the shadow and photon ring of black hole. For the thin disk accretion, the dark region is the shadow of the black hole, and the bright photon ring is composed of direct image, lensing ring, and photon ring. For the specific intensity of the radiation source of the accretion disk, we consider three different emission profile models. For the second-order attenuation function model in which the emission starts from the innermost circular orbit, direct image, lensing ring, and photon ring can be clearly distinguished. The direct image contributes most of the brightness, and the lensing ring contributes a small portion, while the contribution of the photon ring can almost be ignored. And the observed corresponding intensity peak decreases with the increase of the AS gravity parameter, that is, the corresponding brightness of the photon ring darkens as correction parameter increases. For the third-order attenuation function model in which the emission begins at the radius of the photon sphere, lensing ring and photon ring are superimposed on the direct radiation. Thus a new extreme value of the observed intensity emerges, and the extreme value increases with the increase of the AS gravity parameter, which leads to a brighter observed photon ring. For the anti-trigonometric attenuation function model in which the radiation starts from the event horizon, the superposition range of lensing ring and photon ring on the direct radiation becomes larger, which makes photon ring wider. The smaller the AS gravity parameter, the more difficult it is to distinguish between the lensing ring and photon ring, and the brighter the photon ring turns. In short, the results show that the shadow radius decreases with the increase of the AS correction parameter. For different AS gravity correction parameters, the light intensities of emission source, especially emission profiles of the observed intensity are significantly different, resulting in obvious differences in observed emission intensity between the shadow of the black hole and the bright photon ring of the black hole.
      通信作者: 李慧玲, LHL51759@126.com
    • 基金项目: 国家自然科学基金(批准号: 11703018)和辽宁省教育厅高等学校基本科研项目(批准号: LJKM20221474)资助的课题.
      Corresponding author: Li Hui-Ling, LHL51759@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11703018) and the Basic Science Research Project of Education Department of Liaoning Province, China (Grant No. LJKM20221474).
    [1]

    Akiyama K, Alberdi A, Alef W, et al. 2019 Astrophys. J. 875 L1Google Scholar

    [2]

    Luminet J P 1979 Astron. Astrophys. 75 228

    [3]

    Bardeen J M 1973 Black Holes (New York: Gordon and Breach) pp215–239

    [4]

    Darwin C G 1959 Proc. R. Soc. London, Ser. A 249 180Google Scholar

    [5]

    Gan Q, Wang P, Wu H, et al. 2021 Phys. Rev. D 104 044049Google Scholar

    [6]

    Gralla S E, Lupsasca A, Marrone D P 2020 Phys. Rev. D 102 124004Google Scholar

    [7]

    Himwich E, Johnson M D, Lupsasca A, et al. 2020 Phys. Rev. D 101 084020Google Scholar

    [8]

    Guo M, Zhong Z, Wang J, et al. 2022 Phys. Rev. D 105 024049Google Scholar

    [9]

    Gralla S E, Holz D E, Wald R M 2019 Phys. Rev. D 100 024018Google Scholar

    [10]

    Perlick V, Tsupko O Y, Bisnovatyi-Kogan G S 2015 Phys. Rev. D 92 104031Google Scholar

    [11]

    Chael A, Johson M D, Lupsasca A 2021 Astrophys. J. 918 6Google Scholar

    [12]

    Hou Y, Zhang Z, Yan H, Guo M, Chen B 2022 Phys. Rev. D 106 064058Google Scholar

    [13]

    Zeng X X, Zhang H Q 2020 Eur. Phys. J. C 80 1058Google Scholar

    [14]

    Zeng X X, He K J, Li G P 2022 Sci. China-Phys. Mech. Astron. 65 290411Google Scholar

    [15]

    Cunha P V P, Eiro N A, Herdeiro C A R, Lemos J P S 2020 JCAP 03 035

    [16]

    Li P C, Guo M, Chen B 2020 Phys. Rev. D 101 084041Google Scholar

    [17]

    Zeng X X, Zhang H Q, Zhang H 2020 Eur. Phys. J. C 80 1Google Scholar

    [18]

    He K J, Guo S, Tan S C, et al. 2022 Chin. Phys. C 46 085106Google Scholar

    [19]

    Zeng X X, Li G P, He K J 2022 Nucl. Phys. B 974 115639Google Scholar

    [20]

    Li G P, He K J 2021 Eur. Phys. J. C 81 1018Google Scholar

    [21]

