搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高斯与平顶光束纳秒脉冲激光物质蒸发烧蚀动力学仿真研究

尹培琪 许博坪 刘颖华 王屹山 赵卫 汤洁

引用本文:
Citation:

高斯与平顶光束纳秒脉冲激光物质蒸发烧蚀动力学仿真研究

尹培琪, 许博坪, 刘颖华, 王屹山, 赵卫, 汤洁

Simulation of evaporation ablation dynamics of materials by nanosecond pulse laser of Gaussian beam and flat-top beam

Yin Pei-Qi, Xu Bo-Ping, Liu Ying-Hua, Wang Yi-Shan, Zhao Wei, Tang Jie
PDF
HTML
导出引用
  • 基于建立的纳秒脉冲激光与金属铝相互作用的二维轴对称模型, 仿真研究了光束整形对纳秒脉冲激光烧蚀金属铝过程中蒸发烧蚀动力学的影响. 结果表明: 等离子体屏蔽对靶材的烧蚀特性具有显著影响, 屏蔽效应主要体现在脉冲的中后期. 对于3种激光轮廓, 高斯光束的屏蔽效果最强, 随着整形后的平顶光束直径的增大, 屏蔽效果逐渐减弱. 平顶光束与高斯光束作用下, 靶材温度的二维空间分布较为不同. 高斯光束作用时, 靶材中心最先升温, 随后温度沿径向和轴向扩散. 由于平顶光束的能量分布更加均匀, 因此一定径向范围内的靶材同时升温. 光束整形对靶材的蒸发烧蚀动力学影响较大. 对于高斯光束, 靶材中心先烧蚀, 随后产生径向烧蚀. 由于整形后平顶光束的能量密度降低, 因此靶面蒸发时间较高斯光束延后, 并且一定径向范围内的靶材同时发生蒸发烧蚀. 3种激光轮廓下, 靶材的蒸发烧蚀形貌与光束的强度分布类似, 其中高斯光束的烧蚀坑呈中间深两边浅的特点, 平顶光束的烧蚀坑较为平坦.
    Based on the established two-dimensional asymmetric model of the interaction between a nanosecond pulse laser and metallic aluminum, the effect of beam shaping on the evaporation ablation dynamics during the ablation of metallic aluminum by a nanosecond pulse laser is simulated. The results show that plasma shielding, which has a significant influence on the ablation properties of the target, occurs mainly in the middle phase and late phase of the pulse. Among the three laser profiles, the Gaussian beam has the strongest shielding effect. As the diameter of the reshaped flat-top beam increases, the shielding effect gradually weakens. The two-dimensional spatial distribution of target temperature is relatively different between ablation by a Gaussian beam and that by a flat-top beam. For the Gaussian beam, the center of the target is first heated, and then the temperature spreads in radial direction and axial direction. For the flat-top beam, due to the uniform energy distribution, the target is heated within a certain radial range simultaneously. Beam shaping has a great influence on the evaporation ablation dynamics of the target. For the Gaussian beam, the center of the target is first ablated, followed by the radial ablation. For the flat-top beam, the evaporation time of the target surface is delayed due to the lower energy density after the beam has been shaped. In addition, the target evaporates simultaneously in a certain radial range due to the more uniform distribution of laser energy. For each of the three laser profiles, the evaporation morphology of the target resembles the intensity distribution of the laser beam. The crater produced by the Gaussian beam is deep in the center and shallow on both sides, while it becomes relatively flat by the flat-top beam.
      通信作者: 汤洁, tangjie@opt.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 52177166, 51877210)和陕西省自然科学基金(批准号: 2020JM-309)资助的课题.
      Corresponding author: Tang Jie, tangjie@opt.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 52177166, 51877210) and the Natural Science Foundation of Shaanxi Province, China (Grant No. 2020JM-309).
    [1]

    Schaffer C B, Brodeur A, Mazur E 2001 Meas. Sci. Technol. 12 1784Google Scholar

    [2]

    Hahn D W, Omenetto N 2012 Appl. Spectrosc. 66 347Google Scholar

    [3]

    Baudelet M, Yu J, Bossu M, Jovelet J, Wolf J P, Amodeo T, Fréjafon E, Laloi P 2006 Appl. Phys. Lett. 89 163903Google Scholar

    [4]

