搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于空间分辨法分析时间低相干光自聚焦效应

单翀 孔令豹 崔勇 季来林 赵晓晖 李福建 饶大幸 赵元安 隋展 邵建达

引用本文:
Citation:

基于空间分辨法分析时间低相干光自聚焦效应

单翀, 孔令豹, 崔勇, 季来林, 赵晓晖, 李福建, 饶大幸, 赵元安, 隋展, 邵建达

Low-temporal coherence light self-focusing effect by spatial resolved method

Shan Chong, Kong Ling-Bao, Cui Yong, Ji Lai-Lin, Zhao Xiao-Hui, Li Fu-Jian, Rao Da-Xing, Zhao Yuan-An, Sui Zhan, Shao Jian-Da
PDF
HTML
导出引用
  • 时间低相干光由于其瞬时宽带的物理特性, 在激光惯性约束聚变中得到了广泛的关注. 然而其复杂的时间尖峰结构或将诱导非线性自聚焦效应的放大. 同时, 传统的非线性自聚焦特征数值的测试方法中, 多数材料的表面损伤先于体内自聚焦成丝损伤发生, 这为对比不同激光的非线性效应带来巨大影响. 本文利用短焦距透镜对熔石英进行紧聚焦, 通过调节入射激光能量, 在避免前表面损伤的前提下, 诱导熔石英产生自聚焦成丝损伤. 随后通过理论计算对光束在样品体内传输过程的光斑变化进行空间分辨处理, 并得到对应细分位置的非线性数值. 最终将各个位置对应的非线性相位变化值进行积分, 得到前表面无损条件下材料的非线性自聚焦特征数值. 测试结果表明时间低相干光的非线性自聚焦效应比传统单模脉冲激光更强. 本文不仅设计了一套更加精确的对比不同激光非线性效应的测试方法, 同时也探明了时间相干性对于非线性自聚焦效应的影响机制, 为高功率时间低相干激光器的设计提供理论依据和参考.
    The low-temporal coherence light (LTCL) has received extensive attention in the research of inertial confinement fusion due to its physical properties of instantaneous broadband. Recent reports demonstrated that the LTCL has significant suppression effects on laser plasma instability. However, the temporal spike structures of the LTCL will not only induce the amplification of the self-focusing effect, but also make its small-scale self-focusing characteristics and corresponding damage mechanism more complicated. Exploring the self-focusing characteristics of the LTCL will provide an important information for improving the output power of the LTCL. In this work, we design a more accurate test method for comparing the nonlinear self-focusing effects of different lasers, and compare the self-focusing effect of LTCL with single longitudinal mode (SLM) pulse. In the experiments, fused silica is tightly focused by a short focal length lens to avoid damaging the input surface. A spatially resolved test method is designed to measure the nonlinear I×L value (where I is the incident intensity, L is the distance from the head of filamentation damage to the input surface), which is accumulated from the input surface to the head of filamentation damage. The results show that the nonlinear I×L value obtained by the spatially resolved method is lower than by the traditional test method, since the energy loss caused by incident surface damage and backward stimulated Brillouin scattering (SBS) has been resolved. Furthermore, the nonlinear I×L values of the SLM pulse and the LTCL are also compared by the traditional test method and spatially resolved method. The test results show that due to the temporal spike structure, the LTCL has a lower nonlinear I×L value than the SLM pulse. The SBS effect and the different damage characteristics of the input surface are also analyzed. This study provides a more accurate test method for better analyzing the self-focusing effect of LTCL and laser pulses with different characteristics, and hence presenting a reference for designing high-power devices of low-temporal coherence light.
      通信作者: 孔令豹, LKong@fudan.edu.cn ; 崔勇, Yong_cui@126.com
    • 基金项目: 国家自然科学基金(批准号: 12074353)资助的课题.
      Corresponding author: Kong Ling-Bao, LKong@fudan.edu.cn ; Cui Yong, Yong_cui@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12074353).
    [1]

    Tollefson J, Gibney E 2022 Nature 612 597Google Scholar

    [2]

    Clery D 2022 Science 378 1154Google Scholar

    [3]

    Gao Y Q, Ji L L, Zhao X H, Cui Y, Rao D X, Feng W, Xia L, Liu D, Wang T, Shi H T, Li F J, Liu J N, Du P Y, Li X L, Liu J, Zhang T X, Shan C, Hua Y L, Ma W X, Sui Z, Pei W B, Fu S Z, Sun X, Chen X F 2020 Opt. Lett. 45 6839Google Scholar

    [4]

    Cui Y, Gao Y Q, Rao D X, Liu D, Li F J, Ji L L, Shi H T, Liu J N, Zhao X H, Feng W, Liu J N, Wang T, Ma W X, Sui Z 2019 Opt. Lett. 44 2859Google Scholar

