搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

地基引力波探测激光干涉仪的真空残余气体噪声分析

郭禧庆 周静 王晨曦 秦琛 郭成哲 李刚 张鹏飞 张天才

引用本文:
Citation:

地基引力波探测激光干涉仪的真空残余气体噪声分析

郭禧庆, 周静, 王晨曦, 秦琛, 郭成哲, 李刚, 张鹏飞, 张天才

Residual gas noises in vacuum of optical interferometer for ground-based gravitational wave detection

Guo Xi-Qing, Zhou Jing, Wang Chen-Xi, Qin Chen, Guo Cheng-Zhe, Li Gang, Zhang Peng-Fei, Zhang Tian-Cai
PDF
HTML
导出引用
  • 引力波是时空弯曲产生的涟漪波动. 引力波探测对促进人类认识自然和科学技术进步均具有深远意义. 由于引力波信号非常微弱, 地基引力波探测器需要超高真空环境来保证激光干涉仪的稳定运行. 本文阐述了残余气体噪声对地基引力波探测装置灵敏度的影响, 并从第三代地基引力波探测原型机和全尺寸装置的真空系统设计出发, 通过理论分析和模拟, 给出真空系统压强、环境温度、残余气体质量和种类、测试质量的曲率半径等因素对引力波探测灵敏度的影响. 这为引力波探测原型机和全尺寸装置的真空系统设计和建设提供了重要的理论依据.
    Gravitational waves (GWs) are ripples in spacetime caused by most violent and energetic processes in the universe, such as the rapid motion of massive celestial bodies. The GWs carry energy when they propagate through the universe. The detection of GWs holds significance for advancing human understanding of the nature and driving scientific and technological progress. The continual upgrading and optimizing of GW detectors offer novel avenues for cosmic measurements. However, ground-based GW detectors based on a large interferometer necessitate addressing various noises which are harmful to the sensitivity of the GW detectors. Among these noises, the noise from residual gas in the light beam of the interferometer is a crucial factor to affect the sensitivity. Consequently, it is necessary to establish a vacuum system to shield the laser interferometer from the effects of gas flow. This paper focuses on China’s third-generation ground-based GWs detector, conducting theoretical analysis of the influence of residual gas noise on both a 20-meter arm-length prototype and a full-scale device with a 10-kilometer arm-length. In this paper, a theoretical model for the residual gas particles passing through the laser beam is established and the effect on the beam phase is analyzed. The theoretical simulations are performed to discover the relations between the residual gas noise and significant parameters such as gas pressure of the vacuum system, temperature, mass of residual gas particles, polarization rate of the residual gas, and the curvature radius of the test mass. The simulations indicate that when the residual gas pressure is below 2×10–6 Pa, the GW detector can achieve the enough sensitivity, 10–24 Hz–1/2, in a frequency range from 10 to 103 Hz. The findings of this research offer crucial theoretical insights for designing and constructing the vacuum systems in future third-generation GWs detector prototypes and full-scale devices.
      通信作者: 张鹏飞, zhangpengfei@sxu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11974223, 11974225, 12104277, 12104278)资助的课题.
      Corresponding author: Zhang Peng-Fei, zhangpengfei@sxu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974223, 11974225, 12104277, 12104278).
    [1]

    郭宗宽, 蔡荣根, 张元仲 2016 科技导报 34 30Google Scholar

    Guo Z K, Cai R G, Zhang Y Z 2016 Sci. Technol. Rev. 34 30Google Scholar

    [2]

    Accadia T, Acernese F, Antonucci F, et al. 2010 Class. Quantum Grav. 27 194011Google Scholar

    [3]

    Ringwald A, Tamarit C 2022 Phys. Rev. D 106 063027Google Scholar

    [4]

    吴树范, 王楠, 龚德仁 2020 深空探测学报 7 118Google Scholar

    Wu S F, Wang N, Gong D R 2020 J. Deep Sp. Explor. 7 118Google Scholar

    [5]

    Clubley D A, Skeldon K D, Newton G P, Barr B W, Strain K A, Hough J 2001 Phys. Lett. A 287 62Google Scholar