    董鹏凯, 赵上勇, 郑柯鑫, 王冀, 高勋, 郝作强, 林景全 2021 物理学报 70 040201Google Scholar

    Dong K P, Zhao S Y, Zheng K X, Wang J, Gao X, Hao Z Q, Lin J Q 2021 Acta Phys. Sin. 70 040201Google Scholar

    [5]

    黄梅婷, 姜银花, 陈钰琦, 李润华 2021 物理学报 70 104206Google Scholar

    Huang M T, Jiang Y H, Chen Y Q, Li R H 2021 Acta Phys. Sin. 70 104206Google Scholar

    [6]

    Lithgow G A, Robinson A L, Buckley S G 2004 Atmos. Environ. 38 3319Google Scholar

    [7]

    Burgio L, Melessanaki K, Doulgeridis M, Clark R J H, Anglos D 2001 Spectrochim. Acta Part B 56 905Google Scholar

    [8]

    Tiwari M, Agrawal R, Pathak A K, Rai A K, Rai G K 2013 Spectrosc. Lett. 46 155Google Scholar

    [9]

    张大成, 马新文, 朱小龙, 李斌, 祖凯玲 2008 物理学报 57 6348Google Scholar

    Zhang D C, Ma X W, Zhu X L, Li B, Zu K L 2008 Acta Phys. Sin. 57 6348Google Scholar

    [10]

    Rai N K, Rai A K 2008 J. Hazard. Mater. 150 835Google Scholar

    [11]

    Jia J W, Fu H B, Hou Z Y, Wang H D, Ni Z B, Wang Z, Dong F Z, Zhang Z R 2019 J. Phys. D: Appl. Phys. 52 405102Google Scholar

    [12]

    Jia J W, Fu H B, Hou Z Y, Wang H D, Wang Z, Dong F Z, Ni Z B, Zhang Z R 2020 Spectrochim. Acta Part B 163 105747Google Scholar

    [13]

    Hou Z Y, Afgan M S, Sheta S, Wang Z 2020 J. Anal. At. Spectrom. 35 1671Google Scholar

    [14]

    Ji J X, Song W R, Hou Z Y, Li L, Yu X, W Z 2022 Anal. Chim. Acta 1235 340551Google Scholar

    [15]

    Knight C J 1979 AIAA J. 17 519Google Scholar

    [16]

    Mazhukin V I, Nossov V V, Smurov I 2004 Thin Solid Films 453 353Google Scholar

    [17]

    Stafe M, Negutu C, Popescu I M 2007 Appl. Surf. Sci. 253 6353Google Scholar

    [18]

    Lu Q, Mao S S, Mao X, Russo R E 2008 J. Appl. Phys. 104 1695Google Scholar

    [19]

    Zhang W, Yao Y L, Chen K 2001 Int. J. Adv. Manuf. Technol. 18 323Google Scholar

    [20]

    Kelly R, Miotello A 1996 Appl. Surf. Sci. 96 205Google Scholar

    [21]

    Porneala C, Willis D A 2006 Int. J. Heat Mass Transfer 49 1928Google Scholar

    [22]

    Pierron N, Sallamand P, Matteï S 2007 Appl. Surf. Sci. 253 3208Google Scholar

    [23]

    Korobenko V N, Rakhel A D, Savvatimski A I, Fortov, V. E 2005 Phys. Rev. B 71 014208Google Scholar

    [24]

    Wu B, Shin Y C 2006 Appl. Phys. Lett. 89 111902Google Scholar

    [25]

    Gragossian A, Tavassoli S H, Shokri B 2009 J. Appl. Phys. 105 103304Google Scholar

    [26]

    Lutey, Adrian A H 2013 J. Manuf. Sci. Eng. 135 061003Google Scholar

    [27]

    Marla D, Bhandarkar U V, Joshi S S 2014 Appl. Phys. A 116 273Google Scholar

    [28]

    Stafe M 2012 J. Appl. Phys. 112 123112Google Scholar

    [29]

    Bogaerts A, Chen Z, Gijbels R, Vertes A 2003 Spectrochim. Acta Part B 58 1867Google Scholar

    [30]

    Nosrati Y, Tavassoli S H, Hassanimatin M M, Safi A 2020 Phys. Plasmas 27 023301Google Scholar

    [31]

