搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电缆附件用硅橡胶力-热老化特性及电-热-力多物理场耦合仿真研究

李国倡 郭孔英 张家豪 孙维鑫 朱远惟 李盛涛 魏艳慧

引用本文:
Citation:

电缆附件用硅橡胶力-热老化特性及电-热-力多物理场耦合仿真研究

李国倡, 郭孔英, 张家豪, 孙维鑫, 朱远惟, 李盛涛, 魏艳慧

Stress-thermal aging properties of silicone rubber used for cable accessories and electric-thermal-stress multiple fields coupling simulation

Li Guo-Chang, Guo Kong-Ying, Zhang Jia-Hao, Sun Wei-Xin, Zhu Yuan-Wei, Li Sheng-Tao, Wei Yan-Hui
PDF
HTML
导出引用
  • 长期运行过程中, 高温及界面压力作用会导致电缆附件硅橡胶(silicon rubber, SIR)绝缘发生老化, 影响附件材料的电-热-力综合性能, 易引发放电故障. 该文采用实验和仿真结合的方法, 研究力-热联合老化作用下硅橡胶材料的电-热-力综合性能变化规律; 进一步仿真研究了SIR材料参数变化引起的电缆附件电场、热场和力场变化. 实验结果表明, 随着老化程度的不断加深, SIR的交联程度和分子运动体系会发生变化, 导致材料的电-热-力性能发生不同程度的改变. 相对介电常数呈现先下降后上升的趋势, 体积电阻率、击穿场强和闪络电压等均呈现先上升后下降的趋势; 此外, 随着老化时间的延长, 材料拉伸强度和断裂伸长率逐渐下降. 仿真结果表明, 力-热联合老化引起的电缆附件应力锥根部电场强度变化较小, 维持在2.2 kV/mm左右; 不同老化程度下绝缘层内外侧温差较为明显, 最大温度梯度为9.15 ℃; 应力锥根部界面压力从0.263 MPa下降到0.230 MPa, 下降约12.5%. 该工作对于配电电缆附件绝缘性能评价和故障分析具有指导意义.
    During the long-term operation of a cable, the electrical field, high temperature, and interface stress may age or deteriorate the silicon rubber (SIR) insulation of the cable accessories, affecting the combined electrical-thermal-force performance of the accessories, and easily causing discharge faults. In this work, the electrical-thermal-force properties of silicone rubber for cable accessories under thermal aging and combined force-thermal aging are studied experimentally and numerically. The changes and mechanisms of physical and chemical properties, electrical properties, thermal properties and mechanical properties of silicone rubber are tested and compared before and after aging. The changes of electric, thermal and force field of cable accessories, caused by the change of SIR material parameters under different aging time and aging form, are further simulated. The experimental results show that the crosslinking degree and molecular motion system of SIR will change with the deepening of the aging degree, which will change the electrical-thermal-force properties of the material to different degree. After aging, large agglomeration protrudes and small cavities appear in SIR section, and the damage is more serious under force-thermal aging. The relative dielectric constant first decreases and then increases with the aging time increasing. The volume resistivity, breakdown strength and flashover voltage all first increase and then decrease. The thermal conductivity first increases and then decreases with aging time increasing. In addition, with the increase of aging time, the tensile strength and elongation at break decrease gradually. Considering the change of properties after aging, the destruction of SIR material by force-thermal aging is more serious. The simulation results show that under the two aging modes, the maximum electric field strength at the stress cone root of the cable accessories first increases and then decreases with the increase of time. The electric field strength at the stress cone root of the cable accessories, caused by the force-thermal aging, changes little, maintaining about 2.2 kV/mm. The difference in temperature between the inside and the outside of the insulation layer is obvious under different aging degree, and the temperature difference shows a first decreasing and then increasing trend under both aging modes, and the maximum temperature gradient is 9.15 ℃. The interface stress at the stress cone root decreases from 0.263 to 0.230 MPa, which is about 12.5% lower. This work has guiding significance in evaluating the insulation performance and analyzing the fault of distribution cable accessories.
      通信作者: 魏艳慧, Weiyhui@126.com
    • 基金项目: 国家自然科学基金(批准号: 52107154)资助的课题.
      Corresponding author: Wei Yan-Hui, Weiyhui@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 52107154).
    [1]

