搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

交叉扩散驱动的SI模型空间斑图

陆源杉 肖敏 万佑红 丁洁 蒋海军

引用本文:
Citation:

交叉扩散驱动的SI模型空间斑图

陆源杉, 肖敏, 万佑红, 丁洁, 蒋海军

Spatial pattern of a class of SI models driven by cross diffusion

Lu Yuan-Shan, Xiao Min, Wan You-Hong, Ding Jie, Jiang Hai-Jun
科大讯飞全文翻译 (iFLYTEK Translation)
PDF
HTML
导出引用
  • 目前国内外关于SI模型空间格局的研究大多数局限在自扩散以及系统参数对斑图模式的影响, 而关于交叉扩散对空间格局的演化机理研究成果较少. 本文建立了一个具有自扩散和交叉扩散的空间流行病模型, 研究了在有无自扩散驱动系统不稳定的情况下, 交叉扩散对SI模型的稳定性、稳定速度以及斑图结构的影响. 研究发现, 在无自扩散驱动系统不稳定的情况下, 引入交叉扩散能够激发Turing斑图的产生; 在自扩散驱动系统不稳定的情况下, 交叉扩散可以实现斑图结构的改变; 对于SI 模型的稳定速度, 不论有无自扩散驱动系统不稳定, 交叉扩散都影响了其到达稳定所需时间, 且在不同的交叉扩散系数下, 所需时间也不同. 因此, 交叉扩散对于SI模型的稳定性、稳定速度、斑图结构都有重要的影响.
    Currently, most of researches on the spatial patterns of the SI model focus on the influences of self-diffusion and system parameters on pattern formation, but only a few studies involve how cross-diffusion influences the evolution of spatial patterns. In this paper, we establish a spatial epidemic model that considers both self-diffusion and cross-diffusion and investigate the effects of cross-diffusion on the stability, the rate of stability, and the pattern structure of the SI model with or without self-diffusion-driven system instability. The stability of the non-diffusive system is analyzed, and the conditions for Turing instability in the presence of diffusion terms are elucidated. It is found that when the system is stable under self-diffusion-driven conditions, the introduction of cross-diffusion can change the system's local stability, and produce Turing patterns as well. Furthermore, different cross-diffusion coefficients can generate patterns with different structures. When the system is unstable under self-diffusion-driven conditions, the introduction of cross-diffusion can change the pattern structure. Specifically, when the cross-diffusion coefficient $D_1$ for the susceptible individuals is negative, the pattern structure is transformed from spot-stripe patterns into spot patterns, and when it is positive, the pattern structureturns from spot-stripe patterns into labyrinthine patterns, and eventually into a uniform solid color distribution. When the cross-diffusion coefficient $D_2$ for the infected individuals is positive, the pattern transformation is similar to when the cross-diffusion coefficient $D_1$ for susceptible individuals is negative, the pattern graduallychanges into spot patterns. When $D_2$ is negative, the pattern structure exhibits a porous structure, eventually it is transformed into a uniform solid color distribution. Regarding the rate of stability of the SI model, in the case of a stable self-diffusion system, the introduction of cross-diffusion may change the rate of system stability, and the larger the cross-diffusion coefficient $D_1$ for the susceptible individuals, the faster the system stabilizes. When the self-diffusion-driven system is unstable, the cross-diffusion causes the system to change from an unstable state into a locally stable state, and the smaller the susceptible individuals' cross-diffusion coefficient, the slower the rate of system stabilization is. Therefore, cross-diffusion has a significantinfluence on the stability, the rate of stability, and the pattern structure of the SI model.
      通信作者: 肖敏, candymanxm2003@aliyun.com
    • 基金项目: 国家自然科学基金(批准号: 62073172, U1703262)、江苏省自然科学基金(批准号: BK20221329)和江苏省研究生科研与实践创新计划(批准号: KYCX_220968)资助的课题.
      Corresponding author: Xiao Min, candymanxm2003@aliyun.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62073172, U1703262), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20221329), and the Graduate Research and Practice Innovation Program of Jiangsu Province, China (Grant No. KYCX_220968).
    [1]

    Turing A M 1952 Philos. Trans. R. Soc. London, Ser. B 2 37Google Scholar

    [2]