    [5]

    Ji L L, Zhao X X, Liu D, Gao Y Q, Cui Y, Rao D X, Feng W, Li F J, Shi H T, Liu J N, Li X L, Xia L, Wang T, Liu J, Du P Y, Sun X, Ma W X, Sui Z, Chen X F 2019 Opt. Lett. 44 17Google Scholar

    [6]

    Zhao X H, Ji L L, Liu D, Gao Y Q, Rao D X, Cui Y, Feng W, Li F J, Shi H T, Shan C, Ma W X, Sui Z 2020 APL Photonics 5 9Google Scholar

    [7]

    Wang P P, An H H, Fang Z H, Xiong J, Xie Z Y, Wang C, He Z Y, Jia G, Wang R R, Zheng S, Xia L, Feng W, Shi H T, Wang W, Sun J R, Gao Y Q, Fu S Z 2024 Matter Radiat. Extrem. 9 015602Google Scholar

    [8]

    Lei A L, Kang N, Zhao Y, Liu H Y, An H H, Xiong J, Wang R R, Xie Z Y, Tu Y C, Xu G X, Zhou X C, Fang Z H, Wang W, Xia L, Feng W, Zhao X H, Ji L L, Cui Y, Zhou X H, Liu Z J, Zheng C Y, Wang L F, Gao Y Q, Huang X G, Fu S Z 2024 Phys. Rev. Lett. 132 035102Google Scholar

    [9]

    Suydam B 1974 IEEE J. Quantum Elect. 10 837Google Scholar

    [10]

    Simmons W, Hunt J, Warren W 1981 IEEE J. Quantum Elect. 17 1727Google Scholar

    [11]

    Sacks R A, Henesian M A, Haney S W, Trenholme J B 1996 The PROp 92 Fourier Beampropagation Code LLNL Laser Program Quarterly Report. UCRL-LR-105821(96-4): 207–213

    [12]

    Williams W, Trenholme J, Orth C, Haney S, Sacks R, Auerbach J, Renard P 1996 NlF Design Optimization LLNL Laser Program Quarterly Report. UCRL-LR-105821(96-4): 181–191

    [13]

    Williams W, Renard P A, Manes K R, Milam D, Hunt J T, Eimerl D 1966 Modeling of Self-focusing Experiments by Beam Propagation Codes UCRL-LR-105821-96-1: 7

    [14]

    Taylor D G, Amiel A I, Luat T V, Alexander L G 2006 Opt. Express 14 5468Google Scholar

    [15]

    Bliss E S, Speck D R, Holzrichter J F, Erkkila J H, Glass A J 1974 Appl. Phys. Lett. 25 448Google Scholar

    [16]

    Fleck J, Morris J, Bliss E 1978 Quantum Electron. 14 353Google Scholar

    [17]

    Ranka J K, Schirmer R W, Gaeta A L 1996 Phy. Rev. Lett. 77 3783Google Scholar

    [18]

    Milam D, Manes K R, Williams W H 1996 Laser-Induced Damage in Optical Materials Boulder, CO, United States, May 13, 1996 p2966

    [19]

    Bespalov V I, Talanov V I 1966 J. Exp. Theor. Phys. 3 307

    [20]

    Feit M, Fleck Jr J 1992 Self-focusing of Broadband Laser Pulses in Dispersive Media (Washington, DC: Lawrence Livermore National Lab.) UCRL-ID-112523; ON: DE93007369

    [21]

    邓锡铭, 余文炎, 陈时胜, 丁丽明, 谭维翰 1983 光学学报 3 2Google Scholar

    Deng X M, Yu W Y, Chen S S, Ding L M, Tan W H 1983 J. Opt. 3 2Google Scholar

    [22]

    Deng J Q, Fu X Q, Zhang L F, Zhang J, Wen S C 2013 Opt. Laser Technol. 45 56Google Scholar

    [23]

    Stuart B C, Feit M D, Herman S, Rubenchick A M, Shore B W, Perry M D 1996 Phys. Rev. B 53 1749Google Scholar

    [24]

    Rubenchik A M, Feit M D 2002 Laser-Induced Damage in Optical Materials Boulder, CO, United States, April 9, 2002 p4679

    [25]

    Fibich G, Eisenmann S, Ilan B, Erlich Y, Fraenkel M, Henis Z, Gaeta A L, Zigler A 2005 Opt. Express 13 5897Google Scholar

    [26]

    Yoshida H, Fujita H, Nakatsuka M 1997 Opt. Eng. 36 3739Google Scholar

    [27]