    [6]

    Zhao C, Blair D G, Barrigo P, et al. 2006 Proceedings of the 6th Edoardo Amaldi Conference on Gravitational Waves Bankoku Shinryoukan, Okinawa, Japan, June 20–24, 2005 p368

    [7]

    Takahashi R, Saito Y, Fukushima M, Ando M, Arai K, Tatsumi D, Heinzel G, Kawamura S, Yamazaki T, Moriwaki S 2002 J. Vac. Sci. Technol. A 20 1237Google Scholar

    [8]

    Goßler S, Bertolini A, Born M, Chen Y, Dahl K, Gering D, Gräf C, Heinzel G, Hild S, Kawazoe F, Kranz O, Kühn G, Lück H, Mossavi K, Schnabel R, Somiya K, Strain K A, Taylor J R, Wanner A, Westphal T, Willke B, Danzmann K 2010 Classical Quantum Grav. 27 084023Google Scholar

    [9]

    Hild S, Grote H, Smith J R, Hewitson M 2006 Proceedings of the 6th Edoardo Amaldi Conference on Gravitational Waves Bankoku Shinryoukan, Okinawa, Japan, June 20–24, 2005 p66

    [10]

    Acernese F, Adams T, Agathos M, et al. 2015 Proceedings of the 10th International LISA Symposium Florida, United States, May 18–23, 2014 p1

    [11]

    Abbott B P, Abbott R, Adhikari R, et al. 2009 Rep. Prog. Phys. 72 076901Google Scholar

    [12]

    Martynov D V, Hall E D, Abbott B P, et al. 2016 Phys. Rev. D 93 112004Google Scholar

    [13]

    Acernese F, Agathos M, Aiello L, et al. 2020 Phys. Rev. Lett. 125 131101Google Scholar

    [14]

    Dooley K L, Leong J R, Adams T, Affeldt C, Bisht A, Bogan C, Degallaix J, Gräf C, Hild S, Hough J, Khalaidovski A, Lastzka N, Lough J, Lück H, Macleod D, Nuttall L, Prijatelj M, Schnabel R, Schreiber E, Slutsky J, Sorazu B, Strain K A, Vahlbruch H, Wąs M, Willke B, Wittel H, Danzmann K, Grote H 2016 Classical Quantum Grav. 33 075009Google Scholar

    [15]

    Aso Y, Michimura Y, Somiya K, Ando M, Miyakawa O, Sekiguchi T, Tatsumi D, Yamamoto H 2013 Phys. Rev. D 88 043007Google Scholar

    [16]

    Hall E D, Kuns K, Smith J R, Bai Y, Wipf C, Biscans S, Adhikari R X, Arai K, Ballmer S, Barsotti L 2021 Phys. Rev. D 103 122004Google Scholar

    [17]

    Grado A, Tofani E, Angelucci M, Cimino R, Gargiulo J, Getman F, Liedl A, Limatola L, Mennella V, Pasqualetti A, Ricci F, Sentenac D, Spallino L 2023 J. Vac. Sci. Technol. B 41 024201Google Scholar

    [18]

    Adhikari, Rana X 2014 Rev. Mod. Phys. 86 121Google Scholar

    [19]

    Kawamura S, Ando M, Seto N, et al. 2011 Class. Quantum Grav. 28 094011Google Scholar

    [20]

    Georgiadis A, Rogier H, Roselli L, Arcioni P 2012 Microwave and Millimeter Wave Circuits and Systems: Emerging Design, Technologies and Applications (Germany: John Wiley & Sons) pp5–25

    [21]

    Li Z X, Gao H, Ding X H, Wang G J, Zhang B 2018 Nat. Commun. 9 3833Google Scholar

    [22]

    刘志远 2016 科技导报 34 2

    Liu Z Y 2016 Sci. Technol. Rev. 34 2

    [23]

    罗子人, 张敏, 靳刚, 吴岳良, 胡文瑞 2020 深空探测学报 7 3Google Scholar

    Luo Z R, Zhang M, Jin G, Wu Y L, Hu W R 2020 J. Deep Sp. Explor. 7 3Google Scholar

