搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

静电悬浮条件下液态Zr60Ni25Al15合金的热物理性质与快速凝固机制

金英捷 耿德路 林茂杰 胡亮 魏炳波

引用本文:
Citation:

静电悬浮条件下液态Zr60Ni25Al15合金的热物理性质与快速凝固机制

金英捷, 耿德路, 林茂杰, 胡亮, 魏炳波

Thermophysical properties and rapid solidification mechanism of liquid Zr60Ni25Al15 alloy under electrostatic levitation condition

Jin Ying-Jie, Geng De-Lu, Lin Mao-Jie, Hu Liang, Wei Bing-Bo
PDF
HTML
导出引用
  • 采用静电悬浮实验技术测定了液态Zr60Ni25Al15合金的热物理性质, 并研究了其深过冷快速凝固过程. 实验发现, 液态合金所获得的最大过冷度可达316 K (0.25TL), 其密度和表面张力与温度呈线性关系, 而黏度则随温度呈指数变化. 当过冷度小于259 K时, 凝固过程中发生两次再辉现象, 分别对应着二相(Zr6Al2Ni + Zr5Ni4Al)共晶和三元(Zr6Al2Ni + Zr5Ni4Al + Zr2Ni)共晶的快速生长. 若过冷度超过259 K, 凝固过程只发生一次再辉, 3个化合物相均可从合金熔体中独立形核, 形成三元不规则共晶组织. 理论计算和实验表明, 小过冷时Zr6Al2Ni相优先形核, 而当过冷度足够大时, 三相能够同时形核.
    In this study, the thermophysical properties and rapid solidification mechanism of highly undercooled liquid Zr60Ni25Al15 alloy are investigated through the electrostatic levitation technique. The maximum undercooling of this alloy reaches 316 K (0.25TL). Both density and surface tension display a linear relationship with temperature, while viscosity is related to temperature exponentially. When alloy undercooling is less than 259 K, two significant recalescence events are observed during solidification, corresponding to the formation of pseudobinary (Zr6Al2Ni + Zr5Ni4Al) eutectic and ternary (Zr6Al2Ni + Zr5Ni4Al + Zr2Ni) eutectic. The growth velocity of the binary eutectic phase gradually increases with further undercooling and reaches a maximum undercooling value of 259 K. In contrast, once undercooling exceeds 259 K, a single recalescence event occurs, leading to the independent nucleation of all three compound phases from alloy melt and the rapid growth of a ternary anomalous eutectic structure. Notably, the growth velocity of the ternary eutectic phase exhibits a gradual decline with further undercooling. This diminishing trend of the growth velocity suggests that further undercooling might entirely suppress crystal growth dynamically at a threshold of 385 K. With classical nucleation theory and the Kolmogorov-Johnson-Mehl-Avrami (KJMA) model, the onsets of crystallization for the three phases are calculated, thereby constructing a time–temperature-transformation (TTT) diagram. This diagram elucidates the competitive nucleation among the three phases in the undercooled melt. Both theoretical and experimental evidence reveal that Zr6Al2Ni phase is primarily nucleated at lower undercooling levels, whereas under higher cooling condition, it is possible for all three phases to nucleate simultaneously.
      通信作者: 魏炳波, bbwei@nwpu.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2021YFA0716301)和国家自然科学基金(批准号: 52088101, 52174378)资助的课题.
      Corresponding author: Wei Bing-Bo, bbwei@nwpu.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2021YFA0716301) and the National Natural Science Foundation of China (Grant Nos. 52088101, 52174378).
    [1]

    Peng H L, Yang F, Liu S T, Holland-Moritz D, Kordel T, Hansen T, Voigtmann T 2019 Phys. Rev. B 100 104202Google Scholar

    [2]

    饶中浩, 汪双凤, 张艳来, 彭飞飞, 蔡颂恒 2013 物理学报 62 056601Google Scholar

    Rao Z H, Wang S F, Zhang Y L, Peng F F, Cai S H 2013 Acta Phys. Sin. 62 056601Google Scholar

    [3]

    Yuan C C, Yang F, Kargl F, Holland-Moritz D, Simeoni G G, Meyer A 2015 Phys. Rev. B 91 214203Google Scholar

    [4]

    Hou J X, Guo H X, Sun J J, Tian X L, Zhan C W, Qin X B, Chen X C 2006 Phys. Lett. A 358 171Google Scholar

    [5]

    Shen Y T, Kim T H, Gangopadhyay A K, Kelton K F 2009 Phys. Rev. Lett. 102 057801Google Scholar