    Zhang Y, Zhang D X, Wu J J, He Z, Deng X 2017 AIP Adv. 7 075010Google Scholar

    [32]

    Ghalamdaran S, Parvin P, Javad Torkamany M, Sabbagh Zadeh J 2014 J. Laser Appl. 26 012009Google Scholar

    [33]

    Wang Y, Hahn D W 2019 Appl. Phys. A 125 1Google Scholar

    [34]

    Sinha S 2010 J. Nucl. Mater. 396 257Google Scholar

    [35]

    Yu J, Ma Q L, Motto-Ros V, Lei W Q, Wang X C, Bai X S 2012 Front. Phys. 7 649Google Scholar

    [36]

    Kumar K K, Samuel G L, Shunmugam M S 2019 J. Mater. Process. Technol. 263 266Google Scholar

    [37]

    Zhang C, Zhou J, Shen H 2017 J Manuf Sci Eng. 139 041019Google Scholar

    [38]

    Bulgakova N M, Bulgakov A V 2001 Appl. Phys. A 73 199Google Scholar

    [39]

    Sakai T 2009 J. Propul. Power 25 406Google Scholar

    [40]

    Lee J, Yoo J, Lee K 2014 J. Mech. Sci. Technol. 28 1797Google Scholar

    [41]

    Terragni J, Miotello A 2021 Micromachines 12 300Google Scholar

    [42]

    Brandt R, Neuer G 2007 Int. J. Thermophys. 28 1429Google Scholar

    [43]

    Morel V, Bultel A, Chéron B G 2009 Int. J. Thermophys. 30 1853Google Scholar

    [44]

    Shen Z H, Zhang S Y, Lu J, Ni X W 2001 Opt. Laser Technol. 33 533Google Scholar

    [45]

    Porneala C, Willis D A 2006 Appl. Phys. Lett. 89 21Google Scholar

  • 图 1  (a)平顶光束与铝靶相互作用示意图; (b)整形前后归一化激光强度; (c)激光光束轮廓; (d)几何模型和网格划分

    Fig. 1.  (a) Schematics of the flat-top beam laser interaction with aluminum target; (b) normalized laser intensity before and after beam shaping; (c) laser beam profiles; (d) geometric model and mesh generation.

    图 2  不同激光通量下铝材料烧蚀深度的仿真结果和实验结果[45]对比

    Fig. 2.  Comparison of the ablation depth of aluminum with different laser fluences between simulation results and experimental results[45].

    图 3  等离子体屏蔽前后到达靶面的激光脉冲归一化强度的时间分布

    Fig. 3.  Temporal profile of the normalized intensity of laser pulse reaching the target surface before and after the plasma shielding.

    图 4  F = 20 J/cm2, 靶面中心温度随时间的演化

    Fig. 4.  Time evolution of target surface center temperature for laser fluence of 20 J/cm2.

    图 5  F = 20 J/cm2, 考虑等离子体屏蔽时, 不同时刻的靶材温度分布 (a)—(e)高斯光束烧蚀结果; (f)—(j)平顶光束$ \left( {{r_1} = 1.2{\omega _0}} \right) $烧蚀结果; 其中, (a), (f)代表靶材蒸发开始时刻; (b), (g)代表高温开始时刻; (c), (h)代表高温结束时刻; (d), (i)代表靶材蒸发结束时刻; (e), (j)代表靶材仿真结束时刻

    Fig. 5.  Temperature distribution of the target for laser fluence of 20 J/cm2 with considering the plasma shielding: (a)–(e) Gaussian beam ablation results; (f)–(j) flat-top beam ablation results; where among them, (a), (f) the initial time of evaporation; (b), (g) the initial time of high temperature; (c), (h) the end time of high temperature; (d), (i) the end time of evaporation; (e), (j) the end time of simulation.

    图 6  F = 20 J/cm 2, 靶面中心处蒸发烧蚀速度和蒸发烧蚀深度随时间的演化 (a)烧蚀速度; (b)烧蚀深度

    Fig. 6.  Time evolution of target surface center ablation velocity and ablation depth due to vaporization for laser fluence of 20 J/cm2: (a) Ablation velocity; (b) ablation depth.