    [24]

    Schumaker B L, Caves C M Proceedings of the 5th Rochester Conference on Coherence and Quantum Optics Rochester, USA, June 13–15, 1983 p743

    [25]

    Gillespie A, Raab F 1995 Phys. Rev. D 52 577Google Scholar

    [26]

    Saulson P R 1990 Phys. Rev. D 42 2437Google Scholar

    [27]

    Hughes S A, Thorne K S 1998 Phys. Rev. D 58 122002Google Scholar

    [28]

    Zucker M E, Whitcomb S E 1996 Proceedings of the 7th Marcel Grossman Meeting on Recent Developments in Theoretical and Experimental General Relativity, Gravitation, and Relativistic Field Theories California, USA, July 24–30, 1994 p1434

    [29]

    Harms J, Paik H J 2015 Phys. Rev. D 92 022001Google Scholar

    [30]

    王运永, 朱宗宏 2019 现代物理知识 31 56Google Scholar

    Wang Y Y, Zhu Z H 2019 Mod. Phys. 31 56Google Scholar

    [31]

    严宇钊, 杨明, 姜万录 2019 电子测量技术 42 8Google Scholar

    Yan Y Z, Yang M, Jiang W L 2019 Electron. Meas. Technol. 42 8Google Scholar

    [32]

    Patel J, Woolley A, Zhao C, Ju L, Blair D G 2010 Vacuum 85 176Google Scholar

    [33]

    李庆回, 李卫, 孙瑜, 王雅君, 田龙, 陈力荣, 张鹏飞, 郑耀辉 2022 物理学报 71 164203Google Scholar

    Li Q H, Li W, Sun Y, Wang Y J, Tian L, Chen L R, Zhang P F, Zheng Y H 2022 Acta Phys. Sin. 71 164203Google Scholar

    [34]

    张天才, 郑耀辉, 牛家树 2022 新兴科学和技术趋势 1 10

    Zhang T C, Zheng Y H, Niu J S 2022 Emerging Sci. Technol. 1 10

    [35]

    王运永, 朱兴江, 刘见, 马宇波, 朱宗宏, 曹军威, 都志辉, 王小鸽, 钱进, 殷聪, 刘忠有 2014 天文学进展 32 348Google Scholar

    Wang Y Y, Zhu X J, Liu J, Ma Y B, Zhu Z H, Cai J W, Du Z H, Wang X G, Qian J, Yin C, Liu Z Y 2014 Prog. Astron. 32 348Google Scholar

    [36]

    Santeler D J 1986 J. Vac. Sci. Technol. A 4 338Google Scholar

    [37]

    Tang Y L, He Y L, Meng Y S, Wang W W, Zhang R Y, Du E W, Du L J 2021 Proceedings of the 1st International Conference on Sensors and Instruments Qingdao, China, July 2, 2021 p171

    [38]

    Olney T N, Cann N M, Cooper G, Brion C E 1997 Chem. Phys. 223 59Google Scholar

    [39]

    Ottaway D J, Fritschel P, Waldman S J 2012 Opt. Express 20 8329Google Scholar

    [40]

    Yang W H, Shi S P, Wang Y J, Ma W G, Zheng Y H, Peng K C 2017 Opt. Lett. 42 4553Google Scholar

    [41]

    Shoemaker D 2011 LIGO Report No. LIGO- M060056-v2

    [42]

    Bersanetti D, Patricelli B, Piccinni O J, Piergiovanni F, Salemi F, Sequino V 2021 Universe 7 322Google Scholar

    [43]

    Akutsu T, Ando M, Arai K, et al. 2019 Class. Quantum Grav. 36 165008Google Scholar

  • 图 1  迈克耳孙干涉仪及残余气体粒子与光束碰撞示意图

    Fig. 1.  Michelson interferometer and collision between residual gas particles and light beam.

    图 2  计划建设的真空系统设计图

    Fig. 2.  Schematic of designed vacuum system.

