搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

向列相液晶分子结构与黏度关系研究及BPNN-QSAR模型建立

陈红梅 李世伟 李凯靖 张智勇 陈浩 王婷婷

引用本文:
Citation:

向列相液晶分子结构与黏度关系研究及BPNN-QSAR模型建立

陈红梅, 李世伟, 李凯靖, 张智勇, 陈浩, 王婷婷

Molecules structure and viscosity relationship of nematic liquid crystal and BPNN-QSAR model

Chen Hong-Mei, Li Shi-Wei, Li Kai-Jing, Zhang Zhi-Yong, Chen Hao, Wang Ting-Ting
PDF
HTML
导出引用
  • 用于光学、微波通信调谐等器件的向列相液晶材料需要具备高响应速度来实现应用需求. 液晶器件响应速度与液晶的旋转黏度、液晶的双折射率等因素相关. 微波器件用向列相液晶, 常采用大π-电子共轭体系、大极性基团来提高液晶分子的双折射率和介电各向异性, 实现宽相位调制量, 也因此增大了液晶材料黏度, 影响了微波器件的响应速度. 本文以液晶黏度因素为主线, 对本课题组设计合成的42种向列相液晶在25 ℃时的黏度用旋转流变仪进行测试, 从液晶化合物的结构角度分析影响液晶黏度的因素. 首次建立向列相液晶分子结构与黏度的BPNN-QSAR定量构效模型, 模型测试组预测值跟真实值之间的相关系数q2 = 0.607 > 0.5, 说明模型可用于液晶化合物的黏度性能预测, 并对影响黏度性能的分子结构描述符进行了探讨. 从实际应用出发结合本课题研究, 设计了两个系列7个大双折射率液晶分子, BPNN模型测试黏度量度小于同类型分子, 实验测试值与模型测试值相近.
    Nematic liquid crystal materials designed for optics, microwave communication tuning, etc. need high response speed, which is related to the rotational viscosity and the birefringent index of the liquid crystal. In order to achieve a wide tuning range of phase modulation, the nematic liquid crystals often employ large π-electron conjugated systems and large polar groups to enhance the birefringence and dielectric anisotropy of the liquid crystal molecule, which, however, increases the viscosity of the liquid crystal material, deteriorating the response speed of the microwave device. Herein, we explore the viscosity of the nematic liquid crystal from the perspective of liquid crystal compound structure by testing the viscosity of our designed and synthesized forty-two different nematic liquid crystals by using a rotating rheometer at 25 ℃. To the best of our knowledge, the BPNN-QSAR quantitative structure-activity model between nematic liquid crystal molecular structure and viscosity is established for the first time. The correlation coefficient between the predicted value and the experimental value is q2 = 0.607 > 0.5, indicating that the model can be used to predict the viscosity performances of liquid crystal compounds. Besides, the molecular structure descriptors affecting the viscosity properties are explored. Based on the practical application and this model, seven liquid crystal molecules of two series with large birefringent index are designed and tested. The viscosity predicted by the BPNN model is smaller than that of the molecules of the same type and matches with the measured viscosity.
      通信作者: 王婷婷, 1125364902@qq.com
    • 基金项目: 国家装发部预研基金(批准号: 61409230701)资助的课题.
      Corresponding author: Wang Ting-Ting, 1125364902@qq.com
    • Funds: Project supported by the National Equipment Development Department Pre-research Fund (Grant No. 61409230701).
    [1]

    Demus D, Goodbye J W, Gray G W 1998 Handbook of Liquid Crystals Chichester (Wiley-VCH) p237

    [2]

    杨傅子 2008 物理学进展 28 107Google Scholar

    Yang F Z 2008 Prog. Phys. 28 107Google Scholar

    [3]

    曹召良, 穆全全, 胡立发 2008 液晶与显示 23 157Google Scholar

    Cao Z L, Mu Q Q, Hu L F 2008 Liq. Cryst. Disp. 23 157Google Scholar

    [4]