    Zhang Z P, Zhao J K, Zhao W, Zhong L S, Hu L X, Rao W B, Zheng M, Meng S X 2022 High Voltage 5 69Google Scholar

    [2]

    Li Z R, Zhou K, Meng P F, Yuan H, Wang Z K, Chen Y D, Li Y, Zhu G Y 2021 High Voltage 7 802Google Scholar

    [3]

    Wang X, Wang C, Wu K, Tu D M, Liu S, Peng J K 2014 IEEE Trans. Dielectr. Electr. Insul. 21 5Google Scholar

    [4]

    Liu Y, Wang X 2019 IEEE Trans. Dielectr. Electr. Insul. 26 2027Google Scholar

    [5]

    Du B X, Han T, Su J G 2014 IEEE Trans. Dielectr. Electr. Insul. 21 503Google Scholar

    [6]

    Wei Y H, Zhang J H, Li G C, Hu K, Nie Y J, Li S T, Hao C C, Lei Q Q 2023 IEEE Trans. Dielectr. Electr. Insul. 30 359Google Scholar

    [7]

    周远翔, 张征辉, 张云霄, 朱小倩, 黄猛 2022 电工技术学报 37 4474Google Scholar

    Zhou Y X, Zhang Z H, Zhang Y X, Zhu X Q, Huang M 2022 Trans. Chin. Electrotech. Soc. 37 4474Google Scholar

    [8]

    程子霞, 刘杰, 张云宵, 周远翔, 张灵, 沙彦超 2019 高电压技术 45 470Google Scholar

    Cheng Z X, Liu C, Zhang Y X, Zhou Y X, Zhang L, Sha Y C 2019 High Voltage Eng. 45 470Google Scholar

    [9]

    王若丞, 贺云逸, 康洪玮, 王昭, 金海云 2021 高电压技术 47 3181Google Scholar

    Wang R C, He Y Y, Kang H W, Wang Z, Jin H Y 2021 High Voltage Eng. 47 3181Google Scholar

    [10]

    Zhang Y Y, Deng Y K, Wei W C, Xu W C, Zha J W 2023 Cellulose 30 5321Google Scholar

    [11]

    王佩龙 2011 电线电缆 10 1Google Scholar

    Wang P L 2011 Electric Wire Cable 10 1Google Scholar

    [12]

    李国倡, 李雪静, 刘明月, 魏艳慧, 雷清泉, 周自强, 胡列翔, 王少华 2022 高压电器 58 31Google Scholar

    Li G C, Li X J, Liu M Y, Wei Y H, Lei Q Q, Zhou Z Q, Hu L X, Wang S H 2022 High Voltage Appar. 58 31Google Scholar

    [13]

    Du B X, Zhang M M, Han T, Zhu L W 2016 IEEE Trans. Dielectr. Electr. Insul. 23 104Google Scholar

    [14]

    Zuidema C, Kegerise W, Fleming R, Welker M, Boggs S 2011 IEEE Electr. Insul. Mag. 4 45Google Scholar

    [15]

    方春华, 刘浩春, 任志刚, 郭卫, 李景, 张帅, 周雨秋 2019 高压电器 55 65Google Scholar

    Fang C H, Liu H C, Ren Z G, Guo W, Li J, Zhang S, Zhou Y Q 2019 High Voltage Appar. 55 65Google Scholar

    [16]

    Barber K, Alexander G 2013 IEEE Electr. Insul. Mag. 29 27Google Scholar

    [17]

    周远翔, 张云霄, 张旭, 刘睿, 王明渊, 高胜友 2014 高电压技术 40 979Google Scholar

    Zhou Y X, Zhang Y X, Zhang X, Liu R, Wang M Y, Gao S Y 2014 High Voltage Eng. 40 979Google Scholar

    [18]

    Kashi S, Varley R, De Souza M, Al-Assafi S, Di Pietro A, De Lavigne C, Fox B 2018 Polym. Plast. Technol. Eng. 57 1687Google Scholar

    [19]

    Ito S, Hirai N, Ohki Y 2020 IEEE Trans. Dielectr. Electr. Insul. 27 722Google Scholar

    [20]