    图 7  F = 20 J/cm2, 靶材蒸发烧蚀坑形貌和总烧蚀深度 (a)实时蒸发形貌; (b)最终蒸发形貌; (c)总烧蚀深度

    Fig. 7.  Target ablation crater morphology due to vaporization and total ablation depth for laser fluence of 20 J/cm2: (a) The real-time morphology due to vaporization; (b) the final morphology due to vaporization; (c) total ablation depth.

    表 1  温度依赖的铝材料参数[25,28,41,42]

    Table 1.  Temperature dependent aluminum material parameters[25,28,41,42].

    参数 数值 单位
    密度
    ($\rho $)
    $ \rho = \left\{ {\begin{aligned} &{2700, }&&{T \leqslant {T_{\text{m}}}} \\ & {{\rho _{\text{c}}}\left[ {1 + 0.75\left( {1 - {T / {{T_{\text{c}}}}}} \right) + 3{{\left( {1 - {T / {{T_{\text{c}}}}}} \right)}^{{1/3}}}} \right], }&&{{T_{\text{m}}} < T \leqslant {0}{.8}{T_{\text{c}}}} \\ &{634, }&&{T > {0}{.8}{T_{\text{c}}}} \end{aligned}} \right. $ $ {{{\text{kg}}} \mathord{\left/ {\vphantom {{{\text{kg}}} {{{\text{m}}^{3}}}}} \right. } {{{\text{m}}^{3}}}} $
    电导率
    ($\sigma $)
    $ \sigma \left( T \right) = \left\{ {\begin{aligned} &{3.69 \times {{10}^7}, }&&{T \leqslant {T_{\text{m}}}} \\ & {{{{{10}^8}} / {\left( {0.00852 T + 15.32896} \right), }}}&&{{T_{\text{m}}} < T \leqslant {0}{.8}{T_{\text{c}}}} \qquad\qquad \quad \\ &{2.52 \times {{10}^4}, }&&{T > {0}{.8}{T_{\text{c}}}} \end{aligned}} \right. $ $ {{\text{S}} \mathord{\left/ {\vphantom {{\text{S}} {\text{m}}}} \right. } {\text{m}}} $
    热导率
    ($k$)
    $ k\left( T \right) = \left\{ {\begin{aligned}& {237, }&&{T \leqslant {T_{\text{m}}}} \\ &{2.44 \times {{10}^{ - 8}}\sigma \left( T \right)T, }&&{T > {T_{\text{m}}}} \qquad\qquad \end{aligned}} \right. $ $ \rm W/(m{\cdot}K)$
    反射率
    ($R$)
    $ R = \left\{ {\begin{aligned} &{95{\text{%}} , }&&{T \leqslant {T_{\text{m}}}} \\ &{\frac{{{{\left[ {{n_{\text{R}}}\left( T \right) - 1} \right]}^2} + n_{\text{I}}^{2}\left( T \right)}}{{{{\left[ {{n_{\text{R}}}\left( T \right) + 1} \right]}^2} + n_{\text{I}}^{2}\left( T \right)}}, }&&{{T_{\text{m}}} < T \leqslant {0}{.8}{T_{\text{c}}}} \\ &{{\text{69{\text{%}} , }}}&&{T > {0}{.8}{T_{\text{c}}}} \end{aligned}} \right. $ $1$
    吸收系数
    ($\alpha $)
    $ \alpha = \left\{ {\begin{aligned} &{1.5 \times {{10}^8}, }&&{T < {T_{\text{m}}}} \\ & {{{4{\text{π }}} }{n_{\text{I}}}\left( T \right)/{\lambda }, }&&{{T_{\text{m}}} \leqslant T \leqslant {0}{.8}{T_{\text{c}}}} \qquad\qquad\quad\\ & {8.5 \times {{10}^6}, }&&{T > {0}{.8}{T_{\text{c}}}} \end{aligned}} \right. $ ${{\text{m}}^{{{ - 1}}}}$
    注: ${n_{\text{R}}}$和${n_{\text{I}}}$分别代表折射率的实部和虚部.
    下载: 导出CSV

    表 2  铝材料的热学常数[27,41,43,44]

    Table 2.  Thermal constants for aluminum materials (reproduced from Ref. [27,41,43,44]).