    Capone F, Carfora M F, De Luca R, Torcicollo I 2019 Math. Comput. Simul. 165 172Google Scholar

    [3]

    Ali I, Saleem M T 2023 Mathematics 11 1459Google Scholar

    [4]

    Hu J, Zhu L, Peng M 2022 Inf. Sci. 596 501Google Scholar

    [5]

    Ruiz-Baier R, Tian C 2013 Nonlinear Anal. Real World Appl. 14 601Google Scholar

    [6]

    Sun G Q, Jin Z, Liu Q X, Li L 2007 J. Stat. Mech. Theory Exp. 2007 P11011Google Scholar

    [7]

    刘若琪, 贾萌萌, 范伟丽, 贺亚峰, 刘富成 2022 物理学报 71 248201Google Scholar

    Liu R Q, Jia M M, Fan W L, He Y F, Liu F C 2022 Acta Phys. Sin. 71 248201Google Scholar

    [8]

    张荣培, 王震, 王语, 韩子健 2018 物理学报 67 050503Google Scholar

    Zhang R P, Wang Z, Wang Y, Han Z J 2018 Acta Phys. Sin. 67 050503Google Scholar

    [9]

    Giri A, Pramod Jain S, Kar S 2020 Chemphyschem 21 1608Google Scholar

    [10]

    王楠, 肖敏, 蒋海军, 黄霞 2022 物理学报 71 180201Google Scholar

    Wang N, Xiao M, Jiang H J, Huang X 2022 Acta Phys. Sin. 71 180201Google Scholar

    [11]

    王凌志, 周先春, 陈铭 2019 信息与控制 48 559Google Scholar

    Wang L Z, Zhou X C, Chen M 2019 Inf. Control. 48 559Google Scholar

    [12]

    Pastor-Satorras R, Castellano C, Van Mieghem P, Vespignani A 2015 Rev. Mod. Phys. 87 925Google Scholar

    [13]

    Wang W, Cai Y, Wu M 2012 Nonlinear Anal. Real. World Appl. 13 2240Google Scholar

    [14]

    阮中远 2020 中国科学: 物理学 力学 天文学 50 010507Google Scholar

    Ruan Z Y 2020 Sci. Sin-Phys. Mech. Astron. 50 010507Google Scholar

    [15]

    Wang L, Li X 2014 Chin. Sci. Bull. 59 3511Google Scholar

    [16]

    Sun G Q, Jusup M, Jin Z, Wang Y, Wang Z 2016 Phys. Life Rev. 19 43Google Scholar

    [17]

    Guin L N, Acharya S 2017 Nonlinear Dyn. 88 1501Google Scholar

    [18]

    Zhao L, Wang Z C, Ruan S 2020 Nonlinear Anal. Real World Appl. 51 102966Google Scholar

    [19]

    Zheng Q, Pandey V, Shen J, Xu Y, Guan L 2022 EPL 137 42002Google Scholar

    [20]

    Kuniya T, Wang J 2018 Nonlinear Anal. Real World Appl. 43 262Google Scholar

    [21]

    Ahmed N, Fatima M, Baleanu D, Nisar K S, Khan I, Rafiq M, Rehman M A U, Ahmad M O 2020 Front. Phys. 7 220Google Scholar

    [22]

    Wang W, Gao X, Cai Y, Shi H, Fu S 2018 J. Franklin Inst. 355 7226Google Scholar

    [23]

    Sun G Q 2012 Nonlinear Dyn. 69 1097Google Scholar

    [24]

    Kerner E H 1957 Bull. Math. Biol. 19 121Google Scholar

    [25]

    Fan Y 2014 Appl. Math. Comput. 228 311Google Scholar

    [26]

    Ghorai S, Poria S 2016 Chaos Solitons Fractals 91 421Google Scholar

    [27]

    Aly S, Khenous H B, Hussien F 2015 Int. J. Biomath. 8 1550006Google Scholar

    [28]

    Triska A, Gunawan A Y, Nuraini N 2022 J. Math. Computer Sci. 27 1Google Scholar

    [29]

    Brauer F, Driessche P V D 2001 Math. Biosci. 171 143Google Scholar

    [30]

    Chinviriyasit S, Chinviriyasit W 2010 Appl. Math. Comput. 216 395Google Scholar

    [31]