    杜伯学, 苏金刚, 徐航, 韩涛 2016 中国电机工程学报 36 6627Google Scholar

    Du B X, Su J G, Xu H, Han T 2016 Proc. CSEE 36 6627Google Scholar

    [21]

    刘昌, 惠宝军, 傅明利, 刘通, 侯帅, 王晓游 2018 高电压技术 44 518Google Scholar

    Liu C, Hui B J, Fu M L, Liu T, Hou S, Wang X Y 2018 High Voltage Eng. 44 518Google Scholar

    [22]

    王成江, 郭鸣锐, 张扬, 曾洪平, 张婧, 祝梦雅 2022 绝缘材料 55 94Google Scholar

    Wang C J, Guo M R, Zhang Y, Zeng H P, Zhang J, Zhu M Y 2022 Insul. Mater. 55 94Google Scholar

    [23]

    祝贺, 何峻旭, 郑亚松, 曹煜锋, 郭维 2023 电工技术学报 139 65Google Scholar

    Zhu H, He J X, Zheng Y S, Cao Y F, Guo W 2023 Trans. Chin. Electrotech. Soc. 139 65Google Scholar

    [24]

    Wei W C, Chen H Q, Zha J W, Zhang Y Y 2023 Front. Chem. Sci Eng. 17 991Google Scholar

  • 图 1  试样制备与老化试验流程图

    Fig. 1.  Flow chart of specimen preparation and aging test.

    图 2  老化后SIR试样断面微观形貌图 (a) 0 h空白对照组; (b) 热老化720 h; (c) 热老化2160 h; (d) 力-热老化720 h; (e) 力-热老化2160 h

    Fig. 2.  Microscopic morphology of the section of the aged SIR specimens: (a) Unaged 0 h; (b) thermal aging 720 h; (c) thermal aging 2160 h; (d) force-thermal aging 720 h; (e) force-thermal aging 2160 h.

    图 3  老化后SIR试样FTIR图谱 (a) 热老化SIR试样FTIR图谱变化规律; (b) 力-热老化SIR试样FTIR图谱变化规律

    Fig. 3.  FTIR spectra of the aged SIR specimens: (a) Changes of FTIR spectra of heat-aged SIR samples; (b) changes of FTIR spectra of force-thermal aging SIR samples.

    图 4  老化后SIR试样相对介电常数 (a) 热老化SIR试样介电常数变化; (b)力-热老化SIR试样介电常数变化

    Fig. 4.  Relative permittivity of the aged SIR specimens: (a) Changes in dielectric constant of SIR samples after thermal aging; (b) changes in the dielectric constant of SIR samples during strength-thermal aging.

    图 5  老化后SIR试样体积电阻率变化

    Fig. 5.  Volume resistivity variations of the aged SIR specimens.

    图 6  老化后SIR试样击穿场强变化 (a) 热老化SIR试样击穿场强变化; (b) 力-热老化SIR试样击穿场强变化

    Fig. 6.  Breakdown strength variations of the aged SIR samples: (a) Change of breakdown field strength of thermally-aged SIR samples; (b) changes in breakdown field strength of force-thermal aging SIR samples.

    图 7  老化后SIR试样导热系数 (a) 热老化SIR试样导热系数变化; (b) 力-热老化SIR试样导热系数变化

    Fig. 7.  Thermal conductivity of the aged SIR specimens: (a) Changes of thermal conductivity of SIR samples during thermal aging; (b) changes in thermal conductivity of SIR samples during force-thermal aging.

    图 8  老化后SIR试样拉伸强度变化

    Fig. 8.  Tensile strength variations of the aged SIR specimens.

    图 9  老化后SIR试样断裂伸长率变化

    Fig. 9.  Elongation at break variations of the aged SIRspecimens.

    图 10  橡胶材料拉伸应力-应变曲线及 Yeoh 拟合曲线

    Fig. 10.  Tensile stress-strain curve and Yeoh fitting curve of rubber materials.

    图 11  电缆附件最大畸变电场随时间的变化

    Fig. 11.  Variation of the maximum electric field of the cable accessory with time.

    图 12  最大电场强度随老化时间变化

    Fig. 12.  Variation of the maximum electric field with aging time.

    图 13  电缆附件温度场分布

    Fig. 13.  Temperature field distribution of the cable accessories.