    图 3  原型机和全尺寸装置在不同压强情况下, 残余气体噪声与探测频率的关系图

    Fig. 3.  Relation of residual gas noise and detection frequency at different pressures.

    图 4  原型机和全尺寸装置中, 残余气体噪声与真空系统压强的关系图

    Fig. 4.  Relation of residual gas noise and vacuum system pressure.

    图 5  原型机和全尺寸装置在不同温度情况下, 残余气体噪声与探测频率的关系图

    Fig. 5.  Relation of residual gas noise and frequency at different temperatures.

    图 6  原型机和全尺寸装置中, 残余气体噪声与真空系统环境温度的关系图

    Fig. 6.  Relation of residual gas noise and the temperature of vacuum system

    图 7  原型机和全尺寸装置中, 残余气体噪声与真空系统残余气体质量的关系图

    Fig. 7.  Relation of between residual gas noise and residual gas mass in vacuum system.

    图 8  原型机和全尺寸装置在不同极化率下残留气体粒子噪声与探测频率的关系图

    Fig. 8.  Relation of residual gas noise and frequency with different polarizability.

    图 9  原型机中测试质量曲率半径和残余气体噪声的变化示意图

    Fig. 9.  Residual gas noise as a function of the radius of curvature of the test mass in the prototype.

    图 10  全尺寸装置中测试质量曲率半径和残余气体噪声的变化示意图

    Fig. 10.  Residual gas noise as a function of the radius of curvature of the test mass in a full-size device.

    表 1  引力波探测干涉仪原型机和全尺寸装置的参数表

    Table 1.  Parameters of prototype and full-size device of gravitational wave detection interferometer.

    参数 符号/单位 原型机参数 全尺寸装置
    参数
    干涉仪长度 L/m 20 104
    激光器波长 λ/nm 1550 1550
    环境温度 T/K 300 300
    残余气体压强 P/Pa 2.0×10–7 2.0×10–6
    残余气体质量 m/kg 3.34765×10–27 3.34765×10–27
    残余气体
    极化率
    $ \alpha $/(C·m2·V–1) 7.81917×10–31 7.81917×10–31
    测试质量
    曲率半径
    R/m 10.2 5100
    下载: 导出CSV
  • [1]

    郭宗宽, 蔡荣根, 张元仲 2016 科技导报 34 30Google Scholar

    Guo Z K, Cai R G, Zhang Y Z 2016 Sci. Technol. Rev. 34 30Google Scholar

    [2]

    Accadia T, Acernese F, Antonucci F, et al. 2010 Class. Quantum Grav. 27 194011Google Scholar

    [3]

    Ringwald A, Tamarit C 2022 Phys. Rev. D 106 063027Google Scholar

    [4]

    吴树范, 王楠, 龚德仁 2020 深空探测学报 7 118Google Scholar

    Wu S F, Wang N, Gong D R 2020 J. Deep Sp. Explor. 7 118Google Scholar

    [5]

    Clubley D A, Skeldon K D, Newton G P, Barr B W, Strain K A, Hough J 2001 Phys. Lett. A 287 62Google Scholar

    [6]

    Zhao C, Blair D G, Barrigo P, et al. 2006 Proceedings of the 6th Edoardo Amaldi Conference on Gravitational Waves Bankoku Shinryoukan, Okinawa, Japan, June 20–24, 2005 p368

    [7]

    Takahashi R, Saito Y, Fukushima M, Ando M, Arai K, Tatsumi D, Heinzel G, Kawamura S, Yamazaki T, Moriwaki S 2002 J. Vac. Sci. Technol. A 20 1237Google Scholar

    [8]

    Goßler S, Bertolini A, Born M, Chen Y, Dahl K, Gering D, Gräf C, Heinzel G, Hild S, Kawazoe F, Kranz O, Kühn G, Lück H, Mossavi K, Schnabel R, Somiya K, Strain K A, Taylor J R, Wanner A, Westphal T, Willke B, Danzmann K 2010 Classical Quantum Grav. 27 084023Google Scholar

    [9]

