-
本文提出了一种基于像素不扩展视觉密码的光学彩色脆弱水印系统. 一方面, 使用像素不扩展视觉密码对水印图像进行编码, 避免了因视觉密码引起的像素扩展问题, 使得后续可以选择与水印图像具有相同像素大小的彩色宿主图像, 大大减少了传输过程中所占用的网络带宽以及存储空间. 另一方面, 使用相位恢复算法对编码后水印图像进行处理得到用于嵌入宿主图像的相位信息, 以光学的方式进一步提高水印图像的安全性. 使用计算机模拟验证所提光学彩色脆弱水印的可行性、不可感知性, 并通过一系列仿真攻击实验验证所提水印具有良好的脆弱性, 在面对噪声污染以及旋转、运动模糊处理、滤波等常见的攻击下均可灵敏地检测出图像发生了篡改.In recent years, with the continuous development of computer technology, it has brought convenience to people to obtain image information. However, at the same time, the falsification and theft of image information have also emerged, so information security has received increasing attention. When images are used for medicine, military, court, and other purposes, it is necessary to ensure the authenticity and integrity of the image content. Fragile watermarks are used to verify the authenticity and integrity of image content due to their sensitivity to tampering. The watermark information is embedded in the image and integrated with the image. When it is necessary to detect the authenticity and integrity of image information, the extracted watermark can be used to determine whether the image is reliable and complete. Therefore, we propose an optical color fragile watermarking system based on pixel-free expansion visual cryptography. On the one hand, encoding watermark images by using pixel-free expansion visual cryptography avoids pixel expansion issues caused by visual cryptography, allowing for the selection of color host images with the same pixel size as the watermark image in the future, greatly reducing the network bandwidth and storage space occupied during transmission. On the other hand, phase recovery algorithm is used to process the encoded watermark image to obtain phase information for embedding into the host image, further improving the security of the watermark image in an optical way. The feasibility and imperceptibility of the proposed optical color fragile watermark are verified through computer simulation, and its good fragility is verified through a series of simulation attack experiments. It can sensitively detect image tampering in the face of common attacks such as noise pollution, rotation, motion blur processing, filtering, etc.
-
Keywords:
- optical color fragile watermark /
- pixel-free expansion visual cryptography /
- phase recovery algorithm /
- tamper detection
[1] Thanki R 2021 Int. J. Digit. Crime Fourensics 13 35Google Scholar
[2] 张凤英 2014 硕士学位论文 (成都: 西南交通大学)
Zhang F Y 2014 M. S. Thesis (Chengdu: Southwest Jiaotong University
[3] 沈嘉琪 2019 硕士学位论文 (武汉: 华中科技大学)
Shen J Q 2019 M. S. Thesis (Wuhan: Huazhong University of Science and Technology
[4] 周新隆, 祝玉鹏, 杨栋宇, 张峻浩, 卢哲, 王华英, 董昭, 柯常军, 史祎诗 2021 物理学报 70 244201Google Scholar
Zhou X L, Zhu Y P, Yang D Y, Zhang J H, Lu Z, Wang H Y, Dong Z, Ke C J, Shi Y S 2021 Acta Phys. Sin. 70 244201Google Scholar
[5] 杨雅姿 2023 硕士学位论文 (荆州: 长江大学)
Yang Y Z 2023 M. S. Thesis (Jingzhou: Yangtze University