    Murray J R, Smith J R, Ehrlich R B, Kyrazis D T, Thompson C E, Weiland T L, Wilcox R B 1989 J. Opt. Soc. Am. B 6 2402Google Scholar

    [28]

    Zhang J, Wen S C, Fu X Q, Zhang L F, Deng J Q, Fan D Y 2010 High-Power Lasers and Applications V Beijing, China, November 16, 2010 p7843

    [29]

    McKenty P W, Skupsky S, Kelly J H, Cotton C T 1994 J. Appl. Phys. 76 2027Google Scholar

    [30]

    Melloni A, Frasca M, Garavaglia A, Tonini A, Martinelli M 1998 Opt. Lett. 23 691Google Scholar

    [31]

    Bercegol H, Lamaignère L, Cavaro V, Loiseau M 2005 Laser-Induced Damage in Optical Materials Boulder, CO, United States, February 7, 2006 p5991

    [32]

    Bercegol H, Boscheron A, Lepage C, Mazataud E, Donval T, Lamaignère L, Loiseau M, Razé G, Sudre C 2004 Laser-Induced Damage in Optical Materials Boulder, Co, United States, June 10, 2004 p5273

  • 图 1  (a)传统非线性$ I\times L $测试法; (b)空间分辨测试法

    Fig. 1.  (a) Traditional nonlinear $ I\times L $ test method; (b) spatial resolved test method.

    图 2  (a)理论计算得到的激光在熔石英体内不同位置的光斑尺寸; (b)空间分辨法得到激光在熔石英体内不同位置的非线性$ I\times L $数值

    Fig. 2.  (a) Theoretical calculation of the beam size at different position of the fused silica; (b) the nonlinear $ I\times L $ of different position obtained by the spatial resolution method.

    图 3  非线性$ I\times L $测试结果 (a)传统测试方法; (b)空间分辨测试法

    Fig. 3.  Non-linear I × L test results: (a) Traditional test method; (b) spatially resolved test method.

    图 4  SBS反射率随入射能量的变化 (a)传统测试法; (b)空间分辨测试法

    Fig. 4.  Reflectivity of stimulated Brillouin scattering as a function of the incident energy: (a) Traditional test method; (b) the spatial resolved test method.

    图 5  (a)时间低相干光和传统单模脉冲激光的光谱测试图; (b)时间低相干光的时域测试图以及时间尖峰结构示意图

    Fig. 5.  (a) Spectrum of low-temporal coherence light and traditional single longitudinal mode pulse laser; (b) the temporal test pattern of low-temporal coherence light and schematic diagram of temporal spike structures.

    图 6  激光诱导熔石英前表面损伤的形貌 (a)单模脉冲激光; (b)时间低相干光

    Fig. 6.  Laser-induced input surface damage morphologies: (a) Single longitudinal mode pulse laser; (b) the low-temporal coherence light.

    表 1  传统测试法和空间分辨法测得的单模脉冲激光和时间低相干光的非线性$ I\times {L}_{{\mathrm{m}}{\mathrm{i}}{\mathrm{n}}} $

    Table 1.  Nonlinear $ I\times {L}_{{\mathrm{m}}{\mathrm{i}}{\mathrm{n}}} $ of single longitudinal mode pulse laser and the low-temporal coherence light measured by traditional test method and spatial resolved method.

    $ I\times {L}_{{\mathrm{m}}{\mathrm{i}}{\mathrm{n}}} $ /(GW·cm–1)
    单模脉冲激光时间低相干光
    传统测试法157.5649.70
    空间分辨法15.197.48
    下载: 导出CSV
  • [1]

    Tollefson J, Gibney E 2022 Nature 612 597Google Scholar

    [2]

    Clery D 2022 Science 378 1154Google Scholar

    [3]

    Gao Y Q, Ji L L, Zhao X H, Cui Y, Rao D X, Feng W, Xia L, Liu D, Wang T, Shi H T, Li F J, Liu J N, Du P Y, Li X L, Liu J, Zhang T X, Shan C, Hua Y L, Ma W X, Sui Z, Pei W B, Fu S Z, Sun X, Chen X F 2020 Opt. Lett. 45 6839Google Scholar

    [4]

    Cui Y, Gao Y Q, Rao D X, Liu D, Li F J, Ji L L, Shi H T, Liu J N, Zhao X H, Feng W, Liu J N, Wang T, Ma W X, Sui Z 2019 Opt. Lett. 44 2859Google Scholar

    [5]

    Ji L L, Zhao X X, Liu D, Gao Y Q, Cui Y, Rao D X, Feng W, Li F J, Shi H T, Liu J N, Li X L, Xia L, Wang T, Liu J, Du P Y, