搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

16 keV C离子在锥形玻璃管中的输运过程

牛书通 詹欣 华强 李文腾 周利华 杨廷贵

引用本文:
Citation:

16 keV C离子在锥形玻璃管中的输运过程

牛书通, 詹欣, 华强, 李文腾, 周利华, 杨廷贵

Study on transport process of 16 keV Cions in tapered glass capillary: Role of capillary tilt angles

Niu Shu-Tong, Zhan Xin, Hua Qiang, Li Wen-Teng, Zhou Li-Hua, Yang Ting-Gui
PDF
HTML
导出引用
  • 鉴于经锥形玻璃管聚焦的离子束在微纳加工、微区分析以及辐照生物医学等领域具有广阔的应用前景, 本文研究了16 keV C在不同倾斜角度的锥形玻璃管中输运过程. 实验发现当处于0°倾斜角度时, 出射粒子由核区和晕区构成, 核区是从锥形管后锥孔中直接出射, 未与锥形管内壁之间发生电荷交换, 主要成分为C离子. 晕区是C与锥形管内壁发生部分电荷交换作用, 由C和C0构成. 当倾斜角度为1°时, 出射离子由两部分组成: C0原子束斑和 C离子束斑, 未出现核区. 出射核区的离子方向始终保持在入射粒子方向, 与锥形管倾斜角度无关. 随着锥形管不断倾斜, 相对透射率不断减小, C0束斑占比增加, C束斑占比减小. 锥形管对入射离子有聚焦效应. 本实验弥补了低能负离子在锥形管运输过程研究的欠缺, 有助于聚焦离子束的后续开发应用.
    The tapered glass capillaries have been widely used in physics, biology, materials. The features of ions transmitted through the insulating tapered glass capillary manifest themselves mainly in the interaction between positive ions and tapered glass capillary, However, the transmission process of negative ions in tapered glass capillary has been studied scarcely so far.In the present study, we measure the properties of 16 keV C ions transmitted through the tapered glass capillary, such as the two-dimensional spectral distribution, the relative transmission rate, the centroid angle, the charge state purity and the full width at half maximum of the transmitted particles. As the tapered glass capillary tilt angle is equal to 0°, the transmitted particles are composed of three components, i.e. the core, the C of halo and the C0 of halo. As the tilt angle is 1°, the transmitted particles are composed of two components, i.e. C and C0. As the tilt angle is >1°, there is no core region, the transmitted particles are composed of two components, i.e. C and C0. No matter how the tilt angle changes, the centroid angles of core are always along the direction of the incident ions, independent of the tilt angels. And the centroid angles of transmitted C and C0 are always along the direction of the capillary axis. The transmission processes of 16 keV C ions in tapered glass capillary with different tilting angles are analyzed qualitatively. When the tilting angle is small (0°–1°), the C ions are directly traveling straight through the back cone hole of tapered glass capillary, which are mainly composed of C ions. When the tilt angle is large (>1°), the C ions cannot directly travel straight through the back cone hole of the tapered glass capillary, and the core region does not appear. Due to the guiding effect of the negative charges deposited on inner wall of tapered glass capillary, the transmitted C ions are located around the direction of the capillary axis. The tapered glass capillary has a focusing effect on the incident ions. This experiment covers the lack of the studies of low-energy negative ions transmitted through tapered capillary and helps to strengthen the understanding of the transmission process of low-energy ions transmitted through tapered capillary.
      Corresponding author: Niu Shu-Tong, niusht14@lzu.edu.cn
    [1]

    牛书通 2018 博士学位论文 (兰州: 兰州大学)

    Niu S T 2018 Ph. D. Dissertation (Lanzhou: Lanzhou University

    [2]

    Steinbock L J, Otto O, Chimerel C, Gornall J, Keyser U F 2010 Nano Lett. 10 2493Google Scholar

    [3]

    Le´tant S E, van Buuren T W, Terminello L J 2004 Nano Lett. 4 1705Google Scholar

    [4]

    Iwai Y, Ikeda T, Kojima T M, Yamazaki Y, Maeshima K, Imamoto N, Kobayashi T, Nebiki T, Narusawa T, Pokhil G P 2008 Appl. Phys. Lett. 92 023509Google Scholar

    [5]

    Stolterfoht N, Bremer J H, Hoffmann V, Hellhammer R, Fink D, Petrov A, Sulik B 2002 Phys. Rev. Lett. 88 133201Google Scholar

    [6]

    Ikeda T, Kanai Y, Kojima T M, Iwai Y, Kambara T, Yamazaki Y, Hoshino M, Nebiki T, Narusawa T 2006 Appl. Phys. Lett. 89 163502Google Scholar

    [7]

    Cassimi A, Ikeda T, Maunoury L, Zhou C L, Guillous S, Mery A, Lebius H, Benyagoub A, Grygiel C, Khemliche H, Roncin P, Merabet H, Tanis J A 2012 Phys. Rev. A 86 062902Google Scholar

    [8]

    Stolterfoht N, Hellhammer R, Bundesmann J, Fink D, Kanai Y, Hoshino M, Kambara T, Ikeda T, Yamazaki Y 2007 Phys. Rev. A 76 022712Google Scholar

    [9]

    Stolterfoht N, Hellhammer R, Fink D, Sulik B, Juhász Z, Bodewits E, Dang H M, Hoekstra R 2009 Phys. Rev. A 79 022901Google Scholar

    [10]

    Skog P, Zhang H Q, Schuch R 2008 Phys. Rev. Lett. 101 223202Google Scholar

    [11]

    Zhang H Q, Skog P, Schuch R 2010 Phys. Rev. A 82 052901Google Scholar

    [12]

    Cassimi A, Maunoury L, Muranaka T, Huber B, Dey K R, Lebius H, Lelièvre D, Ramillon J M, Been T, Ikeda T, Kanai Y, Kojima T M, Iwai Y, Yamazaki Y, Khemliche H , Bundaleski N, Roncin P 2009 Nucl. Instrum. Meth. B 267 674Google Scholar

    [13]

    Juhász Z, Sulik B, Rácz R, Biri S, Bereczky R J, Tőkési K, Kövér Á, Pálinkás J, Stolterfoht N 2010 Phys. Rev. A 82 062903Google Scholar

    [14]

    Hasegawa J, Jaiyen S, Polee C, Chankow N, Oguri Y 2011 J. Appl. Phys. 110 044913Google Scholar

    [15]

    Zhou C L, Simon M, Ikeda T, Guillous S, Iskandar W, Méry A, Rangama J, Lebius H, Benyagoub A, Grygiel C, Müller A, Döbeli M, Tanis J A, Cassimi A 2013 Phys. Rev. A 88 050901Google Scholar

    [16]

    Gruber E, Kowarik G, Ladening F, Waclawek J P, Aumayr F, Bereczky R J, Tőkési K, Gunacker P, Schweigler T, Lemell C, Burgdörfer J 2012 Phys. Rev. A 86 062901Google Scholar

    [17]

    Stolterfoht N, Gruber E, Allinger P, Wampl S, Wang Y Y, Simon M J, Aumayr F 2015 Phys. Rev. A 91 032705

    [18]

    Simon M J, Zhou C L, Döbeli M, Cassim A, Monnet I, Méry A , Grygiel C, Guillous S, Madi T, Benyagoub A, Lebius H, Müller A M, Shiromaru H, Synal H A 2014 Nucl. Instrum. Methods Phys. Res., Sect. B 330 11Google Scholar

    [19]

    Nakayama R, Tona M, Nakamura N, Watanabe H, Yoshiyasu N, Yamada C, Yamazaki A, Ohtani S, Sakurai M 2009 Nucl. Instrum. Methods. Phys. Res., Sect. B 267 2381Google Scholar

    [20]

    Nebiki T, Yamamoto T, Narusawa T, Breese B H, Teo E J, Watt F 2003 J. Vac. Sci. Technol. 21 1671

    [21]

    Liu S D, Wang Y Y, Zhao Y T, Zhou X M, Cheng R, Lei Y, Sun Y B, Ren J R, Duan J L, Liu J, Xu H S, Xiao G Q 2005 Phys. Rev. A 91 012714

    [22]

    Pan P, Niu S T, Song H Y, Chen X M, Shao J X 2019 Nucl. Instrum. Methods Phys. Res. , Sect. B 450 332Google Scholar

    [23]

    Song H Y, Yang Z S, Yu L F, Zhou D J, Zhou D W, Shao J X, Yang A X 2020 Eur. Phys. J. D 74 208Google Scholar

  • 图 1  实验装置示意图 (a) 使用锥形管轮廓图, 入口直径为580 μm; (b) 锥形出口情况, 直径为23 μm; (c) 倾斜角度为0°时的二维谱图

    Fig. 1.  The schematic view of the setup for the ion transmission experiments: (a) The profile of tapered glass capillary with an inlet diameter of 580 μm and (b) the outlet with a diameter of 23 μm; (c) the typical two-dimensional spectrum of transmitted particles with 16 keV incident energy and with a tilt angel of 0°.

    图 2  16 keV C入射处于0°倾斜角的锥形管, 未加偏转电压时出射粒子的二维分布谱图 (a)以及在X轴方向上的投影分布情况(b)

    Fig. 2.  The typical two-dimensional spectrum (a) and the projections in the X-axis direction of the transmitted particles (b) after 16 keV C transmitted through tapered glass capillary with a tilt angle of 0° with the 0 V defection bias.

    图 3  16 keV C入射处于0°倾斜角的锥形管, 偏转电压为300 V时出射粒子的二维分布谱图(a)以及在Y轴方向上的投影分布情况(b)

    Fig. 3.  The typical two-dimensional spectrum (a) and the projections in the Y-axis direction of the transmitted particles (b) after 16 keV C transmitted through tapered glass capillary with a tilt angle of 0°with the 300 V defection bias.

    图 4  16 keV C入射处于0°倾斜角的锥形管时, 出射离子core区域中心角度分布(a)和半高宽(b)的演化情况

    Fig. 4.  The evolution of the outgoing angle of core (a) and the FWHM of the transmitted particles (b) for 16 keV C transmitted through tapered glass capillary at the tilt angle of 0°.

    图 5  16 keV C入射处于0°倾斜角的锥形管时, 相对透射率(a)和C, C0占比(b)的演化情况

    Fig. 5.  The evolution of the relatively transmission rate (a) and the fraction of the transmitted particles (b) for 16 keV C transmitted through tapered glass capillary at the tilt angle of 0°.

    图 6  16 keV C入射处于1°倾斜角的锥形管时, 偏转电压为200 V时出射粒子的二维分布谱图(a)以及在Y轴方向上的投影分布情况(b). 其中紫线表示锥形管倾斜方向, 为1°, 红线表示出射C0Y轴中心出射方向, 蓝线表示CY轴中心出射方向

    Fig. 6.  The typical two-dimensional spectrum (a) and the projections in the Y-axis direction of the transmitted particles (b) after 16 keV C transmitted through tapered glass capillary with a tilt angle of 1° with the 200 V defection bias. The purple line indicates the tilt angle of the tapered glass capillary, the red line indicates the center direction of C0 ions, and the blue line indicates the center direction of C ions.

    图 7  16 keV C入射处于1°倾斜角的锥形管时, 中心出射角度方向(a)和半高宽(b)的演化情况

    Fig. 7.  The evolution of the outgoing angle (a) and the FWHM of the transmitted particles (b) for 16 keV C transmitted through tapered glass capillary at the tilt angle of 1°.

    图 8  16 keV C入射处于1°倾斜角的锥形管时, 相对透射率(a)和C, C0占比(b)随的演化情况

    Fig. 8.  The evolution of the relatively transmission rate (a) and the fraction of the transmitted particles (b) for 16 keV C transmitted through tapered glass capillary at the tilt angle of 0°.