    李潭, 王震, 张智勇 2017 液晶与显示 32 862Google Scholar

    Li T, Wang Z, Zhang Z Y 2017 Liq. Cryst. Disp. 32 862Google Scholar

    [5]

    Qiu L L, Zhu L, Xu Y 2020 IEEE T. Antenn. Progag. 685680Google Scholar

    [6]

    Robert C, Zbigniew C, Yuriy G 2018 Liq. Cryst. Rev. 6 17Google Scholar

    [7]

    Alihosseini F, Ahmadi V, Mir A 2015 Liq. Cryst. 42 1638Google Scholar

    [8]

    Jiang D, Liu Y, Li X 2019 IEEE Access 7 126265Google Scholar

    [9]

    Kundtz N 2014 Microwave 57 56

    [10]

    Nishikawa H, Shiroshita K, Higuchi H 2017 Adv. Mater. 29 1702354Google Scholar

    [11]

    Mandle R J, Cowling S J, Goodby J W 2017 Phys. Chem. Chem. Phys. 19 11429Google Scholar

    [12]

    Zhao X, Zhou J 2021 Proc. Natl. Acad. Sci. 118 21111Google Scholar

    [13]

    赵秀虎, 黄明俊, Satoshiay A 2023 液晶与显示 38 77Google Scholar

    Zhao X H, Huang M J, Satoshiay A 2023 Liq. Cryst. Disp. 38 77Google Scholar

    [14]

    Li B X, Xiao R L, Paladugu S 2019 Opt. Express 27 3861Google Scholar

    [15]

    杨槐, 王萌, 张兰英 2015 CN 106701105 B 9

    Yang H, Wang M, Zhang L Y 2015 CN Patent 106701105 B 9

    [16]

    高鸿锦 2011 液晶化学 (北京: 清华大学出版社)第48页

    Gao J H 2011 Liquid Crystals Chemistry (Beijing: Qinghua University Press) p48

    [17]

    Chen C Y, Tsai T R, Pan C L, Pan R P 2003 Appl. Phys. Lett. 83 4497Google Scholar

    [18]

    Reuter M G K, Garbat K, Vieweg N, Fischer B N, Dąbrowski R, Koch M, Dziaduszek J, Urban S 2013 J. Mater. Chem. C 1 4457Google Scholar

    [19]

    张智勇, 刘可庆, 戴志群 2014 液晶与显示 29 873Google Scholar

    Zhang Z Y, Liu K Q, Dai Z Q 2014 Liq. Cryst. Disp. 29 873Google Scholar

    [20]

    Herman J, Dziaduszek J, Dąbrowski R 2013 Liq. Cryst. 40 1174Google Scholar

    [21]

    张然, 彭增辉, 刘永刚 2009 液晶与显示 6 789

    Zhang R, Peng Z H, Liu Y G 2009 Liq. Cryst. Disp. 6 789

    [22]

    Bock F J, Kneppe H, Schneider F 1986 Liq. Cryst. 1 239Google Scholar

    [23]

    Belyaev V V 1989 Russ. Chem. Rev. 58 917Google Scholar

    [24]

    Gauza S, Jiao M, Wu S T 2008 Liq. Cryst. 35 1401Google Scholar

    [25]

    Gauza S, Kula P, Liang X 2009 Mol. Cryst. Liq. Cryst. 509 47Google Scholar

    [26]

    刘运, 张智勇, 任占冬 2010 液晶与显示 4 490Google Scholar

    Liu Y, Zhang Z Y, Ren Z D 2010 Liq. Cryst. Disp. 4 490Google Scholar

    [27]

    Deng M M, Wang Y, Zhang Z 2012 Chin. J. Chem. 29 1093Google Scholar

    [28]

    Soltani T, Fouzai M, Dhaoudi H 2016 Phase Transi. 89 622Google Scholar

    [29]

    Bulsara A R, Maren A J, Schmera G 1993 Biol. Cybern. 70 145Google Scholar

    [30]