    参数 符号 数值 单位
    固相线温度 ${T_{\text{s}}}$ 936.15 K
    液相线温度 ${T_{\text{l}}}$ 939.15 K
    熔点 ${T_{\text{m}}}$ 933 K
    沸点 ${T_{\text{v}}}$ 2793 K
    临界温度 ${T_{\text{c}}}$ 6700 K
    临界密度 ${\rho _{\text{c}}}$ 634 ${{{\text{kg}}} / {{{\text{m}}^{3}}}}$
    固相恒压热容 ${C_{{\text{ps}}}}$ 917 $ {{\text{J}} / ( {{\text{kg}} \cdot {\text{K}}})} $
    液相恒压热容 ${C_{{\text{pl}}}}$ 1080 $ {{\text{J}} /{\left( {{\text{kg}} \cdot {\text{K}}} \right)}} $
    融化潜热 ${L_{\text{m}}}$ $ 3.69 \times {10^{5}} $ $ {{\text{J}} /{{\text{kg}}}} $
    蒸发潜热 ${L_{\text{v}}}$ $ {1}{.05} \times {10^{7}} $ $ {{\text{J}} /{{\text{kg}}}} $
    下载: 导出CSV
  • [1]

    Schaffer C B, Brodeur A, Mazur E 2001 Meas. Sci. Technol. 12 1784Google Scholar

    [2]

    Hahn D W, Omenetto N 2012 Appl. Spectrosc. 66 347Google Scholar

    [3]

    Baudelet M, Yu J, Bossu M, Jovelet J, Wolf J P, Amodeo T, Fréjafon E, Laloi P 2006 Appl. Phys. Lett. 89 163903Google Scholar

    [4]

    董鹏凯, 赵上勇, 郑柯鑫, 王冀, 高勋, 郝作强, 林景全 2021 物理学报 70 040201Google Scholar

    Dong K P, Zhao S Y, Zheng K X, Wang J, Gao X, Hao Z Q, Lin J Q 2021 Acta Phys. Sin. 70 040201Google Scholar

    [5]

    黄梅婷, 姜银花, 陈钰琦, 李润华 2021 物理学报 70 104206Google Scholar

    Huang M T, Jiang Y H, Chen Y Q, Li R H 2021 Acta Phys. Sin. 70 104206Google Scholar

    [6]

    Lithgow G A, Robinson A L, Buckley S G 2004 Atmos. Environ. 38 3319Google Scholar

    [7]

    Burgio L, Melessanaki K, Doulgeridis M, Clark R J H, Anglos D 2001 Spectrochim. Acta Part B 56 905Google Scholar

    [8]

    Tiwari M, Agrawal R, Pathak A K, Rai A K, Rai G K 2013 Spectrosc. Lett. 46 155Google Scholar

    [9]

    张大成, 马新文, 朱小龙, 李斌, 祖凯玲 2008 物理学报 57 6348Google Scholar

    Zhang D C, Ma X W, Zhu X L, Li B, Zu K L 2008 Acta Phys. Sin. 57 6348Google Scholar

    [10]

    Rai N K, Rai A K 2008 J. Hazard. Mater. 150 835Google Scholar

    [11]

    Jia J W, Fu H B, Hou Z Y, Wang H D, Ni Z B, Wang Z, Dong F Z, Zhang Z R 2019 J. Phys. D: Appl. Phys. 52 405102Google Scholar

    [12]

    Jia J W, Fu H B, Hou Z Y, Wang H D, Wang Z, Dong F Z, Ni Z B, Zhang Z R 2020 Spectrochim. Acta Part B 163 105747Google Scholar

    [13]

    Hou Z Y, Afgan M S, Sheta S, Wang Z 2020 J. Anal. At. Spectrom. 35 1671Google Scholar

    [14]

    Ji J X, Song W R, Hou Z Y, Li L, Yu X, W Z 2022 Anal. Chim. Acta 1235 340551Google Scholar

    [15]

    Knight C J 1979 AIAA J. 17 519Google Scholar

    [16]

    Mazhukin V I, Nossov V V, Smurov I 2004 Thin Solid Films 453 353Google Scholar

    [17]

    Stafe M, Negutu C, Popescu I M 2007 Appl. Surf. Sci. 253 6353Google Scholar

    [18]

    Lu Q, Mao S S, Mao X, Russo R E 2008 J. Appl. Phys. 104 1695Google Scholar

    [19]

    Zhang W, Yao Y L, Chen K 2001 Int. J. Adv. Manuf. Technol. 18 323Google Scholar

    [20]