    高思杰, 郭敏勇, 马永革等 2022 中国科学 52 270002

    Gao S J, Guo M Y, Ma Y G, et al. 2022 Sci. China-Phy Mech. Astron. 52 270002

    [22]

    袁业飞, 唐泽源 2019 科学通报 64 2072

    Yuan Y F, Tang Z Y 2019 Sci. Bull. 64 2072

    [23]

    吴学兵 2019 科学通报 64 2082

    Wu X B 2019 Sci. Bull. 64 2082

    [24]

    Chakhchi L, El Moumni H, Masmar K 2022 Phys. Rev. D 105 064031Google Scholar

    [25]

    Broderick A E, Tiede P, Pesce D W, et al. 2022 The Astrophys. J. 927 6Google Scholar

    [26]

    Broderick A E, Pesce D W, Gold R, et al. 2022 Astrophys. J. 935 61Google Scholar

    [27]

    Guo Y, Miao Y G 2022 Nucl. Phys. B 983 115938Google Scholar

    [28]

    Palumbo D C M, Wong G N 2022 Astrophys. J. 929 49Google Scholar

    [29]

    Ashtekar A 1986 Phys. Rev. Lett. 57 2244Google Scholar

    [30]

    Ashtekar A 1987 Phys. Rev. D 36 1587Google Scholar

    [31]

    Ashtekar A, Baez J, Corichi A, et al. 1998 Phys. Rev. Lett. 80 904Google Scholar

    [32]

    Perez A 2003 Classical Quantum Gravity 20 R43Google Scholar

    [33]

    Green M B, Schwarz J H 1984 Phys. Lett. B 149 117Google Scholar

    [34]

    Candelas P, Horowitz G T, Strominger A, et al. 1985 Nucl. Phys. B 258 46Google Scholar

    [35]

    Weinberg S 1979 In General Relativity: An Einstein Centenary Survey (Cambridge: Cambridge University Press) pp790–831

    [36]

    Bonanno A, Reuter M 1999 Phys. Rev. D 60 084011

    [37]

    Ma M S 2014 Phys. Lett. B 735 45Google Scholar

    [38]

    Yang R 2015 Phys. Rev. D 92 084011Google Scholar

    [39]

    Cai Y F, Easson D A 2010 JCAP 09 002

    [40]

    Zuluaga F H, Sánchez L A 2021 Eur. Phys. J. C 81 1Google Scholar

    [41]

    Bambi C 2013 Phys. Rev. D 87 107501Google Scholar

  • 图 1  在AS引力下的黑洞的有效势图像, 区域1对应$U(r) < 1/b_{\mathrm{p}}^2$, 区域2对应$U(r) = 1/b_{\mathrm{p}}^2$, 区域3对应$U(r) > 1/b_{\mathrm{p}}^2$: (a) ξ = 0.05, (b) ξ = 0.9

    Fig. 1.  In the effective potential image of the black hole under AS gravity, region 1 corresponds to $U(r) < 1/b_{\mathrm{p}}^2$, region 2 corresponds to $U(r) = 1/b_{\mathrm{p}}^2$, and region 3 corresponds to $U(r) > 1/b_{\mathrm{p}}^2$: (a) ξ = 0.05, (b) ξ = 0.9.

    图 2  极坐标($r, \varphi $)下和光轨迹图像. 蓝线代表$b = {b_{{\mathrm{p}}}}$, 灰线代表$b < {b_{{\mathrm{p}}}}$, 橙色线代表$b > {b_{{\mathrm{p}}}}$. 所有光线的入射参数的间距为0.2, 黑洞用黑色实心圆盘表示 (a) ξ = 0.05; (b) ξ = 0.9

    Fig. 2.  Tracks of light ray in polar coordinates $(r, \varphi )$. Blue line represents $b = {b_{{\mathrm{p}}}}$, gray line represents $b < {b_{{\mathrm{p}}}}$, and orange line represents $b > {b_{{\mathrm{p}}}}$. The impact parameters for all rays have a spacing of 0.2, black holes are represented by black disks: (a) ξ = 0.05; (b) ξ = 0.9.