    袁永娜 2010 博士学位论文(兰州: 兰州大学)

    Yuan Y N 2010 Ph. D. Dissertation (Lanzhou: Lanzhou University

    [31]

    Hansch C, Steward A R 1964 J. Med. Chem. 7 691Google Scholar

    [32]

    王婷婷, 戴康, 王展, 高新蕾 2014 华中师范大学学报 48 379Google Scholar

    Wang T T, Dai K, Wang Z, Gao X L 2014 J. Central China Normal Univ. 48 379Google Scholar

    [33]

    Dąbrowski R, Dziaduszek J, Ziółek A 2007 Opto-Electro. Rev. 15 47Google Scholar

    [34]

    Li J, Hu M, Chen R 2021 J. Mol. Liq. 325 115236Google Scholar

    [35]

    莫玲超, 梁晓琴, 安忠维 2013 应用化学 30 861Google Scholar

    Mo L C, Liang X Q, An Z W 2013 Appl. Chem. 30 861Google Scholar

    [36]

    王婷婷, 戴康, 王展 2017 摩擦学学报 37 495Google Scholar

    Wang T T, Dai K, Wang Z 2017 J. Frict. 37 495Google Scholar

    [37]

    王登菊, 周如金, 郎春燕 2012 计算机与应用化学 29 457Google Scholar

    Wang D J, Zhou R J, Lang C Y 2012 Comput. Appl. Chem. 29 457Google Scholar

    [38]

    Hall L H, Mohney B, Kier L B 1991 J. Chem. Inf. Comp. Sci. 31 76Google Scholar

    [39]

    Hall L H, Kier L B 2000 J. Chem. Inf. Comp. Sci. 40 784Google Scholar

    [40]

    金印 2019 硕士学位论文(成都: 电子科技大学)

    Jin Y 2019 M. S. Thesis (Chengdu: University of Electronic Science and Technology of China

  • 图 1  黏度量度VM 的试验值与预测值

    Fig. 1.  Experimental and predicted values of VM.

    图 2  两组同系物液晶分子的黏度量度VM和Shadow-Xlength与Num-RotatableBonds数值

    Fig. 2.  Shadow-Xlength, Num-RotatableBonds and VM for two groups of liquid crystal compounds.

    表 1  液晶化合物相变温度及25 ℃测试黏度值

    Table 1.  Phase transition temperature and 25 ℃ test viscosity value of liquid crystal compounds.