[6] Chen Z Y 2013 Signal Process. Image Commun. 28 301Google Scholar
[7] 龚馨慧 2019 硕士学位论文 (北京: 北京邮电大学)
Gong X H 2019 M. S. Thesis (Beijing: Beijing University of Posts and Telecommunications
[8] 郁滨, 付正欣, 沈刚, 房礼国 2014 视觉密码(合肥: 中国科学技术大学出版社)第2—3页
Yu B, Fu Z X, Shen G, Fang L G 2014 Visual Cryptography (Hefei: University of Science and Technology of China Press) pp2–3
[9] Naor M, Shamir M 1994 Lect. Notes Comput. Sci. 950 1Google Scholar
[10] 赵永康 2023 博士学位论文 (天津: 南开大学)
Zhao Y K 2023 Ph. D. Dissertation (Tianjin: Nankai University
[11] Blundo C, Bonis A D, Santis A D 2001 Designs Codes Cryptogr. 24 255Google Scholar
[12] Blundo C, Santis A D, Naor M 2000 Inf. Proc. Lett. 75 255Google Scholar
[13] Lin C C, Tsai W H 2003 Pattern Recognit. Lett. 24 349Google Scholar
[14] Hou Y C 2003 Pattern Recognit. 36 1619Google Scholar
[15] Yamamoto H, Hayasaki Y, Nishida N 2004 Opt. Express 12 1258Google Scholar
[16] Machizaud J, Fournel T 2012 Opt. Express 20 22847Google Scholar
[17] 于韬, 杨栋宇, 马锐, 史祎诗 2020 物理学报 69 144202Google Scholar
Yu T, Yang D Y, Ma R, Shi Y S 2020 Acta Phys. Sin 69 144202Google Scholar
[18] Ateniese G, Blundo C, Santis A D, Stinson D R 2001 Theor. Coumpt. Sci. 250 143Google Scholar
[19] Shyu S J 2007 Pattern. Recogn. 40 1014Google Scholar
[20] Shyu S J 2009 Pattern. Recogn. 42 1582Google Scholar
[21] 王洪君, 马冬鹤, 张恩绮, 赵腾飞 2018 武汉大学学报(工学版) 51 1123Google Scholar
Wang H J, Ma D H, Zhang E Q, Zhao T F 2018 Eng. J. Wuhan Univ. 51 1123Google Scholar
[22] 胡浩, 郁滨, 沈刚 2015 计算机科学 42 103Google Scholar
Hu H, Yu B, Shen G 2015 Comput. Sci. 42 103Google Scholar
[23] Gerchberg R W, Saxton W O 1972 Optik 35 237
[24] 张鹄翔 2021 硕士学位论文 (杭州: 浙江大学)
Zhang H X 2021 M. S. Thesis (Hangzhou: Zhejiang University
[25] Shi Y S, Yang X B 2017 J. Opt. 19 115703Google Scholar
[26] Shi Y S, Yang X B 2017 Chin. Phys. Lett. 34 114204Google Scholar
-
图 4 仿真结果图 (a)原始图像; (b)水印图像; (c)彩色宿主图像; (d)相位信息; (e)彩色含水印图像; (f)再现图像; (g)叠加图像; (h)提取的水印图像; (i)提取的原始图像
Fig. 4. Simulation result diagram: (a) Original image; (b) watermark image; (c) color host image; (d) phase information; (e) color images with watermarks; (f) reproduced image; (g) overlay image; (h) extracted watermark image; (i) extracted original image.
图 5 任意两张再现图像叠加结果图 (a)第1张再现图像与第2张再现图像叠加; (b)第1张再现图像与第3张再现图像叠加; (c)第2张再现图像与第3张再现图像叠加
Fig. 5. Overlay results of any two reproduced images: (a) Overlay of the first reproduced image and the second reproduced image; (b) overlay the first reproduced image with the third reproduced image; (c) overlay of the second and third reproduced images.
图 8 不同宿主图像与含水印图像对比 (a)—(c) “flower”宿主图像、“fruit”宿主图像、“panda”宿主图像; (d)—(f) “flower”彩色含水印图像, “fruit”彩色含水印图像, “panda”彩色含水印图像
Fig. 8. Comparison between different host images and watermarked images: (a)–(c) “flower” host image, “fruit” host image, “panda” host image; (d)–(f) “flower” color watermarked image, “fruit” color watermarked image, “panda” color watermarked image.
表 1 不同宿主图像的PSNR
Table 1. PSNR of different host images.