    [6]

    林茂杰, 常健, 吴宇昊, 徐山森, 魏炳波 2017 物理学报 66 136401Google Scholar

    Lin M J, Chang J, Wu Y H, Xu S S, Wei B B 2017 Acta Phys. Sin. 66 136401Google Scholar

    [7]

    Brillo J, Pommrich A I, Meyer A 2011 Phys. Rev. Lett. 107 165902Google Scholar

    [8]

    Su Y, Mohr M, Wunderlich R K, Wang X D, Cao Q P, Zhang D X, Yang Y, Fecht H J, Jiang J Z 2020 J. Mol. Liq. 298 111992Google Scholar

    [9]

    Johnson M L, Mauro N A, Vogt A J, Blodgett M E, Pueblo C, Kelton K F 2014 J. Non-Cryst. Solids. 405 211Google Scholar

    [10]

    Rodriguez J E, Kreischer C, Volkmann T, Matson D M 2017 Acta Mater. 122 431Google Scholar

    [11]

    Li Y H, Zhang W, Dong C, Qiang J B, Makino A, Inoue A 2010 Intermetallics 18 1851Google Scholar

    [12]

    Jiang Q K, Wang X D, Nie X P, Zhang G Q, Ma H, Fecht H J, Bendnarcil J 2008 Acta Mater. 56 1785Google Scholar

    [13]

    Hua N B, Zhang T 2014 J. Alloys Compd. 602 339

    [14]

    Li C F, Saida J, Matsushida M, Inoue A 2000 Mater. Lett. 44 80Google Scholar

    [15]

    Basuki S W, Yang F, Gill E, Rätzke K, Meyer A, Faupel F 2017 Phys. Rev. B 95 024301Google Scholar

    [16]

    Li Y, Xu J 2017 Corros. Sci. 128 73Google Scholar

    [17]

    Hu L, Wang H P, Li L H, Wei B 2012 Chin. Phys. Lett. 29 064101Google Scholar

    [18]

    Ishikawa T, Paradis P F, Yoda S 2001 Rev. Sci. Instrum. 72 2490Google Scholar

    [19]

    Chung S K, Thiessen D B, Rhim W K 1996 Rev. Sci. Instrum. 67 3175Google Scholar

    [20]

    Jeon S, Kang D H, Lee Y H, Lee S, Lee G W 2016 J. Chem. Phys. 145 174504Google Scholar

    [21]

    Takeuchi A, Kato H, Inoue A 2010 Intermetallics 18 406Google Scholar

    [22]

    王磊, 胡亮, 杨尚京, 魏炳波 2018 中国有色金属学报 28 1816Google Scholar

    Wang L, Hu L, Yang S J, Wei B 2018 Chin. J. Nonferrous Met. 28 1816Google Scholar

    [23]

    Mukherjee S, Schroers J, Johnson W L, Rhim W K 2005 Phys. Rev. Lett. 94 245501Google Scholar

    [24]

    Wu Y H, Chang J, Wang W L, Wei B 2016 Appl. Phys. Lett. 109 154101Google Scholar

    [25]

    Galenko P K, Wonneberger R, Koch S, Ankudinov V, Kharanzhevskiy E, Rettenmayr M 2020 J. Cryst. Growth. 532 125411Google Scholar

    [26]

    Fuss T, Ray C S, Lesher C E, Day D E 2006 J. Non-Cryst. Solids 352 2073Google Scholar

    [27]

    Fokin V M, Nascimento M, Zanotto E D 2005 J. Non-Cryst. Solids 351 789Google Scholar

    [28]

    Torrens-Serra J, Rodríguez-Viejo J, Clavaguera-Mora M T 2007 Phys. Rev. B 76 214111Google Scholar

    [29]

    Uhlmann D R 1977 J. Non-Cryst. Solids 25 42Google Scholar

    [30]

    Zhao J F, Li M X, H. Wang H P, Wei B 2022 Acta Mater. 237 118127Google Scholar

    [31]

    Alford T L, Gale W F, Totemeir T C 2015 Smithells Metals Reference Book (Elsevier) p8

    [32]

    Vinet B, Magnusson L, Fredriksson H, Desré P J 2002 J. Colloid Interface Sci. 255 363Google Scholar

    [33]

    Maiorova A V, Kulikova T V, Ryltsev R E 2021 Philos. Mag. 101 1709Google Scholar

  • 图 1  Zr60Ni25Al15合金的相组成和热分析 (a) 合金成分点在相图中位置; (b) DSC热分析曲线; (c) DSC样品凝固组织; (d) X射线衍射图谱

    Fig. 1.  Phase constitution and DSC analysis of Zr60Ni25Al15 alloy: (a) Alloy location in phase diagram; (b) DSC curves; (c) microstructure of DSC sample; (d) XRD pattern.