    图 14  应力锥根部温度与内外侧温差随老化时间变化

    Fig. 14.  Variation of the stress cone root temperature and temperature difference with aging time.

    图 15  电缆附件界面压力分布

    Fig. 15.  Interface stress distribution of the cable accessory.

    图 16  电缆附件界面压力随过盈量变化

    Fig. 16.  Interface stress variation with the interference.

    图 17  应力锥根部界面压力随老化时间变化

    Fig. 17.  Stress cone root interface stress variation with the aging time.

    表 1  老化后SIR试样击穿场强的αβ

    Table 1.  Breakdown strength α and β of SIR specimens after aging.

    老化时间/h热老化力-热老化
    α/(kV·mm–1)βα/(kV·mm–1)β
    025.4926.2025.4926.20
    16825.8348.9826.3917.50
    72026.4841.3326.4837.82
    144026.9523.2727.5120.89
    216025.8323.3025.4534.53
    下载: 导出CSV

    表 2  老化后SIR试样闪络电压变化

    Table 2.  Flashover voltage variations of aged SIR specimens.

    老化时间/h老化类型
    热老化/kV力-热老化/kV
    06.256.25
    1686.396.52
    7207.366.84
    14405.765.55
    21605.555.31
    下载: 导出CSV

    表 3  Yeoh 模型拟合参数

    Table 3.  Fitting parameters of Yeoh model.

    材料类型Yeoh模型拟合参数/MPa
    C10C20C30
    空白对照0.212.21×10–4–4.11×10–7
    下载: 导出CSV

    表 4  老化后SIR试样Yeoh模型参数

    Table 4.  Yeoh model parameters of the aged SIR specimens.

    老化类型 C10 C20/10–4 C30/10–6
    空白对照 0.21 2.12 –0.411
    热老化 168 h 0.23 2.24 –0.913
    热老化 720 h 0.25 0.356 –1.81
    热老化 1440 h 0.32 8.26 –5.30
    热老化 2160 h 0.25 1.45 –0.224
    力-热老化 168 h 0.22 1.63 –0.644
    力-热老化 720 h 0.26 4.59 –2.48
    力-热老化 1440 h 0.31 7.03 –4.82
    力-热老化 2160 h 0.24 1.75 –1.53
    下载: 导出CSV
  • [1]

    Zhang Z P, Zhao J K, Zhao W, Zhong L S, Hu L X, Rao W B, Zheng M, Meng S X 2022 High Voltage 5 69Google Scholar

    [2]

    Li Z R, Zhou K, Meng P F, Yuan H, Wang Z K, Chen Y D, Li Y, Zhu G Y 2021 High Voltage 7 802Google Scholar

    [3]

    Wang X, Wang C, Wu K, Tu D M, Liu S, Peng J K 2014 IEEE Trans. Dielectr. Electr. Insul. 21 5Google Scholar

    [4]

    Liu Y, Wang X 2019 IEEE Trans. Dielectr. Electr. Insul. 26 2027Google Scholar

    [5]

    Du B X, Han T, Su J G 2014 IEEE Trans. Dielectr. Electr. Insul. 21 503Google Scholar

    [6]

    Wei Y H, Zhang J H, Li G C, Hu K, Nie Y J, Li S T, Hao C C, Lei Q Q 2023 IEEE Trans. Dielectr. Electr. Insul. 30 359Google Scholar

    [7]

    周远翔, 张征辉, 张云霄, 朱小倩, 黄猛 2022 电工技术学报 37 4474Google Scholar

    Zhou Y X, Zhang Z H, Zhang Y X, Zhu X Q, Huang M 2022 Trans. Chin. Electrotech. Soc. 37 4474Google Scholar

    [8]

    程子霞, 刘杰, 张云宵, 周远翔, 张灵, 沙彦超 2019 高电压技术 45 470Google Scholar

    Cheng Z X, Liu C, Zhang Y X, Zhou Y X, Zhang L, Sha Y C 2019 High Voltage Eng. 45 470Google Scholar

    [9]

    王若丞, 贺云逸, 康洪玮, 王昭, 金海云 2021 高电压技术 47 3181Google Scholar

    Wang R C, He Y Y, Kang H W, Wang Z, Jin H Y 2021 High Voltage Eng. 47 3181Google Scholar

    [10]