    序号 化合物 分子结构 分子量/(g·mol–1) 混晶黏度η/
    (mPa·s–1)
    相变温度T/℃
    1 3CC2 236.25 19.647 Cr –8.3 N 93.0 Iso
    2 3CC4 264.28 20.983 Cr –10.9 N 66.8 Iso
    3 5CPF 248.19 23.914 Liquid
    4 3CPO1 232.18 21.619 Cr 32.0 Iso
    5 5PP1 238.17 22.624 Cr 48.0 Iso
    6 3GPS 271.08 24.313 Cr 45.0 Iso
    7 2CPUS 357.14 23.961 Cr 50.0 N 175.0 Iso
    8 5CPUS 399.18 24.874 Cr 50.5 N 196.3 Iso
    9 3PGUF 344.12 24.694 Cr 62.5 Iso
    10 5PGUF 372.15 25.021 Cr 56.4 Iso
    11 5PGUS 411.13 26.486 Cr 57.4 N 159.2 Iso
    12 5CPGUF 454.23 25.983 Cr 62.23 S 70
    N 215 Iso
    13 5CPGUS 493.21 26.400 Cr 71.53 N 234.15 Iso
    14 5PGUOCF3 438.14 26.242 Cr 47.4 N 69.3 Iso
    15 5CPGUOCF3 520.22 26.558 Cr 58.10 S 82.6
    N 230.35 Iso
    16 4PGPUF 434.17 24.884 Cr 96.8
    SmC 111.9
    SmA 214.6
    N 231.4 Iso
    17 5PP(2)GIP4 478.30 26.865 Cr 53.55 S 72.65
    N 109.84 Iso
    18 3PUQUF 428.10 25.191 Cr 47.2 Iso
    19 3PGUQUF 522.12 26.205 Cr 88 N 135 Iso
    20 3CEPC3 370.29 21.039 Cr 116.7 N 205.9 Iso
    21 2CEPPN 333.17 21.072 Cr 89.0 N 245.6 Iso
    22 3CPEP3 364.24 22.042 Cr 100.7 N 202.9 Iso
    23 3CPEGN 365.18 23.498 Cr 107.1 N 214.4 Iso
    24 2PEPN 251.09 20.946 Cr 77.6 N 80.9 Iso
    25 3PEPN 265.11 22.869 Cr 108.1 N 113.5 Iso 51.9 N
    26 4PEPN 279.13 24.478 Cr 71.3 N 74.2 Iso
    27 3PTGS 295.08 22.476 Cr 55.22 S 69.37 Iso
    28 5PTGS 323.11 23.248 Cr 50.59 N 90.59 Iso
    29 7PTGS 351.15 24.016 Cr 41.98 N 45.06 Iso
    30 5PTPO2 292.18 21.512 Cr 65.6 N 95.3 Iso 88.3 N
    31 5PTUS 341.1 22.577 Cr 43.99 Iso
    32 5CPTUS 423.18 22.974 Cr 62 N 228 Iso
    33 5PPTUS 417.14 23.809 Cr 55.0 S 119.0 N 208.5 Iso
    34 4PUTGS 421.11 22.559 Cr 93 Iso
    35 2PTPP3 360.17 22.768 Cr 73.5 N 186 Iso
    36 3PTPP2 360.17 22.583 Cr 73 N 189 Iso
    37 3PTPP4 388.20 23.682 Cr 66.1 S 88.0 N 169.5 Iso
    38 4PTPP3 388.29 23.445 Cr 38.5 S 60.0 N 174.0 Iso
    39 4PTGTP4 444.21 26.201 Cr 78 N 180 Iso
    40 4PTGTP5 458.22 26.918 Cr 72.12 N 172.81 Iso
    41 5PP(1)PUF 444.21 25.014 Cr 76.9 N 127.6 Iso
    42 5PPI(1)PUF 444.21 24.608 Cr 77.4 N 134 Iso
    43 5CB 249.15 25.010 Cr 24 N 35.3 Iso
    注: Cr, 各向异性晶体相; S, 近晶相; N, 向列相; Iso, 各向同性; SmA, SmA相态; SmC, SmC相态.
    下载: 导出CSV

    表 2  BPNN模型的结果

    Table 2.  Results of BPNN model.

    网络结构 R2 R2 (cross-validated) q2
    12-4-1 0.9238 0.5089 0.6070
    下载: 导出CSV

    表 3  训练组与测试组液晶化合物的试验黏度量度及预测黏度量度

    Table 3.  VMexpt and VMpred of liquid compounds in the training group and test group