    图 3  (a), (b)极坐标$(r, \varphi )$下光的运动轨迹; (c), (d) $n = \varphi /2\pi$与b之间的关系. 对于直接像(绿色)、透镜环(橘色)和光子环(紫色)对应的光线, 入射参数的间距分别为$1/5$, $1/100$, $1/1000$. 黑色的圆盘代表黑洞 (a), (c) ξ = 0.05; (b), (d) ξ = 0.9

    Fig. 3.  (a), (b) Trajectory of light in the polar coordinate $ (r, \varphi) $; (c), (d) relationship between $n = \varphi / 2\pi$ and b. For the direct radiation (green), lensing ring (orange) and photon ring (purple), the spacing of the collision parameters is $1 / 5$, $1 / 100$ and $1 / 1000$ respectively. Black disks represent black holes: (a), (c) ξ = 0.05; (b), (d) ξ = 0.9.

    图 4  不同ξ下的转移函数图像 (a) ξ = 0.05; (b) ξ = 0.9

    Fig. 4.  Transfer function image for different values of ξ: (a) ξ = 0.05; (b) ξ = 0.9.

    图 5  模型1下的吸积盘比辐射强度轮廓(a), (d), 观察者的观测强度轮廓(b), (e)以及黑洞图像(c), (f) (a)—(c)$\xi=0.05$; (d)—(f) $\xi=0.9$

    Fig. 5.  Under model 1, the specific intensity profile of accretion disk (a), (d), observed intensity profile (b), (e), as well as the black hole image (c), (f): (a)–(c) $\xi=0.05$; (d)–(f) $\xi=0.9$.

    图 6  模型2下的吸积物质比辐射强度轮廓(a), (d), 观察者的观测强度轮廓(b), (e)以及黑洞图像(c), (f) (a)—(c)$\xi=0.05$; (d)—(f) $\xi=0.9$

    Fig. 6.  Under model 2, the specific intensity profile of accretion disk (a), (d), the observed intensity profile (b), (e), as well as the black hole image (c), (f): (a)–(c) $\xi=0.05$; (d)–(f) $\xi=0.9$.

    图 7  模型3下辐射源吸积盘比辐射强度轮廓(a), (d), 观察者的观测强度轮廓(b), (e)以及黑洞图像(c), (f) (a)—(c) $\xi=0.05$; (d)—(f) $\xi=0.9$

    Fig. 7.  Under the model 3, the specific intensity profile of accretion disk (a), (d), the observed intensity profile (b), (e), as well as the black hole image (c), (f): (a)–(c) $\xi=0.05$; (d)–(f) $\xi=0.9$.

    表 1  不同ξ下事件视界${r_ + }$、光子球半径${r_{{\mathrm{p}}}}$和光子球处入射参数${b_{{\mathrm{p}}}}$

    Table 1.  Event horizon ${r_ + }$, photon sphere radius ${r_{{\mathrm{p}}}}$, and incident parameters at the photon sphere ${b_{{\mathrm{p}}}}$ for different ξ.

    $\xi = 0.01$ $\xi = 0.05$ $\xi = 0.1$ $\xi = 0.3$ $\xi = 0.6$ $\xi = 0.9$
    ${r_ + }$ 1.99499 1.97468 1.94868 1.83666 1.63246 1.31623
    ${r_{{\mathrm{p}}}}$ 2.99443 2.97192 2.9432 2.821 2.60777 2.32892
    ${b_{{\mathrm{p}}}}$ 5.19037 5.16701 5.13731 5.0121 4.79933 4.53738
    下载: 导出CSV
  • [1]

    Akiyama K, Alberdi A, Alef W, et al. 2019 Astrophys. J. 875 L1Google Scholar

    [2]

    Luminet J P 1979 Astron. Astrophys. 75 228

    [3]

    Bardeen J M 1973 Black Holes (New York: Gordon and Breach) pp215–239

    [4]

    Darwin C G 1959 Proc. R. Soc. London, Ser. A 249 180Google Scholar

    [5]

    Gan Q, Wang P, Wu H, et al. 2021 Phys. Rev. D 104 044049Google Scholar

    [6]

    Gralla S E, Lupsasca A, Marrone D P 2020 Phys. Rev. D 102 124004Google Scholar

    [7]

    Himwich E, Johnson M D, Lupsasca A, et al. 2020 Phys. Rev. D 101 084020Google Scholar

    [8]

    Guo M, Zhong Z, Wang J, et al. 2022 Phys. Rev. D 105 024049Google Scholar

    [9]

    Gralla S E, Holz D E, Wald R M 2019 Phys. Rev. D 100 024018Google Scholar

    [10]

    Perlick V, Tsupko O Y, Bisnovatyi-Kogan G S 2015 Phys. Rev. D 92 104031Google Scholar