    图 9  16 keV C入射处于不同倾斜角的锥形管时, 中心出射角度方向(a)和半高宽(b)随倾斜角度演化

    Fig. 9.  The evolution of the outgoing angle (a) and the FWHM of the transmitted particles (b) at various tilt angles for 16 keV C transmitted through tapered glass capillary

    图 10  16 keV C 离子入射处于不同倾斜角的锥形管时, 相对透射率(a)和C, C0占比(b)随锥形管倾斜角度的演化

    Fig. 10.  The evolution of the relatively transmission rate (a) and the fraction of the transmitted particles (b) at various tilt angles for 16 keV C transmitted through tapered glass capillary.

    图 11  16 keV C入射处于0°倾斜角的锥形管时, 入射离子在锥形管中的输运示意图

    Fig. 11.  Simulated trajectories of transmitted particles for 16 keV C transmitted through tapered glass capillary at the tilt angle of 0°.

    图 12  16 keV的C离子入射倾斜角度等于1°的锥形玻璃管时, 入射离子在锥形玻璃管中的输运示意图

    Fig. 12.  Simulated trajectories of transmitted particles for 16 keV C transmitted through tapered glass capillary at the tilt angle of 1°.

  • [1]

    牛书通 2018 博士学位论文 (兰州: 兰州大学)

    Niu S T 2018 Ph. D. Dissertation (Lanzhou: Lanzhou University

    [2]

    Steinbock L J, Otto O, Chimerel C, Gornall J, Keyser U F 2010 Nano Lett. 10 2493Google Scholar

    [3]

    Le´tant S E, van Buuren T W, Terminello L J 2004 Nano Lett. 4 1705Google Scholar

    [4]

    Iwai Y, Ikeda T, Kojima T M, Yamazaki Y, Maeshima K, Imamoto N, Kobayashi T, Nebiki T, Narusawa T, Pokhil G P 2008 Appl. Phys. Lett. 92 023509Google Scholar

    [5]

    Stolterfoht N, Bremer J H, Hoffmann V, Hellhammer R, Fink D, Petrov A, Sulik B 2002 Phys. Rev. Lett. 88 133201Google Scholar

    [6]

    Ikeda T, Kanai Y, Kojima T M, Iwai Y, Kambara T, Yamazaki Y, Hoshino M, Nebiki T, Narusawa T 2006 Appl. Phys. Lett. 89 163502Google Scholar

    [7]

    Cassimi A, Ikeda T, Maunoury L, Zhou C L, Guillous S, Mery A, Lebius H, Benyagoub A, Grygiel C, Khemliche H, Roncin P, Merabet H, Tanis J A 2012 Phys. Rev. A 86 062902Google Scholar

    [8]

    Stolterfoht N, Hellhammer R, Bundesmann J, Fink D, Kanai Y, Hoshino M, Kambara T, Ikeda T, Yamazaki Y 2007 Phys. Rev. A 76 022712Google Scholar

    [9]

    Stolterfoht N, Hellhammer R, Fink D, Sulik B, Juhász Z, Bodewits E, Dang H M, Hoekstra R 2009 Phys. Rev. A 79 022901Google Scholar

    [10]

    Skog P, Zhang H Q, Schuch R 2008 Phys. Rev. Lett. 101 223202Google Scholar

    [11]

    Zhang H Q, Skog P, Schuch R 2010 Phys. Rev. A 82 052901Google Scholar

    [12]

    Cassimi A, Maunoury L, Muranaka T, Huber B, Dey K R, Lebius H, Lelièvre D, Ramillon J M, Been T, Ikeda T, Kanai Y, Kojima T M, Iwai Y, Yamazaki Y, Khemliche H , Bundaleski N, Roncin P 2009 Nucl. Instrum. Meth. B 267 674Google Scholar

    [13]