    No. Compounds η/(mPa·s) $ {{\mathrm{VM}}}_{{\mathrm{expt}}} $ $ {{\mathrm{VM}}}_{{\mathrm{pred}}} $ $ \Delta {\mathrm{VM}} $ δ
    1* 3CC2 19.647 1.293 1.319 0.026 0.020
    2 3CC4 20.983 1.322 1.318 0.004 0.003
    3 5CPF 23.914 1.379 1.376 0.002 0.002
    4 3CPO1 21.619 1.335 1.336 0.001 0.001
    5 5PP1 22.624 1.355 1.357 0.002 0.001
    6 3GPS 24.313 1.386 1.363 0.023 0.017
    7* 2CPUS 23.961 1.380 1.378 0.002 0.001
    8 5CPUS 24.874 1.396 1.401 0.006 0.004
    9 3PGUF 24.694 1.393 1.396 0.004 0.002
    10* 5PGUF 25.021 1.398 1.405 0.006 0.004
    11 5PGUS 26.486 1.423 1.425 0.002 0.001
    12 5CPGUF 25.983 1.415 1.414 0.000 0.001
    13 5CPGUS 26.400 1.422 1.418 0.004 0.003
    14 5PGUOCF3 26.242 1.419 1.417 0.002 0.001
    15 5CPGUOCF3 26.558 1.424 1.424 –0.001 0.000
    16 4PGPUF 24.884 1.396 1.410 0.014 0.010
    17 5PP(2)GIP4 26.865 1.429 1.426 0.003 0.002
    18 3PUQUF 25.191 1.401 1.411 0.010 0.007
    19 3PGUQUF 26.205 1.418 1.411 0.007 0.005
    20 3CEPC3 21.039 1.323 1.326 0.003 0.002
    21 2CEPPN 21.072 1.324 1.320 0.003 0.003
    22 3CPEP3 22.042 1.343 1.344 0.001 0.001
    23 3CPEGN 23.498 1.371 1.365 0.006 0.004
    24 2PEPN 20.946 1.321 1.341 0.020 0.015
    25* 3PEPN 22.869 1.359 1.353 0.006 0.004
    26 4PEPN 24.478 1.389 1.365 0.024 0.017
    27 3PTGS 22.476 1.352 1.347 0.005 0.004
    28* 5PTGS 23.248 1.366 1.372 0.006 0.004
    29 7PTGS 24.916 1.396 1.401 0.004 0.004
    30 5PTPO2 21.512 1.333 1.337 0.004 0.003
    31 5PTUS 22.577 1.354 1.364 0.011 0.007
    32 5CPTUS 22.974 1.361 1.367 0.006 0.004
    33* 5PPTUS 23.809 1.377 1.427 0.050 0.036
    34 4PUTGS 22.559 1.353 1.364 0.011 0.008
    35 2PTPP3 22.768 1.357 1.353 0.004 0.003
    36 3PTPP2 22.583 1.354 1.345 0.009 0.007
    37* 3PTPP4 23.682 1.374 1.374 -0.001 0.001
    38 4PTPP3 23.445 1.370 1.366 0.004 0.003
    39* 4PTGTP4 26.201 1.418 1.398 0.020 0.014
    40 4PTGTP5 26.918 1.430 1.427 -0.003 0.002
    41 5PP(1)PUF 25.014 1.398 1.412 0.014 0.010
    42 5PPI(1)PUF 24.608 1.391 1.406 0.015 0.011
    注: *为测试组数据.
    下载: 导出CSV

    表 4  结构描述符及相关分子结构信息、对应敏感度

    Table 4.  Structural descriptors and related molecular structure information, and corresponding sensitivity.

    描述符 结构信息 敏感度
    ES-Count-aasC 代表具有两个芳香键和一个单键的碳的电拓扑状态 (Electrotopological State, Estate)和电子结构信息 0.999735
    Dipole-X 指示静电场中分子的强度和取向行为的3D电子描述符 0.947414
    Num-RotatableBonds 可旋转键, 定义为既不在环中又不在末端的重原子之间的单键, 即连接到仅与
    氢相连的重原子. 作为一种特殊情况, 酰胺C—N键是不可旋转的
    0.814023
    Shadow-Xlength 阴影X长度, 表征分子形状的一组几何描述符, 代表分子在x维度上的长度 0.307771
    ES-Sum-sssCH 计算具有三个单键的CH的电拓扑状态(Estate)总和 0.208536
    JX Balaban指数 0.118169
    ES-Count-tsC 代表具有一个三键的碳的电拓扑状态(Estate)计数 –0.707114
    ES-Count-ssCH2 代表具有两个单键的CH2的电拓扑状态(Estate)计数 –0.671564
    Wiener 维纳指数, 代表分子中所有重原子对之间存在的化学键的总和 –0.653192
    ES-Sum-sF 计算F原子的电拓扑状态(Estate) –0.400111
    ES-Count-sF F原子的电拓扑状态(Estate)计数 –0.400111
    ALogP 使用Ghose和Crippen发表的基于原子的方法计算辛醇-水分配系(LogP) –0.128786
    注: ES-Sum-xxx: 某原子电子结构和拓扑结构计算总和; ES-Count-xxx: 某种类型的原子在分子中出现的数目; -xxx中s, 单键; d, 双键; t, 三键; a, 芳香键[38,39].
    下载: 导出CSV
  • [1]