    [11]

    Chael A, Johson M D, Lupsasca A 2021 Astrophys. J. 918 6Google Scholar

    [12]

    Hou Y, Zhang Z, Yan H, Guo M, Chen B 2022 Phys. Rev. D 106 064058Google Scholar

    [13]

    Zeng X X, Zhang H Q 2020 Eur. Phys. J. C 80 1058Google Scholar

    [14]

    Zeng X X, He K J, Li G P 2022 Sci. China-Phys. Mech. Astron. 65 290411Google Scholar

    [15]

    Cunha P V P, Eiro N A, Herdeiro C A R, Lemos J P S 2020 JCAP 03 035

    [16]

    Li P C, Guo M, Chen B 2020 Phys. Rev. D 101 084041Google Scholar

    [17]

    Zeng X X, Zhang H Q, Zhang H 2020 Eur. Phys. J. C 80 1Google Scholar

    [18]

    He K J, Guo S, Tan S C, et al. 2022 Chin. Phys. C 46 085106Google Scholar

    [19]

    Zeng X X, Li G P, He K J 2022 Nucl. Phys. B 974 115639Google Scholar

    [20]

    Li G P, He K J 2021 Eur. Phys. J. C 81 1018Google Scholar

    [21]

    高思杰, 郭敏勇, 马永革等 2022 中国科学 52 270002

    Gao S J, Guo M Y, Ma Y G, et al. 2022 Sci. China-Phy Mech. Astron. 52 270002

    [22]

    袁业飞, 唐泽源 2019 科学通报 64 2072

    Yuan Y F, Tang Z Y 2019 Sci. Bull. 64 2072

    [23]

    吴学兵 2019 科学通报 64 2082

    Wu X B 2019 Sci. Bull. 64 2082

    [24]

    Chakhchi L, El Moumni H, Masmar K 2022 Phys. Rev. D 105 064031Google Scholar

    [25]

    Broderick A E, Tiede P, Pesce D W, et al. 2022 The Astrophys. J. 927 6Google Scholar

    [26]

    Broderick A E, Pesce D W, Gold R, et al. 2022 Astrophys. J. 935 61Google Scholar

    [27]

    Guo Y, Miao Y G 2022 Nucl. Phys. B 983 115938Google Scholar

    [28]

    Palumbo D C M, Wong G N 2022 Astrophys. J. 929 49Google Scholar

    [29]

    Ashtekar A 1986 Phys. Rev. Lett. 57 2244Google Scholar

    [30]

    Ashtekar A 1987 Phys. Rev. D 36 1587Google Scholar

    [31]

    Ashtekar A, Baez J, Corichi A, et al. 1998 Phys. Rev. Lett. 80 904Google Scholar

    [32]

    Perez A 2003 Classical Quantum Gravity 20 R43Google Scholar

    [33]

    Green M B, Schwarz J H 1984 Phys. Lett. B 149 117Google Scholar

    [34]

    Candelas P, Horowitz G T, Strominger A, et al. 1985 Nucl. Phys. B 258 46Google Scholar

    [35]

    Weinberg S 1979 In General Relativity: An Einstein Centenary Survey (Cambridge: Cambridge University Press) pp790–831

    [36]

    Bonanno A, Reuter M 1999 Phys. Rev. D 60 084011

    [37]

    Ma M S 2014 Phys. Lett. B 735 45Google Scholar

    [38]

    Yang R 2015 Phys. Rev. D 92 084011Google Scholar

    [39]

    Cai Y F, Easson D A 2010 JCAP 09 002

    [40]

    Zuluaga F H, Sánchez L A 2021 Eur. Phys. J. C 81 1Google Scholar

    [41]