    Hild S, Grote H, Smith J R, Hewitson M 2006 Proceedings of the 6th Edoardo Amaldi Conference on Gravitational Waves Bankoku Shinryoukan, Okinawa, Japan, June 20–24, 2005 p66

    [10]

    Acernese F, Adams T, Agathos M, et al. 2015 Proceedings of the 10th International LISA Symposium Florida, United States, May 18–23, 2014 p1

    [11]

    Abbott B P, Abbott R, Adhikari R, et al. 2009 Rep. Prog. Phys. 72 076901Google Scholar

    [12]

    Martynov D V, Hall E D, Abbott B P, et al. 2016 Phys. Rev. D 93 112004Google Scholar

    [13]

    Acernese F, Agathos M, Aiello L, et al. 2020 Phys. Rev. Lett. 125 131101Google Scholar

    [14]

    Dooley K L, Leong J R, Adams T, Affeldt C, Bisht A, Bogan C, Degallaix J, Gräf C, Hild S, Hough J, Khalaidovski A, Lastzka N, Lough J, Lück H, Macleod D, Nuttall L, Prijatelj M, Schnabel R, Schreiber E, Slutsky J, Sorazu B, Strain K A, Vahlbruch H, Wąs M, Willke B, Wittel H, Danzmann K, Grote H 2016 Classical Quantum Grav. 33 075009Google Scholar

    [15]

    Aso Y, Michimura Y, Somiya K, Ando M, Miyakawa O, Sekiguchi T, Tatsumi D, Yamamoto H 2013 Phys. Rev. D 88 043007Google Scholar

    [16]

    Hall E D, Kuns K, Smith J R, Bai Y, Wipf C, Biscans S, Adhikari R X, Arai K, Ballmer S, Barsotti L 2021 Phys. Rev. D 103 122004Google Scholar

    [17]

    Grado A, Tofani E, Angelucci M, Cimino R, Gargiulo J, Getman F, Liedl A, Limatola L, Mennella V, Pasqualetti A, Ricci F, Sentenac D, Spallino L 2023 J. Vac. Sci. Technol. B 41 024201Google Scholar

    [18]

    Adhikari, Rana X 2014 Rev. Mod. Phys. 86 121Google Scholar

    [19]

    Kawamura S, Ando M, Seto N, et al. 2011 Class. Quantum Grav. 28 094011Google Scholar

    [20]

    Georgiadis A, Rogier H, Roselli L, Arcioni P 2012 Microwave and Millimeter Wave Circuits and Systems: Emerging Design, Technologies and Applications (Germany: John Wiley & Sons) pp5–25

    [21]

    Li Z X, Gao H, Ding X H, Wang G J, Zhang B 2018 Nat. Commun. 9 3833Google Scholar

    [22]

    刘志远 2016 科技导报 34 2

    Liu Z Y 2016 Sci. Technol. Rev. 34 2

    [23]

    罗子人, 张敏, 靳刚, 吴岳良, 胡文瑞 2020 深空探测学报 7 3Google Scholar

    Luo Z R, Zhang M, Jin G, Wu Y L, Hu W R 2020 J. Deep Sp. Explor. 7 3Google Scholar

    [24]

    Schumaker B L, Caves C M Proceedings of the 5th Rochester Conference on Coherence and Quantum Optics Rochester, USA, June 13–15, 1983 p743

    [25]

    Gillespie A, Raab F 1995 Phys. Rev. D 52 577Google Scholar

    [26]

    Saulson P R 1990 Phys. Rev. D 42 2437Google Scholar

    [27]

    Hughes S A, Thorne K S 1998 Phys. Rev. D 58 122002Google Scholar

    [28]

    Zucker M E, Whitcomb S E 1996 Proceedings of the 7th Marcel Grossman Meeting on Recent Developments in Theoretical and Experimental General Relativity, Gravitation, and Relativistic Field Theories California, USA, July 24–30, 1994 p1434

    [29]

    Harms J, Paik H J 2015 Phys. Rev. D 92 022001Google Scholar

    [30]