    图 2  实验测定的液态Zr60Ni25Al15合金热物理性质 (a)密度和膨胀系数; (b)过剩体积; (c)表面张力; (d)黏度

    Fig. 2.  Thermophysical properties of liquid Zr60Ni25Al15 alloy measured under electrostatic levitation condition: (a) Density and expansion coefficient; (b) excessive volume; (c) surface tension; (d) viscosity.

    图 3  静电悬浮条件下液态Zr60Ni25Al15合金的凝固过程温度曲线分析 (a) ΔT = 56 K; (b) ΔT = 316 K; (c) 二相共晶生长速度和过冷度的关系, ΔT < ΔTC = 259 K; (d) 三元共晶生长速度和过冷度的关系, $ \Delta T \geqslant \Delta {T_{\text{C}}} = 259{\text{ K}} $

    Fig. 3.  Solidification characteristics of Zr60Ni25Al15 alloy under electrostatic levitation condition: (a) ΔT = 56 K; (b) ΔT = 316 K; (c) binary eutectic growth velocity versus undercooling, ΔT < ΔTC = 259 K; (d) ternary eutectic growth velocity versus undercooling, ΔT ≥ ΔTC = 259 K

    图 4  静电悬浮条件下的Zr60Ni25Al15合金凝固组织 (a) ΔT = 56 K; (b) ΔT = 316 K

    Fig. 4.  Microstructures of Zr60Ni25Al15 alloy under electrostatic levitation condition: (a) ΔT = 56 K; (b) ΔT = 316 K.

    图 5  两种共晶组织体积分数与Zr60Ni25Al15合金过冷度的关系

    Fig. 5.  Volume fraction of two types of eutectics in Zr60Ni25Al15 alloy versus undercooling.

    图 6  液态Zr60Ni25Al15合金中三相竞争形核C曲线 (a)均质形核; (b)异质形核

    Fig. 6.  Time-temperature-transformation curves of liquid Zr60Ni25Al15 alloy: (a) Homogeneous nucleation; (b) heterogeneous nucleation

    表 1  计算形核C曲线用物性参数

    Table 1.  Physical parameters used in calculations of time-temperature-transformation curves.

    Physical parameterZr6Al2NiZr5Ni4AlZr2NiRef.
    a1.661.651.71[30]
    Hm/(104 J·mol–1)1.541.992.13[31]
    σ/(J·m–2)0.170.240.23[31,32]
    下载: 导出CSV
  • [1]

    Peng H L, Yang F, Liu S T, Holland-Moritz D, Kordel T, Hansen T, Voigtmann T 2019 Phys. Rev. B 100 104202Google Scholar

    [2]

    饶中浩, 汪双凤, 张艳来, 彭飞飞, 蔡颂恒 2013 物理学报 62 056601Google Scholar

    Rao Z H, Wang S F, Zhang Y L, Peng F F, Cai S H 2013 Acta Phys. Sin. 62 056601Google Scholar

    [3]

    Yuan C C, Yang F, Kargl F, Holland-Moritz D, Simeoni G G, Meyer A 2015 Phys. Rev. B 91 214203Google Scholar

    [4]

    Hou J X, Guo H X, Sun J J, Tian X L, Zhan C W, Qin X B, Chen X C 2006 Phys. Lett. A 358 171Google Scholar

    [5]

    Shen Y T, Kim T H, Gangopadhyay A K, Kelton K F 2009 Phys. Rev. Lett. 102 057801Google Scholar

    [6]

    林茂杰, 常健, 吴宇昊, 徐山森, 魏炳波 2017 物理学报 66 136401Google Scholar

    Lin M J, Chang J, Wu Y H, Xu S S, Wei B B 2017 Acta Phys. Sin. 66 136401Google Scholar

    [7]

    Brillo J, Pommrich A I, Meyer A 2011 Phys. Rev. Lett. 107 165902Google Scholar

    [8]

    Su Y, Mohr M, Wunderlich R K, Wang X D, Cao Q P, Zhang D X, Yang Y, Fecht H J, Jiang J Z 2020 J. Mol. Liq. 298 111992Google Scholar