    Simon C P, Jacquez J A 1992 SIAM J. Appl. Math. 52 541Google Scholar

    [32]

    Hethcote H W, van den Driessche P 1991 J. Math. Biol. 29 271Google Scholar

  • 图 1  色散关系曲线

    Fig. 1.  Dispersion relationship curve

    图 2  不同迭代步数下的空间格局

    Fig. 2.  Spatial pattern under different iteration steps

    图 3  不同交叉扩散取值的空间格局 (a)$ D_2=6 $; (b)$ D_2=8 $; (c)$ D_1=-6, D_2=6 $; (d)$ D_1=-8, D_2=8 $

    Fig. 3.  The spatial pattern of of different cross diffusion values: (a)$ D_2=6 $; (b)$ D_2=8 $; (c)$ D_1=-6, D_2=6 $; (d)$ D_1=-8, D_2=8 $

    图 4  不同取值的交叉扩散系数$D_1$的色散关系曲线及空间格局 (a)色散关系曲线; (b)$D_1$= 0; (c)$D_1=-0.2$; (d) $D_1=-1$; (e)$D_1=1$; (f)$D_1=3.5$

    Fig. 4.  Dispersion relationship curves and spatial patterns of cross diffusion coefficients $D_1$ with different values: (a) Dispersion relationship curve; (b)$D_1=0$; (c)$D_1=-0.2$; (d)$D_1=-1$; (e)$D_1=1$; (f)$D_1=3.5$

    图 5  不同取值的交叉扩散系数$D_2$的色散关系曲线及空间格局 (a)色散关系曲线; (b)$D_2=0$; (c)$D_2=0.5$; (d)$D_2=1$;(e)$D_2=-1$; (f)$D_2=-2$

    Fig. 5.  Dispersion relationship curves and spatial patterns of cross diffusion coefficients $D_2$ with different values: (a) Dispersion relationship curve; (b)$D_2=0$; (c)$D_2=0.5$; (d)$D_2=1$; (e)$D_1=-1$; (f)$D_1=-2$

    图 6  不同交叉扩散系数对应的系统演化图 (a)$D_1=-9$; (b)$D_1=-9.8$; (c)$D_1=-10.2$

    Fig. 6.  System evolution diagrams corresponding to different cross diffusion coefficients: (a)$D_1=-9$; (b)$D_1=-9.8$; (c)$D_1=-10.2$

    图 7  当$ D_1=-9,\; -9.8,\; -10.2 $时, 不同迭代步数稳定到平衡点的网格个数

    Fig. 7.  The number of grids that stabilize to the equilibrium point with different iteration steps when $ D_1=-9, $$ -9.8, -10.2 $

    图 8  不同交叉扩散系数对应的系统演化图 (a)$D_1=4$; (b)$D_1=3.5$; (c)$D_1=3.2$

    Fig. 8.  System evolution diagrams corresponding to different cross diffusion coefficients: (a)$D_1=4$; (b)$D_1=3.5$; (c)$D_1=3.2$

    图 9  当$ D_1=4,\; 3.5,\; 3.2 $时, 不同迭代步数稳定到平衡点的网格个数

    Fig. 9.  The number of grids that stabilize to the equilibrium point with different iteration steps when $ D_1=4, $$ 3.5, \;3.2 $

  • [1]

    Turing A M 1952 Philos. Trans. R. Soc. London, Ser. B 2 37Google Scholar

    [2]

    Capone F, Carfora M F, De Luca R, Torcicollo I 2019 Math. Comput. Simul. 165 172Google Scholar

    [3]

    Ali I, Saleem M T 2023 Mathematics 11 1459Google Scholar

    [4]

    Hu J, Zhu L, Peng M 2022 Inf. Sci. 596 501Google Scholar

    [5]

    Ruiz-Baier R, Tian C 2013 Nonlinear Anal. Real World Appl. 14 601Google Scholar

    [6]

    Sun G Q, Jin Z, Liu Q X, Li L 2007 J. Stat. Mech. Theory Exp. 2007 P11011Google Scholar

    [7]

    刘若琪, 贾萌萌, 范伟丽, 贺亚峰, 刘富成 2022 物理学报 71 248201Google Scholar

    Liu R Q, Jia M M, Fan W L, He Y F, Liu F C 2022 Acta Phys. Sin. 71 248201Google Scholar