    王运永, 朱宗宏 2019 现代物理知识 31 56Google Scholar

    Wang Y Y, Zhu Z H 2019 Mod. Phys. 31 56Google Scholar

    [31]

    严宇钊, 杨明, 姜万录 2019 电子测量技术 42 8Google Scholar

    Yan Y Z, Yang M, Jiang W L 2019 Electron. Meas. Technol. 42 8Google Scholar

    [32]

    Patel J, Woolley A, Zhao C, Ju L, Blair D G 2010 Vacuum 85 176Google Scholar

    [33]

    李庆回, 李卫, 孙瑜, 王雅君, 田龙, 陈力荣, 张鹏飞, 郑耀辉 2022 物理学报 71 164203Google Scholar

    Li Q H, Li W, Sun Y, Wang Y J, Tian L, Chen L R, Zhang P F, Zheng Y H 2022 Acta Phys. Sin. 71 164203Google Scholar

    [34]

    张天才, 郑耀辉, 牛家树 2022 新兴科学和技术趋势 1 10

    Zhang T C, Zheng Y H, Niu J S 2022 Emerging Sci. Technol. 1 10

    [35]

    王运永, 朱兴江, 刘见, 马宇波, 朱宗宏, 曹军威, 都志辉, 王小鸽, 钱进, 殷聪, 刘忠有 2014 天文学进展 32 348Google Scholar

    Wang Y Y, Zhu X J, Liu J, Ma Y B, Zhu Z H, Cai J W, Du Z H, Wang X G, Qian J, Yin C, Liu Z Y 2014 Prog. Astron. 32 348Google Scholar

    [36]

    Santeler D J 1986 J. Vac. Sci. Technol. A 4 338Google Scholar

    [37]

    Tang Y L, He Y L, Meng Y S, Wang W W, Zhang R Y, Du E W, Du L J 2021 Proceedings of the 1st International Conference on Sensors and Instruments Qingdao, China, July 2, 2021 p171

    [38]

    Olney T N, Cann N M, Cooper G, Brion C E 1997 Chem. Phys. 223 59Google Scholar

    [39]

    Ottaway D J, Fritschel P, Waldman S J 2012 Opt. Express 20 8329Google Scholar

    [40]

    Yang W H, Shi S P, Wang Y J, Ma W G, Zheng Y H, Peng K C 2017 Opt. Lett. 42 4553Google Scholar

    [41]

    Shoemaker D 2011 LIGO Report No. LIGO- M060056-v2

    [42]

    Bersanetti D, Patricelli B, Piccinni O J, Piergiovanni F, Salemi F, Sequino V 2021 Universe 7 322Google Scholar

    [43]

    Akutsu T, Ando M, Arai K, et al. 2019 Class. Quantum Grav. 36 165008Google Scholar