    [9]

    Johnson M L, Mauro N A, Vogt A J, Blodgett M E, Pueblo C, Kelton K F 2014 J. Non-Cryst. Solids. 405 211Google Scholar

    [10]

    Rodriguez J E, Kreischer C, Volkmann T, Matson D M 2017 Acta Mater. 122 431Google Scholar

    [11]

    Li Y H, Zhang W, Dong C, Qiang J B, Makino A, Inoue A 2010 Intermetallics 18 1851Google Scholar

    [12]

    Jiang Q K, Wang X D, Nie X P, Zhang G Q, Ma H, Fecht H J, Bendnarcil J 2008 Acta Mater. 56 1785Google Scholar

    [13]

    Hua N B, Zhang T 2014 J. Alloys Compd. 602 339

    [14]

    Li C F, Saida J, Matsushida M, Inoue A 2000 Mater. Lett. 44 80Google Scholar

    [15]

    Basuki S W, Yang F, Gill E, Rätzke K, Meyer A, Faupel F 2017 Phys. Rev. B 95 024301Google Scholar

    [16]

    Li Y, Xu J 2017 Corros. Sci. 128 73Google Scholar

    [17]

    Hu L, Wang H P, Li L H, Wei B 2012 Chin. Phys. Lett. 29 064101Google Scholar

    [18]

    Ishikawa T, Paradis P F, Yoda S 2001 Rev. Sci. Instrum. 72 2490Google Scholar

    [19]

    Chung S K, Thiessen D B, Rhim W K 1996 Rev. Sci. Instrum. 67 3175Google Scholar

    [20]

    Jeon S, Kang D H, Lee Y H, Lee S, Lee G W 2016 J. Chem. Phys. 145 174504Google Scholar

    [21]

    Takeuchi A, Kato H, Inoue A 2010 Intermetallics 18 406Google Scholar

    [22]

    王磊, 胡亮, 杨尚京, 魏炳波 2018 中国有色金属学报 28 1816Google Scholar

    Wang L, Hu L, Yang S J, Wei B 2018 Chin. J. Nonferrous Met. 28 1816Google Scholar

    [23]

    Mukherjee S, Schroers J, Johnson W L, Rhim W K 2005 Phys. Rev. Lett. 94 245501Google Scholar

    [24]

    Wu Y H, Chang J, Wang W L, Wei B 2016 Appl. Phys. Lett. 109 154101Google Scholar

    [25]

    Galenko P K, Wonneberger R, Koch S, Ankudinov V, Kharanzhevskiy E, Rettenmayr M 2020 J. Cryst. Growth. 532 125411Google Scholar

    [26]

    Fuss T, Ray C S, Lesher C E, Day D E 2006 J. Non-Cryst. Solids 352 2073Google Scholar

    [27]

    Fokin V M, Nascimento M, Zanotto E D 2005 J. Non-Cryst. Solids 351 789Google Scholar

    [28]

    Torrens-Serra J, Rodríguez-Viejo J, Clavaguera-Mora M T 2007 Phys. Rev. B 76 214111Google Scholar

    [29]

    Uhlmann D R 1977 J. Non-Cryst. Solids 25 42Google Scholar

    [30]

    Zhao J F, Li M X, H. Wang H P, Wei B 2022 Acta Mater. 237 118127Google Scholar

    [31]

    Alford T L, Gale W F, Totemeir T C 2015 Smithells Metals Reference Book (Elsevier) p8

    [32]

    Vinet B, Magnusson L, Fredriksson H, Desré P J 2002 J. Colloid Interface Sci. 255 363Google Scholar

    [33]