    Demus D, Goodbye J W, Gray G W 1998 Handbook of Liquid Crystals Chichester (Wiley-VCH) p237

    [2]

    杨傅子 2008 物理学进展 28 107Google Scholar

    Yang F Z 2008 Prog. Phys. 28 107Google Scholar

    [3]

    曹召良, 穆全全, 胡立发 2008 液晶与显示 23 157Google Scholar

    Cao Z L, Mu Q Q, Hu L F 2008 Liq. Cryst. Disp. 23 157Google Scholar

    [4]

    李潭, 王震, 张智勇 2017 液晶与显示 32 862Google Scholar

    Li T, Wang Z, Zhang Z Y 2017 Liq. Cryst. Disp. 32 862Google Scholar

    [5]

    Qiu L L, Zhu L, Xu Y 2020 IEEE T. Antenn. Progag. 685680Google Scholar

    [6]

    Robert C, Zbigniew C, Yuriy G 2018 Liq. Cryst. Rev. 6 17Google Scholar

    [7]

    Alihosseini F, Ahmadi V, Mir A 2015 Liq. Cryst. 42 1638Google Scholar

    [8]

    Jiang D, Liu Y, Li X 2019 IEEE Access 7 126265Google Scholar

    [9]

    Kundtz N 2014 Microwave 57 56

    [10]

    Nishikawa H, Shiroshita K, Higuchi H 2017 Adv. Mater. 29 1702354Google Scholar

    [11]

    Mandle R J, Cowling S J, Goodby J W 2017 Phys. Chem. Chem. Phys. 19 11429Google Scholar

    [12]

    Zhao X, Zhou J 2021 Proc. Natl. Acad. Sci. 118 21111Google Scholar

    [13]

    赵秀虎, 黄明俊, Satoshiay A 2023 液晶与显示 38 77Google Scholar

    Zhao X H, Huang M J, Satoshiay A 2023 Liq. Cryst. Disp. 38 77Google Scholar

    [14]

    Li B X, Xiao R L, Paladugu S 2019 Opt. Express 27 3861Google Scholar

    [15]

    杨槐, 王萌, 张兰英 2015 CN 106701105 B 9

    Yang H, Wang M, Zhang L Y 2015 CN Patent 106701105 B 9

    [16]

    高鸿锦 2011 液晶化学 (北京: 清华大学出版社)第48页

    Gao J H 2011 Liquid Crystals Chemistry (Beijing: Qinghua University Press) p48

    [17]

    Chen C Y, Tsai T R, Pan C L, Pan R P 2003 Appl. Phys. Lett. 83 4497Google Scholar

    [18]

    Reuter M G K, Garbat K, Vieweg N, Fischer B N, Dąbrowski R, Koch M, Dziaduszek J, Urban S 2013 J. Mater. Chem. C 1 4457Google Scholar

    [19]

    张智勇, 刘可庆, 戴志群 2014 液晶与显示 29 873Google Scholar

    Zhang Z Y, Liu K Q, Dai Z Q 2014 Liq. Cryst. Disp. 29 873Google Scholar

    [20]

    Herman J, Dziaduszek J, Dąbrowski R 2013 Liq. Cryst. 40 1174Google Scholar

    [21]

    张然, 彭增辉, 刘永刚 2009 液晶与显示 6 789

    Zhang R, Peng Z H, Liu Y G 2009 Liq. Cryst. Disp. 6 789

    [22]