    [8]

    张荣培, 王震, 王语, 韩子健 2018 物理学报 67 050503Google Scholar

    Zhang R P, Wang Z, Wang Y, Han Z J 2018 Acta Phys. Sin. 67 050503Google Scholar

    [9]

    Giri A, Pramod Jain S, Kar S 2020 Chemphyschem 21 1608Google Scholar

    [10]

    王楠, 肖敏, 蒋海军, 黄霞 2022 物理学报 71 180201Google Scholar

    Wang N, Xiao M, Jiang H J, Huang X 2022 Acta Phys. Sin. 71 180201Google Scholar

    [11]

    王凌志, 周先春, 陈铭 2019 信息与控制 48 559Google Scholar

    Wang L Z, Zhou X C, Chen M 2019 Inf. Control. 48 559Google Scholar

    [12]

    Pastor-Satorras R, Castellano C, Van Mieghem P, Vespignani A 2015 Rev. Mod. Phys. 87 925Google Scholar

    [13]

    Wang W, Cai Y, Wu M 2012 Nonlinear Anal. Real. World Appl. 13 2240Google Scholar

    [14]

    阮中远 2020 中国科学: 物理学 力学 天文学 50 010507Google Scholar

    Ruan Z Y 2020 Sci. Sin-Phys. Mech. Astron. 50 010507Google Scholar

    [15]

    Wang L, Li X 2014 Chin. Sci. Bull. 59 3511Google Scholar

    [16]

    Sun G Q, Jusup M, Jin Z, Wang Y, Wang Z 2016 Phys. Life Rev. 19 43Google Scholar

    [17]

    Guin L N, Acharya S 2017 Nonlinear Dyn. 88 1501Google Scholar

    [18]

    Zhao L, Wang Z C, Ruan S 2020 Nonlinear Anal. Real World Appl. 51 102966Google Scholar

    [19]

    Zheng Q, Pandey V, Shen J, Xu Y, Guan L 2022 EPL 137 42002Google Scholar

    [20]

    Kuniya T, Wang J 2018 Nonlinear Anal. Real World Appl. 43 262Google Scholar

    [21]

    Ahmed N, Fatima M, Baleanu D, Nisar K S, Khan I, Rafiq M, Rehman M A U, Ahmad M O 2020 Front. Phys. 7 220Google Scholar

    [22]

    Wang W, Gao X, Cai Y, Shi H, Fu S 2018 J. Franklin Inst. 355 7226Google Scholar

    [23]

    Sun G Q 2012 Nonlinear Dyn. 69 1097Google Scholar

    [24]

    Kerner E H 1957 Bull. Math. Biol. 19 121Google Scholar

    [25]

    Fan Y 2014 Appl. Math. Comput. 228 311Google Scholar

    [26]

    Ghorai S, Poria S 2016 Chaos Solitons Fractals 91 421Google Scholar

    [27]

    Aly S, Khenous H B, Hussien F 2015 Int. J. Biomath. 8 1550006Google Scholar

    [28]

    Triska A, Gunawan A Y, Nuraini N 2022 J. Math. Computer Sci. 27 1Google Scholar

    [29]

    Brauer F, Driessche P V D 2001 Math. Biosci. 171 143Google Scholar

    [30]

    Chinviriyasit S, Chinviriyasit W 2010 Appl. Math. Comput. 216 395Google Scholar

    [31]

    Simon C P, Jacquez J A 1992 SIAM J. Appl. Math. 52 541Google Scholar

    [32]