    Juhász Z, Sulik B, Rácz R, Biri S, Bereczky R J, Tőkési K, Kövér Á, Pálinkás J, Stolterfoht N 2010 Phys. Rev. A 82 062903Google Scholar

    [14]

    Hasegawa J, Jaiyen S, Polee C, Chankow N, Oguri Y 2011 J. Appl. Phys. 110 044913Google Scholar

    [15]

    Zhou C L, Simon M, Ikeda T, Guillous S, Iskandar W, Méry A, Rangama J, Lebius H, Benyagoub A, Grygiel C, Müller A, Döbeli M, Tanis J A, Cassimi A 2013 Phys. Rev. A 88 050901Google Scholar

    [16]

    Gruber E, Kowarik G, Ladening F, Waclawek J P, Aumayr F, Bereczky R J, Tőkési K, Gunacker P, Schweigler T, Lemell C, Burgdörfer J 2012 Phys. Rev. A 86 062901Google Scholar

    [17]

    Stolterfoht N, Gruber E, Allinger P, Wampl S, Wang Y Y, Simon M J, Aumayr F 2015 Phys. Rev. A 91 032705

    [18]

    Simon M J, Zhou C L, Döbeli M, Cassim A, Monnet I, Méry A , Grygiel C, Guillous S, Madi T, Benyagoub A, Lebius H, Müller A M, Shiromaru H, Synal H A 2014 Nucl. Instrum. Methods Phys. Res., Sect. B 330 11Google Scholar

    [19]

    Nakayama R, Tona M, Nakamura N, Watanabe H, Yoshiyasu N, Yamada C, Yamazaki A, Ohtani S, Sakurai M 2009 Nucl. Instrum. Methods. Phys. Res., Sect. B 267 2381Google Scholar

    [20]

    Nebiki T, Yamamoto T, Narusawa T, Breese B H, Teo E J, Watt F 2003 J. Vac. Sci. Technol. 21 1671

    [21]

    Liu S D, Wang Y Y, Zhao Y T, Zhou X M, Cheng R, Lei Y, Sun Y B, Ren J R, Duan J L, Liu J, Xu H S, Xiao G Q 2005 Phys. Rev. A 91 012714

    [22]

    Pan P, Niu S T, Song H Y, Chen X M, Shao J X 2019 Nucl. Instrum. Methods Phys. Res. , Sect. B 450 332Google Scholar

    [23]

    Song H Y, Yang Z S, Yu L F, Zhou D J, Zhou D W, Shao J X, Yang A X 2020 Eur. Phys. J. D 74 208Google Scholar