    Zhang Y Y, Deng Y K, Wei W C, Xu W C, Zha J W 2023 Cellulose 30 5321Google Scholar

    [11]

    王佩龙 2011 电线电缆 10 1Google Scholar

    Wang P L 2011 Electric Wire Cable 10 1Google Scholar

    [12]

    李国倡, 李雪静, 刘明月, 魏艳慧, 雷清泉, 周自强, 胡列翔, 王少华 2022 高压电器 58 31Google Scholar

    Li G C, Li X J, Liu M Y, Wei Y H, Lei Q Q, Zhou Z Q, Hu L X, Wang S H 2022 High Voltage Appar. 58 31Google Scholar

    [13]

    Du B X, Zhang M M, Han T, Zhu L W 2016 IEEE Trans. Dielectr. Electr. Insul. 23 104Google Scholar

    [14]

    Zuidema C, Kegerise W, Fleming R, Welker M, Boggs S 2011 IEEE Electr. Insul. Mag. 4 45Google Scholar

    [15]

    方春华, 刘浩春, 任志刚, 郭卫, 李景, 张帅, 周雨秋 2019 高压电器 55 65Google Scholar

    Fang C H, Liu H C, Ren Z G, Guo W, Li J, Zhang S, Zhou Y Q 2019 High Voltage Appar. 55 65Google Scholar

    [16]

    Barber K, Alexander G 2013 IEEE Electr. Insul. Mag. 29 27Google Scholar

    [17]

    周远翔, 张云霄, 张旭, 刘睿, 王明渊, 高胜友 2014 高电压技术 40 979Google Scholar

    Zhou Y X, Zhang Y X, Zhang X, Liu R, Wang M Y, Gao S Y 2014 High Voltage Eng. 40 979Google Scholar

    [18]

    Kashi S, Varley R, De Souza M, Al-Assafi S, Di Pietro A, De Lavigne C, Fox B 2018 Polym. Plast. Technol. Eng. 57 1687Google Scholar

    [19]

    Ito S, Hirai N, Ohki Y 2020 IEEE Trans. Dielectr. Electr. Insul. 27 722Google Scholar

    [20]

    杜伯学, 苏金刚, 徐航, 韩涛 2016 中国电机工程学报 36 6627Google Scholar

    Du B X, Su J G, Xu H, Han T 2016 Proc. CSEE 36 6627Google Scholar

    [21]

    刘昌, 惠宝军, 傅明利, 刘通, 侯帅, 王晓游 2018 高电压技术 44 518Google Scholar

    Liu C, Hui B J, Fu M L, Liu T, Hou S, Wang X Y 2018 High Voltage Eng. 44 518Google Scholar

    [22]

    王成江, 郭鸣锐, 张扬, 曾洪平, 张婧, 祝梦雅 2022 绝缘材料 55 94Google Scholar

    Wang C J, Guo M R, Zhang Y, Zeng H P, Zhang J, Zhu M Y 2022 Insul. Mater. 55 94Google Scholar

    [23]

    祝贺, 何峻旭, 郑亚松, 曹煜锋, 郭维 2023 电工技术学报 139 65Google Scholar

    Zhu H, He J X, Zheng Y S, Cao Y F, Guo W 2023 Trans. Chin. Electrotech. Soc. 139 65Google Scholar

    [24]

    Wei W C, Chen H Q, Zha J W, Zhang Y Y 2023 Front. Chem. Sci Eng. 17 991Google Scholar