    Kelly R, Miotello A 1996 Appl. Surf. Sci. 96 205Google Scholar

    [21]

    Porneala C, Willis D A 2006 Int. J. Heat Mass Transfer 49 1928Google Scholar

    [22]

    Pierron N, Sallamand P, Matteï S 2007 Appl. Surf. Sci. 253 3208Google Scholar

    [23]

    Korobenko V N, Rakhel A D, Savvatimski A I, Fortov, V. E 2005 Phys. Rev. B 71 014208Google Scholar

    [24]

    Wu B, Shin Y C 2006 Appl. Phys. Lett. 89 111902Google Scholar

    [25]

    Gragossian A, Tavassoli S H, Shokri B 2009 J. Appl. Phys. 105 103304Google Scholar

    [26]

    Lutey, Adrian A H 2013 J. Manuf. Sci. Eng. 135 061003Google Scholar

    [27]

    Marla D, Bhandarkar U V, Joshi S S 2014 Appl. Phys. A 116 273Google Scholar

    [28]

    Stafe M 2012 J. Appl. Phys. 112 123112Google Scholar

    [29]

    Bogaerts A, Chen Z, Gijbels R, Vertes A 2003 Spectrochim. Acta Part B 58 1867Google Scholar

    [30]

    Nosrati Y, Tavassoli S H, Hassanimatin M M, Safi A 2020 Phys. Plasmas 27 023301Google Scholar

    [31]

    Zhang Y, Zhang D X, Wu J J, He Z, Deng X 2017 AIP Adv. 7 075010Google Scholar

    [32]

    Ghalamdaran S, Parvin P, Javad Torkamany M, Sabbagh Zadeh J 2014 J. Laser Appl. 26 012009Google Scholar

    [33]

    Wang Y, Hahn D W 2019 Appl. Phys. A 125 1Google Scholar

    [34]

    Sinha S 2010 J. Nucl. Mater. 396 257Google Scholar

    [35]

    Yu J, Ma Q L, Motto-Ros V, Lei W Q, Wang X C, Bai X S 2012 Front. Phys. 7 649Google Scholar

    [36]

    Kumar K K, Samuel G L, Shunmugam M S 2019 J. Mater. Process. Technol. 263 266Google Scholar

    [37]

    Zhang C, Zhou J, Shen H 2017 J Manuf Sci Eng. 139 041019Google Scholar

    [38]

    Bulgakova N M, Bulgakov A V 2001 Appl. Phys. A 73 199Google Scholar

    [39]

    Sakai T 2009 J. Propul. Power 25 406Google Scholar

    [40]

    Lee J, Yoo J, Lee K 2014 J. Mech. Sci. Technol. 28 1797Google Scholar

    [41]

    Terragni J, Miotello A 2021 Micromachines 12 300Google Scholar

    [42]

    Brandt R, Neuer G 2007 Int. J. Thermophys. 28 1429Google Scholar

    [43]

    Morel V, Bultel A, Chéron B G 2009 Int. J. Thermophys. 30 1853Google Scholar

    [44]

    Shen Z H, Zhang S Y, Lu J, Ni X W 2001 Opt. Laser Technol. 33 533Google Scholar

    [45]