  • [1] 李鹏飞, 袁华, 程紫东, 钱立冰, 刘中林, 靳博, 哈帅, 万城亮, 崔莹, 马越, 杨治虎, 路迪, ReinholdSchuch, 黎明, 张红强, 陈熙萌. 低能电子在玻璃管中的稳定传输. 物理学报, 2022, 71(7): 074101. doi: 10.7498/aps.71.20212036
    [2] 吴撼宇, 曾正中, 邱孟通, 张信军, 郭宁, 魏浩. 高功率单孔柱-孔汇聚传输结构的电磁粒子仿真. 物理学报, 2019, 68(17): 178401. doi: 10.7498/aps.68.20190535
    [3] 牛书通, 潘鹏, 朱炳辉, 宋涵宇, 金屹磊, 禹楼飞, 韩承志, 邵剑雄, 陈熙萌. 30 keV H+在聚碳酸酯微孔膜中动态输运过程的实验和理论研究. 物理学报, 2018, 67(20): 203401. doi: 10.7498/aps.67.20181062
    [4] 陈鹰, 胡慧芳, 王晓伟, 张照锦, 程彩萍. B/N掺杂类直三角石墨烯纳米带器件引起的整流效应. 物理学报, 2015, 64(19): 196101. doi: 10.7498/aps.64.196101
    [5] 何昱辰, 刘向军. 基于基液连续假设的大体系Cu-H2O纳米流体输运特性的模拟研究. 物理学报, 2015, 64(19): 196601. doi: 10.7498/aps.64.196601
    [6] 晏潜, 陆翠敏, 冯电稳, 杨巍巍, 赵捷, 刘庆锁, 马永昌. K0.8Fe2Se2晶体c轴向载流子输运特性的研究. 物理学报, 2014, 63(3): 037401. doi: 10.7498/aps.63.037401
    [7] 李绍晟, 王德华. 氢负离子在变形球面附近的光剥离. 物理学报, 2013, 62(4): 043201. doi: 10.7498/aps.62.043201
    [8] 赵省贵, 金克新, 罗炳成, 王建元, 陈长乐. Gd0.55Sr0.45MnO3薄膜光诱导电阻变化特性研究. 物理学报, 2012, 61(4): 047501. doi: 10.7498/aps.61.047501
    [9] 王淑芳, 陈珊珊, 陈景春, 闫国英, 乔小齐, 刘富强, 王江龙, 丁学成, 傅广生. 脉冲激光沉积温度及氧压对Bi2Sr2Co2Oy热电薄膜晶体结构与电输运性能的影响. 物理学报, 2012, 61(6): 066804. doi: 10.7498/aps.61.066804
    [10] 唐田田, 王德华, 黄凯云. 氢负离子在微腔中的光剥离研究. 物理学报, 2011, 60(5): 053203. doi: 10.7498/aps.60.053203
    [11] 邱明, 张振华, 邓小清. 碳链输运对基团吸附的敏感性分析. 物理学报, 2010, 59(6): 4162-4169. doi: 10.7498/aps.59.4162
    [12] 李桂琴. 硼-碳和硼-氮量子点器件的输运特性研究. 物理学报, 2010, 59(7): 4985-4988. doi: 10.7498/aps.59.4985
    [13] 胡海龙, 张 琨, 王振兴, 孔 涛, 胡 颖, 王晓平. 硫醇自组装分子膜末端基团对其电荷输运特性的影响. 物理学报, 2007, 56(3): 1674-1679. doi: 10.7498/aps.56.1674
    [14] 吴师岗, 邵建达, 范正修. 负离子元素杂质破坏模型. 物理学报, 2006, 55(4): 1987-1990. doi: 10.7498/aps.55.1987
    [15] 胡海龙, 张 琨, 王振兴, 王晓平. 自组装硫醇分子膜电输运特性的导电原子力显微镜研究. 物理学报, 2006, 55(3): 1430-1434. doi: 10.7498/aps.55.1430
    [16] 郭宝增, 宫 娜, 师建英, 王志宇. 纤锌矿相GaN空穴输运特性的Monte Carlo模拟研究. 物理学报, 2006, 55(5): 2470-2475. doi: 10.7498/aps.55.2470
    [17] 王建元, 陈长乐, 高国棉, 韩立安, 金克新. La0.82Te0.18MnO3薄膜的输运特性和光诱导效应. 物理学报, 2006, 55(12): 6617-6621. doi: 10.7498/aps.55.6617
    [18] 陈 钦, 李统藏, 石勤伟, 王晓平. 开口悬挂端对单壁碳纳米管电子输运特性的影响. 物理学报, 2005, 54(8): 3962-3966. doi: 10.7498/aps.54.3962
    [19] 肖春涛, 韩立安, 薛德胜, 赵俊慧, H.Kunkel, G.Williams. La0.67Pb0.33MnO3的磁性及输运特性. 物理学报, 2003, 52(5): 1245-1249. doi: 10.7498/aps.52.1245
    [20] 郭宝增. 用全带Monte Carlo方法模拟纤锌矿相GaN和ZnO材料的电子输运特性. 物理学报, 2002, 51(10): 2344-2348. doi: 10.7498/aps.51.2344
计量
  • 文章访问数:  1623
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-17
  • 修回日期:  2023-12-01
  • 上网日期:  2023-12-12
  • 刊出日期:  2024-03-05

/

返回文章
返回