    Bambi C 2013 Phys. Rev. D 87 107501Google Scholar

  • [1] 谭霞, 杨树政. Einstein-Bumblebee引力理论中的Kerr-Sen-like黑洞玻色子隧穿辐射. 物理学报, 2024, 73(4): 040401. doi: 10.7498/aps.73.20231463
    [2] 强琪超, 彭智谦, 郜青. S-dual模型产生的原初黑洞和次级引力波. 物理学报, 2023, 72(16): 160401. doi: 10.7498/aps.72.20230605
    [3] 李军依, 叶玉儿, 凌晨, 李林, 刘泱, 夏勇. 超透镜聚焦光环的产生及其在冷分子光学囚禁中的应用. 物理学报, 2021, 70(16): 167802. doi: 10.7498/aps.70.20210443
    [4] 王琛, 安红海, 方智恒, 熊俊, 王伟, 孙今人. 软X射线激光背光阴影成像技术的空间分辨研究. 物理学报, 2018, 67(1): 015203. doi: 10.7498/aps.67.20171124
    [5] 刘成周, 邓岳君, 骆叶成. 引力彩虹时空中Kerr黑洞的熵谱和面积谱. 物理学报, 2018, 67(6): 060401. doi: 10.7498/aps.67.20172374
    [6] 盛亮, 彭博栋, 袁媛, 张美, 李奎念, 张信军, 赵晨, 赵吉祯, 李沫, 王培伟, 李阳. 表面绝缘混合平面丝阵Z箍缩激光阴影图像诊断. 物理学报, 2014, 63(23): 235205. doi: 10.7498/aps.63.235205
    [7] 陈法新, 冯璟华, 李林波, 杨建伦, 周林, 徐荣昆, 许泽平. Z箍缩动态黑腔阴影像诊断研究. 物理学报, 2013, 62(4): 045204. doi: 10.7498/aps.62.045204
    [8] 王凯, 林伟, 刘元琼, 谢端, 黎军, 马坤全, 唐永建, 雷海乐. 背光阴影成像表征降温速率对ICF冷冻冰层均化的影响. 物理学报, 2012, 61(19): 195204. doi: 10.7498/aps.61.195204
    [9] 邵建舟, 王永久. 整体单极子黑洞引力场中的加速效应. 物理学报, 2012, 61(11): 110402. doi: 10.7498/aps.61.110402
    [10] 王琛, 郑无敌, 方智恒, 孙今人, 王伟, 熊俊, 傅思祖, 顾援, 王世绩, 乔秀梅, 张国平. X射线激光对激光烧蚀薄片靶的阴影成像研究. 物理学报, 2010, 59(7): 4767-4773. doi: 10.7498/aps.59.4767
    [11] 刘成周, 余国祥, 谢志堃. 用圈量子引力解除Schwarichild-de Sitter黑洞的时空奇点. 物理学报, 2010, 59(3): 1487-1493. doi: 10.7498/aps.59.1487
    [12] 赵 仁, 张丽春, 李怀繁. 黑洞的Hawking辐射. 物理学报, 2008, 57(12): 7463-7466. doi: 10.7498/aps.57.7463
    [13] 赵 仁, 张丽春, 张胜利. 正则黑洞熵. 物理学报, 2007, 56(7): 3719-3722. doi: 10.7498/aps.56.3719
    [14] 赵 仁, 张丽春, 胡双启. 黑洞的统计熵. 物理学报, 2006, 55(8): 3902-3905. doi: 10.7498/aps.55.3902
    [15] 王 真, 杨建伦, 徐荣昆, 李林波, 许泽平, 章法强, 钟耀华. 用于Z-pinch诊断的266nm激光探针分幅阴影成像系统. 物理学报, 2006, 55(11): 5942-5946. doi: 10.7498/aps.55.5942
    [16] 孙鸣超. 起源于引力场的Vaidya-Bonner-de Sitter黑洞的量子熵. 物理学报, 2003, 52(6): 1350-1353. doi: 10.7498/aps.52.1350
    [17] 陈菊华, 王永久. 极端荷电黑洞引力场中的轨道动力学. 物理学报, 2001, 50(10): 1833-1836. doi: 10.7498/aps.50.1833
    [18] 李传安. 黑洞的视界面公式. 物理学报, 2000, 49(8): 1648-1651. doi: 10.7498/aps.49.1648
    [19] 赵峥, 刘文彪, 蒋亚铃. 黑洞碰撞的模拟. 物理学报, 2000, 49(3): 586-591. doi: 10.7498/aps.49.586
    [20] 林尊琪, 张燕珍, 毕无忌, 陆海鹤, 何兴法, 赵志文, 韦小春, 施阿英, 王笑琴, 林康春, 李家明, 董骐. 激光内爆靶的四分幅X射线阴影成像诊断实验和理论模拟. 物理学报, 1988, 37(1): 20-28. doi: 10.7498/aps.37.20
计量
  • 文章访问数:  2271
  • PDF下载量:  96
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-29
  • 修回日期:  2023-08-28
  • 上网日期:  2023-10-08
  • 刊出日期:  2024-01-05

/

返回文章
返回