  • [1] 纳米电介质电-热特性专题编者按. 物理学报, 2024, 73(2): 020101. doi: 10.7498/aps.73.020101
    [2] 王江琼, 李维康, 张文业, 万宝全, 查俊伟. 电缆绝缘材料交联聚乙烯的老化及寿命调控. 物理学报, 2024, 73(7): 078801. doi: 10.7498/aps.73.20240201
    [3] 孙建, 王秋良, 程军胜, 熊玲, 丛源涛, 王贺阳. 脉冲大电流直线驱动装置电-磁-热-结构多场耦合的局域建模方法. 物理学报, 2024, 73(10): 108502. doi: 10.7498/aps.73.20240235
    [4] 黄雪峰, 刘敏, 卢山, 张敏琦, 李盛姬, 罗丹. 强吸收纳米粒子团簇的光泳力悬浮及热泳力下的迁移行为. 物理学报, 2024, 73(13): 134206. doi: 10.7498/aps.73.20240288
    [5] 李玲, 潘天择, 马家骏, 张善涛, 汪尧进. PNZST:AlN复合陶瓷局域应力场增强热释电性能机理. 物理学报, 2022, 71(21): 217701. doi: 10.7498/aps.71.20221250
    [6] 范佳锟, 王洁, 高勇, 游志明, 王盛, 张静, 胡耀程, 许章炼, 王斌. 超级质子-质子对撞机中束流热屏的热-结构耦合模拟分析. 物理学报, 2021, 70(1): 012901. doi: 10.7498/aps.70.20200830
    [7] 崔杰, 苏俊杰, 王军, 夏国栋, 李志刚. 自由分子区内纳米颗粒的热泳力计算. 物理学报, 2021, 70(5): 055101. doi: 10.7498/aps.70.20201629
    [8] 郭少波, 闫世光, 曹菲, 姚春华, 王根水, 董显林. 红外探测用无铅铁电陶瓷的热释电特性研究进展. 物理学报, 2020, 69(12): 127708. doi: 10.7498/aps.69.20200303
    [9] 徐文雪, 梁新刚, 徐向华, 祝渊. 交联对硅橡胶热导率影响的分子动力学模拟. 物理学报, 2020, 69(19): 196601. doi: 10.7498/aps.69.20200737
    [10] 邓长发, 燕少安, 王冬, 彭金峰, 郑学军. 基于导电原子力显微镜的单根GaN纳米带光调控力电耦合性能. 物理学报, 2019, 68(23): 237304. doi: 10.7498/aps.68.20191097
    [11] 张磊, 岳昊, 李梅, 王帅, 米雪玉. 拥堵疏散的行人拥挤力仿真研究. 物理学报, 2015, 64(6): 060505. doi: 10.7498/aps.64.060505
    [12] 毛福春, 李廷华, 黄铭, 杨晶晶, 贾邦婕. 圆柱形热集中器理论、仿真和实现. 物理学报, 2014, 63(17): 170507. doi: 10.7498/aps.63.170507
    [13] 王飞风, 张沛红, 高铭泽. 纳米碳化硅/硅橡胶复合物非线性电导特性研究. 物理学报, 2014, 63(21): 217803. doi: 10.7498/aps.63.217803
    [14] 朱柯斌, 聂在平, 孙向阳. 基于电缆-无线耦合的随钻测井信号传输新方法及其数值模拟研究. 物理学报, 2013, 62(6): 060202. doi: 10.7498/aps.62.060202
    [15] 陈向荣, 徐阳, 刘英, 曹晓珑. 交联聚乙烯电缆绝缘材料中电树枝的导电特性研究. 物理学报, 2012, 61(8): 087701. doi: 10.7498/aps.61.087701
    [16] 谢安生, 李盛涛, 郑晓泉. 高频电压下交联聚乙烯电缆绝缘中电树枝生长的动力学模型. 物理学报, 2008, 57(6): 3828-3833. doi: 10.7498/aps.57.3828
    [17] 郑晓泉, 谢安生, 李盛涛. 发展在XLPE电缆绝缘内外侧的电树枝. 物理学报, 2007, 56(9): 5494-5501. doi: 10.7498/aps.56.5494
    [18] 李 鹏, 刘顺华, 陈光昀. 二次渗滤现象对镍基导电硅橡胶屏蔽性能的影响. 物理学报, 2005, 54(7): 3332-3336. doi: 10.7498/aps.54.3332
    [19] 谢 泉, 罗姣莲, 干福熹. 复合型导电硅橡胶的电阻温度特性研究. 物理学报, 2000, 49(6): 1191-1195. doi: 10.7498/aps.49.1191
    [20] 刘付德, 杨百屯, 屠德民, 刘耀南. 固体电介质的电老化与击穿新理论和实验. 物理学报, 1992, 41(2): 333-341. doi: 10.7498/aps.41.333
计量
  • 文章访问数:  2828
  • PDF下载量:  96
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-28
  • 修回日期:  2023-12-23
  • 上网日期:  2024-01-23
  • 刊出日期:  2024-04-05

/

返回文章
返回