    Porneala C, Willis D A 2006 Appl. Phys. Lett. 89 21Google Scholar

  • [1] 丁明松, 刘庆宗, 江涛, 傅杨奥骁, 李鹏, 梅杰. 表面烧蚀对等离子体的影响及其与电磁场相互作用. 物理学报, 2024, 73(11): 115204. doi: 10.7498/aps.73.20231733
    [2] 赵娜, 欧阳建明, 邹德滨, 张国博, 甘龙飞, 邵福球. 基于锥形等离子体通道的百拍瓦激光脉冲整形及重离子加速. 物理学报, 2024, 73(16): 165202. doi: 10.7498/aps.73.20240696
    [3] 范海玲, 郭志坚, 李明强, 卓红斌. 等离子体中涡旋光束自聚焦与成丝现象的模拟研究. 物理学报, 2023, 72(1): 014206. doi: 10.7498/aps.72.20221232
    [4] 李向富, 朱晓禄, 蒋刚. 等离子体对电子间相互作用的屏蔽效应研究. 物理学报, 2023, 72(7): 073102. doi: 10.7498/aps.72.20222339
    [5] 谭胜, 吴建军, 黄强, 张宇, 杜忻洳. 基于双相延迟模型的飞秒激光烧蚀金属模型. 物理学报, 2019, 68(5): 057901. doi: 10.7498/aps.68.20182099
    [6] 蔡颂, 陈根余, 周聪, 周枫林, 李光. 脉冲激光烧蚀材料等离子体反冲压力物理模型研究与应用. 物理学报, 2017, 66(13): 134205. doi: 10.7498/aps.66.134205
    [7] 何杰铃, 魏凌, 杨金生, 李喜琪, 何益, 张雨东. 光瞳半径对纯位相调制激光束整形系统的影响. 物理学报, 2016, 65(4): 048701. doi: 10.7498/aps.65.048701
    [8] 延凤平, 刘鹏, 谭中伟, 陶沛琳, 李琦, 彭万敬, 冯亭, 谭思宇. 基于组合透镜与渐变折射率光纤改进激光器耦合效率的新方法. 物理学报, 2012, 61(16): 164202. doi: 10.7498/aps.61.164202
    [9] 高勋, 宋晓伟, 郭凯敏, 陶海岩, 林景全. 飞秒激光烧蚀硅表面产生等离子体的发射光谱研究. 物理学报, 2011, 60(2): 025203. doi: 10.7498/aps.60.025203
    [10] 何民卿, 董全力, 盛政明, 翁苏明, 陈民, 武慧春, 张杰. 强激光与稠密等离子体作用引起的冲击波加速离子的研究. 物理学报, 2009, 58(1): 363-372. doi: 10.7498/aps.58.363
    [11] 丁丁, 何斌, 刘玲, 张程华, 王建国. 等离子体屏蔽对He2+与H原子碰撞电离微分截面的影响. 物理学报, 2009, 58(12): 8419-8425. doi: 10.7498/aps.58.8419
    [12] 李博文, 蒋军, 董晨钟, 王建国, 丁晓彬. 等离子体屏蔽效应对类氢离子能级结构和辐射跃迁性质的影响. 物理学报, 2009, 58(8): 5274-5279. doi: 10.7498/aps.58.5274
    [13] 栾仕霞, 张秋菊, 桂维玲. 交叉传播激光脉冲与等离子体相互作用产生的等离子体密度光栅. 物理学报, 2008, 57(11): 7030-7037. doi: 10.7498/aps.57.7030
    [14] 李建龙, 吕百达. 基于自适应遗传算法部分相干光整形位相板的优化设计. 物理学报, 2008, 57(5): 3006-3010. doi: 10.7498/aps.57.3006
    [15] 李永强, 吴建华, 袁建民. 等离子体屏蔽效应对原子能级和振子强度的影响. 物理学报, 2008, 57(7): 4042-4048. doi: 10.7498/aps.57.4042
    [16] 刘明伟, 郭弘, 邓冬梅, 张宇, 陈徐宗. 强激光束在等离子体通道中传输的变分法研究. 物理学报, 2004, 53(5): 1419-1424. doi: 10.7498/aps.53.1419
    [17] 张树东, 张为俊. 激光烧蚀Al靶产生的等离子体中辐射粒子的速度及激波. 物理学报, 2001, 50(8): 1512-1516. doi: 10.7498/aps.50.1512
    [18] 姬扬, 张静娟, 姚德成, 陈岩松. 用于半导体激光器光束整形的衍射光学元件的设计研究. 物理学报, 1996, 45(12): 2027-2034. doi: 10.7498/aps.45.2027
    [19] 张静娟, 姬扬, 姚德成, 陈俊本. 遗传算法在激光束整形中的应用. 物理学报, 1996, 45(5): 789-795. doi: 10.7498/aps.45.789
    [20] 徐至展, 李安民, 陈时胜, 林礼煌, 梁向春, 欧阳斌, 毕无忌, 何兴法, 殷光裕, 张树干, 潘成明. 激光加热等离子体研究. 物理学报, 1981, 30(8): 1077-1084. doi: 10.7498/aps.30.1077
计量
  • 文章访问数:  2128
  • PDF下载量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-08
  • 修回日期:  2024-03-04
  • 上网日期:  2024-03-20
  • 刊出日期:  2024-05-05

/

返回文章
返回