    Hethcote H W, van den Driessche P 1991 J. Math. Biol. 29 271Google Scholar

  • [1] 孟星柔, 刘若琪, 贺亚峰, 邓腾坤, 刘富成. 反应扩散系统中交叉扩散引发的图灵斑图之间的转变. 物理学报, 2023, 72(19): 198201. doi: 10.7498/aps.72.20230333
    [2] 王垚, 姜璐, 周又和, 薛存. 超导薄膜磁-热不稳定与强非线性电磁本构的关联性. 物理学报, 2022, 71(20): 207401. doi: 10.7498/aps.71.20220285
    [3] 王楠, 肖敏, 蒋海军, 黄霞. 时滞和扩散影响下社交网络谣言传播动力学. 物理学报, 2022, 71(18): 180201. doi: 10.7498/aps.71.20220726
    [4] 段亮, 刘冲, 赵立臣, 杨战营. 基本非线性波与调制不稳定性的精确对应. 物理学报, 2020, 69(1): 010501. doi: 10.7498/aps.69.20191385
    [5] 李新政, 白占国, 李燕, 赵昆, 贺亚峰. 双层非线性耦合反应扩散系统中复杂Turing斑图. 物理学报, 2013, 62(22): 220503. doi: 10.7498/aps.62.220503
    [6] 陈德彝, 王忠龙. 白交叉关联色噪声驱动的线性振子的扩散. 物理学报, 2010, 59(1): 111-115. doi: 10.7498/aps.59.111
    [7] 王立锋, 叶文华, 范征锋, 李英骏. 二维不可压流体Kelvin-Helmholtz不稳定性的弱非线性研究. 物理学报, 2009, 58(7): 4787-4792. doi: 10.7498/aps.58.4787
    [8] 李齐良, 孙丽丽, 陈均朗, 李庆山, 唐向宏, 钱 胜, 林理彬. 周期色散管理波分复用系统中交叉相位调制边带不稳定性理论分析. 物理学报, 2007, 56(2): 805-810. doi: 10.7498/aps.56.805
    [9] 李齐良, 朱海东, 李院民, 唐向宏, 林理彬. 集总式放大波分复用链路中交叉相位调制的边带不稳定性. 物理学报, 2005, 54(6): 2686-2693. doi: 10.7498/aps.54.2686
    [10] 李齐良, 朱海东, 唐向宏, 李承家, 王小军, 林理彬. 有源光放大器链路中交叉相位调制的不稳定性. 物理学报, 2004, 53(12): 4194-4201. doi: 10.7498/aps.53.4194
    [11] 吴俊峰, 叶文华, 张维岩, 贺贤土. 二维不可压流体瑞利-泰勒不稳定性的非线性阈值公式. 物理学报, 2003, 52(7): 1688-1693. doi: 10.7498/aps.52.1688
    [12] 叶文华, 张维岩, 贺贤土. 烧蚀瑞利-泰勒不稳定性线性增长率的预热致稳公式. 物理学报, 2000, 49(4): 762-767. doi: 10.7498/aps.49.762
    [13] 周 平. 控制离散非线性系统中不稳定不动点的一种方法. 物理学报, 1999, 48(10): 1804-1809. doi: 10.7498/aps.48.1804
    [14] 刘金远, 宫野, 李国炳, 马腾才, 张林. 轴向磁场中线性热势模型电弧的螺旋不稳定性. 物理学报, 1996, 45(4): 608-618. doi: 10.7498/aps.45.608
    [15] 贺凯芬. 负能模式在非线性不稳定性中的作用再探. 物理学报, 1996, 45(1): 1-12. doi: 10.7498/aps.45.1
    [16] 贺凯芬, 胡岗. 负能模式在驱动漂移波非线性不稳定性中的作用(Ⅱ)——与正能模式交换,“回避交叉”和Hopf分岔. 物理学报, 1993, 42(7): 1042-1049. doi: 10.7498/aps.42.1042
    [17] 黄朝松, 吴颖. 热电子等离子体低频不稳定性的非线性理论. 物理学报, 1990, 39(8): 61-68. doi: 10.7498/aps.39.61
    [18] 陆启韶. 有扩散不稳定性的四阶反应-扩散系统的空间周期结构. 物理学报, 1989, 38(12): 1901-1910. doi: 10.7498/aps.38.1901
    [19] 赵阳, 杨祥林. 非线性单模光纤中的调制不稳定性. 物理学报, 1989, 38(4): 541-547. doi: 10.7498/aps.38.541
    [20] 柯孚久, 陈雁萍, 周玉美, 吴京生. 电磁迴旋不稳定性的准线性理论. 物理学报, 1981, 30(11): 1438-1447. doi: 10.7498/aps.30.1438
计量
  • 文章访问数:  3009
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-29
  • 修回日期:  2024-01-17
  • 上网日期:  2024-02-19
  • 刊出日期:  2024-04-20

/

返回文章
返回