实验次数 Flower Fruit Panda PSNR PSNR PSNR 1 50.4512 50.3216 50.4309 2 50.3675 50.3364 50.3374 3 50.2660 50.4510 50.4138 4 50.4219 50.4544 50.3442 5 50.2407 50.2530 50.3409 6 50.5150 50.4241 50.4853 7 50.4227 50.4452 50.4365 8 50.4355 50.4863 50.3971 9 50.5024 50.4492 50.3321 10 50.3872 50.4446 50.2862 平均 50.4001 50.4066 50.3794 -
[1] Thanki R 2021 Int. J. Digit. Crime Fourensics 13 35Google Scholar
[2] 张凤英 2014 硕士学位论文 (成都: 西南交通大学)
Zhang F Y 2014 M. S. Thesis (Chengdu: Southwest Jiaotong University
[3] 沈嘉琪 2019 硕士学位论文 (武汉: 华中科技大学)
Shen J Q 2019 M. S. Thesis (Wuhan: Huazhong University of Science and Technology
[4] 周新隆, 祝玉鹏, 杨栋宇, 张峻浩, 卢哲, 王华英, 董昭, 柯常军, 史祎诗 2021 物理学报 70 244201Google Scholar
Zhou X L, Zhu Y P, Yang D Y, Zhang J H, Lu Z, Wang H Y, Dong Z, Ke C J, Shi Y S 2021 Acta Phys. Sin. 70 244201Google Scholar
[5] 杨雅姿 2023 硕士学位论文 (荆州: 长江大学)
Yang Y Z 2023 M. S. Thesis (Jingzhou: Yangtze University
[6] Chen Z Y 2013 Signal Process. Image Commun. 28 301Google Scholar
[7] 龚馨慧 2019 硕士学位论文 (北京: 北京邮电大学)
Gong X H 2019 M. S. Thesis (Beijing: Beijing University of Posts and Telecommunications
[8] 郁滨, 付正欣, 沈刚, 房礼国 2014 视觉密码(合肥: 中国科学技术大学出版社)第2—3页
Yu B, Fu Z X, Shen G, Fang L G 2014 Visual Cryptography (Hefei: University of Science and Technology of China Press) pp2–3
[9] Naor M, Shamir M 1994 Lect. Notes Comput. Sci. 950 1Google Scholar
[10] 赵永康 2023 博士学位论文 (天津: 南开大学)
Zhao Y K 2023 Ph. D. Dissertation (Tianjin: Nankai University
[11] Blundo C, Bonis A D, Santis A D 2001 Designs Codes Cryptogr. 24 255Google Scholar
[12] Blundo C, Santis A D, Naor M 2000 Inf. Proc. Lett. 75 255Google Scholar
[13] Lin C C, Tsai W H 2003 Pattern Recognit. Lett. 24 349Google Scholar
[14] Hou Y C 2003 Pattern Recognit. 36 1619Google Scholar
[15] Yamamoto H, Hayasaki Y, Nishida N 2004 Opt. Express 12 1258Google Scholar
[16] Machizaud J, Fournel T 2012 Opt. Express 20 22847Google Scholar
[17] 于韬, 杨栋宇, 马锐, 史祎诗 2020 物理学报 69 144202Google Scholar
Yu T, Yang D Y, Ma R, Shi Y S 2020 Acta Phys. Sin 69 144202Google Scholar
[18] Ateniese G, Blundo C, Santis A D, Stinson D R 2001 Theor. Coumpt. Sci. 250 143Google Scholar
[19] Shyu S J 2007 Pattern. Recogn. 40 1014Google Scholar
[20] Shyu S J 2009 Pattern. Recogn. 42 1582Google Scholar
[21] 王洪君, 马冬鹤, 张恩绮, 赵腾飞 2018 武汉大学学报(工学版) 51 1123Google Scholar
Wang H J, Ma D H, Zhang E Q, Zhao T F 2018 Eng. J. Wuhan Univ. 51 1123Google Scholar
[22] 胡浩, 郁滨, 沈刚 2015 计算机科学 42 103Google Scholar
Hu H, Yu B, Shen G 2015 Comput. Sci. 42 103Google Scholar
[23] Gerchberg R W, Saxton W O 1972 Optik 35 237
[24] 张鹄翔 2021 硕士学位论文 (杭州: 浙江大学)
Zhang H X 2021 M. S. Thesis (Hangzhou: Zhejiang University
[25] Shi Y S, Yang X B 2017 J. Opt. 19 115703Google Scholar
[26] Shi Y S, Yang X B 2017 Chin. Phys. Lett. 34 114204Google Scholar
计量
- 文章访问数: 1877
- PDF下载量: 35
- 被引次数: 0