    Maiorova A V, Kulikova T V, Ryltsev R E 2021 Philos. Mag. 101 1709Google Scholar

  • [1] 莫云飞, 蒋丽贵, 稂林, 文大东, 张海涛, 李媛, 田泽安, 彭平, 刘让苏. 高压下金属钽液体中拓扑密堆团簇对凝固路径的影响规律. 物理学报, 2024, 73(21): 216101. doi: 10.7498/aps.73.20241089
    [2] 曹春蕾, 何孝天, 马骁婧, 徐进良. 液态金属软表面池沸腾传热的实验研究. 物理学报, 2021, 70(13): 134703. doi: 10.7498/aps.70.20202053
    [3] 徐山森, 常健, 吴宇昊, 沙莎, 魏炳波. 液态五元Ni-Zr-Ti-Al-Cu合金快速凝固过程的高速摄影研究. 物理学报, 2019, 68(19): 196401. doi: 10.7498/aps.68.20190910
    [4] 沙莎, 王伟丽, 吴宇昊, 魏炳波. 深过冷条件下Co7Mo6金属间化合物的枝晶生长和维氏硬度研究. 物理学报, 2018, 67(4): 046402. doi: 10.7498/aps.67.20172156
    [5] 徐小花, 陈明文, 王自东. 各向异性表面张力对定向凝固中共晶生长形态稳定性的影响. 物理学报, 2018, 67(11): 118103. doi: 10.7498/aps.67.20180186
    [6] 李路远, 阮莹, 魏炳波. 液态三元Fe-Cr-Ni合金中快速枝晶生长与溶质分布规律. 物理学报, 2018, 67(14): 146101. doi: 10.7498/aps.67.20180062
    [7] 吴博强, 刘海蓉, 刘让苏, 莫云飞, 田泽安, 梁永超, 关绍康, 黄昌雄. 冷速对液态金属Mg凝固过程中微观结构演变的影响. 物理学报, 2017, 66(1): 016101. doi: 10.7498/aps.66.016101
    [8] 谷倩倩, 阮莹, 代富平. 微重力下Fe-Al-Nb合金液滴的快速凝固机理及其对显微硬度的影响. 物理学报, 2017, 66(10): 106401. doi: 10.7498/aps.66.106401
    [9] 魏绍楼, 黄陆军, 常健, 杨尚京, 耿林. 液态Ti-Al合金的深过冷与快速枝晶生长. 物理学报, 2016, 65(9): 096101. doi: 10.7498/aps.65.096101
    [10] 杨尚京, 王伟丽, 魏炳波. 深过冷液态Al-Ni合金中枝晶与共晶生长机理. 物理学报, 2015, 64(5): 056401. doi: 10.7498/aps.64.056401
    [11] 弭光宝, 李培杰, 黄旭, 曹春晓. 液态结构与性质关系Ⅲ剩余键理论模型. 物理学报, 2012, 61(18): 186106. doi: 10.7498/aps.61.186106
    [12] 闫娜, 王伟丽, 代富平, 魏炳波. 三元Co-Cu-Pb偏晶合金的快速凝固组织形成规律研究. 物理学报, 2011, 60(3): 036402. doi: 10.7498/aps.60.036402
    [13] 杨玉娟, 王锦程, 杨根仓, 张玉祥, 朱耀产. 三维多相场数值模拟共晶CBr4-C2Cl6合金在不同抽拉速度下的形态选择. 物理学报, 2009, 58(4): 2797-2803. doi: 10.7498/aps.58.2797
    [14] 张明晓, 田学雷, 郭风祥. 电磁感应式液固态金属电阻率定性测量装置及应用. 物理学报, 2009, 58(9): 6080-6085. doi: 10.7498/aps.58.6080
    [15] 徐锦锋, 范于芳, 陈娓, 翟秋亚. 快速凝固Cu-Pb过偏晶合金的性能表征. 物理学报, 2009, 58(1): 644-649. doi: 10.7498/aps.58.644
    [16] 殷涵玉, 鲁晓宇. 深过冷Cu60Sn30Pb10偏晶合金的快速凝固. 物理学报, 2008, 57(7): 4341-4346. doi: 10.7498/aps.57.4341
    [17] 臧渡洋, 王海鹏, 魏炳波. 深过冷三元Ni-Cu-Co合金的快速枝晶生长. 物理学报, 2007, 56(8): 4804-4809. doi: 10.7498/aps.56.4804
    [18] 梅策香, 阮 莹, 代富平, 魏炳波. 深过冷Ag-Cu-Ge三元共晶合金的相组成与凝固特征. 物理学报, 2007, 56(2): 988-993. doi: 10.7498/aps.56.988
    [19] 翟秋亚, 杨 扬, 徐锦锋, 郭学锋. 快速凝固Cu-Sn亚包晶合金的电阻率及力学性能. 物理学报, 2007, 56(10): 6118-6123. doi: 10.7498/aps.56.6118
    [20] 徐锦锋, 魏炳波. 快速凝固Co-Cu包晶合金的电学性能. 物理学报, 2005, 54(7): 3444-3450. doi: 10.7498/aps.54.3444
计量
  • 文章访问数:  1753
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-22
  • 修回日期:  2024-01-21
  • 上网日期:  2024-01-30
  • 刊出日期:  2024-04-20

/

返回文章
返回