    Bock F J, Kneppe H, Schneider F 1986 Liq. Cryst. 1 239Google Scholar

    [23]

    Belyaev V V 1989 Russ. Chem. Rev. 58 917Google Scholar

    [24]

    Gauza S, Jiao M, Wu S T 2008 Liq. Cryst. 35 1401Google Scholar

    [25]

    Gauza S, Kula P, Liang X 2009 Mol. Cryst. Liq. Cryst. 509 47Google Scholar

    [26]

    刘运, 张智勇, 任占冬 2010 液晶与显示 4 490Google Scholar

    Liu Y, Zhang Z Y, Ren Z D 2010 Liq. Cryst. Disp. 4 490Google Scholar

    [27]

    Deng M M, Wang Y, Zhang Z 2012 Chin. J. Chem. 29 1093Google Scholar

    [28]

    Soltani T, Fouzai M, Dhaoudi H 2016 Phase Transi. 89 622Google Scholar

    [29]

    Bulsara A R, Maren A J, Schmera G 1993 Biol. Cybern. 70 145Google Scholar

    [30]

    袁永娜 2010 博士学位论文(兰州: 兰州大学)

    Yuan Y N 2010 Ph. D. Dissertation (Lanzhou: Lanzhou University

    [31]

    Hansch C, Steward A R 1964 J. Med. Chem. 7 691Google Scholar

    [32]

    王婷婷, 戴康, 王展, 高新蕾 2014 华中师范大学学报 48 379Google Scholar

    Wang T T, Dai K, Wang Z, Gao X L 2014 J. Central China Normal Univ. 48 379Google Scholar

    [33]

    Dąbrowski R, Dziaduszek J, Ziółek A 2007 Opto-Electro. Rev. 15 47Google Scholar

    [34]

    Li J, Hu M, Chen R 2021 J. Mol. Liq. 325 115236Google Scholar

    [35]

    莫玲超, 梁晓琴, 安忠维 2013 应用化学 30 861Google Scholar

    Mo L C, Liang X Q, An Z W 2013 Appl. Chem. 30 861Google Scholar

    [36]

    王婷婷, 戴康, 王展 2017 摩擦学学报 37 495Google Scholar

    Wang T T, Dai K, Wang Z 2017 J. Frict. 37 495Google Scholar

    [37]

    王登菊, 周如金, 郎春燕 2012 计算机与应用化学 29 457Google Scholar

    Wang D J, Zhou R J, Lang C Y 2012 Comput. Appl. Chem. 29 457Google Scholar

    [38]

    Hall L H, Mohney B, Kier L B 1991 J. Chem. Inf. Comp. Sci. 31 76Google Scholar

    [39]

    Hall L H, Kier L B 2000 J. Chem. Inf. Comp. Sci. 40 784Google Scholar

    [40]

    金印 2019 硕士学位论文(成都: 电子科技大学)

    Jin Y 2019 M. S. Thesis (Chengdu: University of Electronic Science and Technology of China