  • [1] 王恩龙, 王国超, 朱凌晓, 卞进田, 莫小娟, 孔辉. 一种面向原子干涉仪均匀量子非破坏测量的光学环形腔. 物理学报, 2025, 74(3): . doi: 10.7498/aps.74.20241348
    [2] 李响, 王嘉伟, 李番, 黄天时, 党昊, 赵得胜, 田龙, 史少平, 李卫, 尹王保, 郑耀辉. 面向地基引力波探测频段的超低噪声激光强度噪声评估系统研究. 物理学报, 2025, 74(3): . doi: 10.7498/aps.74.20241319
    [3] 王嘉伟, 李健博, 李番, 郑立昂, 高子超, 安炳南, 马正磊, 尹王保, 田龙, 郑耀辉. 面向空间引力波探测的程控低噪声高精度电压基准源. 物理学报, 2023, 72(4): 049502. doi: 10.7498/aps.72.20222119
    [4] 王在渊, 王洁浩, 李宇航, 柳强. 面向空间引力波探测的毫赫兹频段低强度噪声单频激光器. 物理学报, 2023, 72(5): 054205. doi: 10.7498/aps.72.20222127
    [5] 李番, 王嘉伟, 高子超, 李健博, 安炳南, 李瑞鑫, 白禹, 尹王保, 田龙, 郑耀辉. 面向空间引力波探测的激光强度噪声评估系统. 物理学报, 2022, 71(20): 209501. doi: 10.7498/aps.71.20220841
    [6] 李庆回, 李卫, 孙瑜, 王雅君, 田龙, 陈力荣, 张鹏飞, 郑耀辉. 面向第三代地基引力波探测的激光源需求分析. 物理学报, 2022, 71(16): 164203. doi: 10.7498/aps.71.20220552
    [7] 王帅, 眭永兴, 孟祥国. 光子增加双模压缩真空态在马赫-曾德尔干涉仪相位测量中的应用. 物理学报, 2020, 69(12): 124202. doi: 10.7498/aps.69.20200179
    [8] 李诗宇, 田剑锋, 杨晨, 左冠华, 张玉驰, 张天才. 探测器对量子增强马赫-曾德尔干涉仪相位测量灵敏度的影响. 物理学报, 2018, 67(23): 234202. doi: 10.7498/aps.67.20181193
    [9] 王骏, 崔萌, 陆红, 汪丽, 闫庆, 刘晶晶, 华灯鑫. 基于固体腔扫描法布里-珀罗干涉仪的大气温度绝对探测方法研究. 物理学报, 2017, 66(8): 089202. doi: 10.7498/aps.66.089202
    [10] 唐远河, 崔进, 郜海阳, 屈欧阳, 段晓东, 李存霞, 刘丽娜. 地基气辉成像干涉仪探测高层大气风场的定标研究. 物理学报, 2017, 66(13): 130601. doi: 10.7498/aps.66.130601
    [11] 王峰, 彭晓世, 梅鲁生, 刘慎业, 蒋小华, 丁永坤. 基于速度干涉仪的冲击波精密调速实验技术研究. 物理学报, 2012, 61(13): 135201. doi: 10.7498/aps.61.135201
    [12] 王峰, 彭晓世, 刘慎业, 蒋小华, 丁永坤. 利用成像型速度干涉仪进行聚苯乙烯材料中冲击波调速的实验研究. 物理学报, 2011, 60(8): 085203. doi: 10.7498/aps.60.085203
    [13] 朱化春, 张淳民. 偏振风成像干涉仪多波长探测理论研究. 物理学报, 2011, 60(7): 074211. doi: 10.7498/aps.60.074211
    [14] 刘宁, 张淳民, 王金婵, 穆廷魁. 新型静态偏振风成像干涉仪理论探测误差的分析与计算. 物理学报, 2010, 59(6): 4369-4379. doi: 10.7498/aps.59.4369
    [15] 赵兴海, 胡建平, 高杨, 潘峰, 马平. 真空条件下激光诱导光纤损伤特性研究. 物理学报, 2010, 59(6): 3917-3923. doi: 10.7498/aps.59.3917
    [16] 阮 锴, 张淳民, 赵葆常. 高层大气风场探测改型大光程差Sagnac干涉仪全视场角光程差与横向剪切量的精确计算. 物理学报, 2008, 57(9): 5435-5441. doi: 10.7498/aps.57.5435
    [17] 商娅娜, 王 东, 闫智辉, 王文哲, 贾晓军, 彭堃墀. 利用非平衡光纤Mach-Zehnder干涉仪探测频率非简并纠缠态光场. 物理学报, 2008, 57(6): 3514-3518. doi: 10.7498/aps.57.3514
    [18] 邵 丹, 邵 亮, 邵常贵, 陈贻汉. 量子引力的曲率两点真空相关. 物理学报, 2004, 53(2): 367-372. doi: 10.7498/aps.53.367
    [19] 方励之. 引力对真空状态的影响. 物理学报, 1978, 27(2): 181-186. doi: 10.7498/aps.27.181
    [20] 胡建芳, 韦钦, 张志三. 锗红外干涉仪. 物理学报, 1964, 20(11): 1164-1171. doi: 10.7498/aps.20.1164
计量
  • 文章访问数:  2198
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-09
  • 修回日期:  2023-10-11
  • 上网日期:  2023-12-01
  • 刊出日期:  2024-03-05

/

返回文章
返回