  • [1] 王紫凌, 叶家耀, 黄志军, 宋振鹏, 李炳祥, 肖瑞林, 陆延青. 负性向列相液晶电致缺陷的产生与湮灭过程. 物理学报, 2024, 73(5): 056101. doi: 10.7498/aps.73.20231655
    [2] 汪浩然, 张银川, 胡巍, 郭旗. 向列相液晶的饱和非线性及双稳态孤子. 物理学报, 2023, 72(7): 074204. doi: 10.7498/aps.72.20222088
    [3] 梁德山, 黄厚兵, 赵亚楠, 柳祝红, 王浩宇, 马星桥. 拓扑荷在圆盘状向列相液晶薄膜中的尺寸效应. 物理学报, 2021, 70(4): 044202. doi: 10.7498/aps.70.20201623
    [4] 张颖, 郑宇, 何茂刚. 对利用动态光散射法测量颗粒粒径和液体黏度的改进. 物理学报, 2018, 67(16): 167801. doi: 10.7498/aps.67.20180271
    [5] 商继祥, 赵云波, 胡丽娜. 高温金属熔体黏度突变探索. 物理学报, 2018, 67(10): 106402. doi: 10.7498/aps.67.20172721
    [6] 郝丹辉, 孔凡杰, 蒋刚. PuNO分子结构与势能函数. 物理学报, 2015, 64(15): 153103. doi: 10.7498/aps.64.153103
    [7] 安保林, 林鸿, 刘强, 段远源. 基于圆柱定程干涉法测量气体黏度的探索. 物理学报, 2013, 62(17): 175101. doi: 10.7498/aps.62.175101
    [8] 刘永军, 孙伟民, 刘晓颀, 姚丽双, 鲁兴海, 宣丽. 向列相液晶染料可调谐激光器的研究. 物理学报, 2012, 61(11): 114211. doi: 10.7498/aps.61.114211
    [9] 唐先柱, 鲁兴海, 彭增辉, 刘永刚, 宣丽. 铁电液晶螺旋结构的理论近似研究. 物理学报, 2010, 59(6): 4001-4007. doi: 10.7498/aps.59.4001
    [10] 任常愚, 孙秀冬, 裴延波. 向列相液晶中弱光引致各向异性衍射图样的研究. 物理学报, 2009, 58(1): 298-303. doi: 10.7498/aps.58.298.1
    [11] 危洪清, 李乡安, 龙志林, 彭建, 张平, 张志纯. 块体非晶合金的黏度与玻璃形成能力的关系. 物理学报, 2009, 58(4): 2556-2564. doi: 10.7498/aps.58.2556
    [12] 张然, 何军, 彭增辉, 宣丽. 向列相液晶nCB(4-n-alkyl-4′-cyanobiphenyls, n=5—8)的旋转黏度及其奇偶效应的分子动力学模拟. 物理学报, 2009, 58(8): 5560-5566. doi: 10.7498/aps.58.5560
    [13] 孔凡杰, 杜际广, 蒋 刚. PdCO分子结构与势能函数. 物理学报, 2008, 57(1): 149-154. doi: 10.7498/aps.57.149
    [14] 杨平保, 曹龙贵, 胡 巍, 朱叶青, 郭 旗, 杨湘波. 向列相液晶中强非局域空间光孤子的相互作用. 物理学报, 2008, 57(1): 285-290. doi: 10.7498/aps.57.285
    [15] 王珍玉, 杨院生, 童文辉, 李会强, 胡壮麒. 基于成分连续变化计算黏度的合金系临界冷速模型. 物理学报, 2007, 56(3): 1543-1548. doi: 10.7498/aps.56.1543
    [16] 龙学文, 胡 巍, 张 涛, 郭 旗, 兰 胜, 高喜存. 向列相液晶中强非局域空间光孤子传输的理论研究. 物理学报, 2007, 56(3): 1397-1403. doi: 10.7498/aps.56.1397
    [17] 阎世英. BH2的分子结构和势能函数. 物理学报, 2006, 55(7): 3408-3412. doi: 10.7498/aps.55.3408
    [18] 展凯云, 裴延波, 侯春风. 向列相液晶中空间光孤子的观测. 物理学报, 2006, 55(9): 4686-4690. doi: 10.7498/aps.55.4686
    [19] 刘 红, 王 慧. 双轴性向列相液晶的相变理论. 物理学报, 2005, 54(3): 1306-1312. doi: 10.7498/aps.54.1306
    [20] 薛卫东, 王红艳, 朱正和, 张广丰, 邹乐西, 陈长安, 孙颖. CUO分子结构与势能函数. 物理学报, 2002, 51(11): 2480-2484. doi: 10.7498/aps.51.2480
计量
  • 文章访问数:  1894
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-06
  • 修回日期:  2023-12-22
  • 上网日期:  2024-01-04
  • 刊出日期:  2024-03-20

/

返回文章
返回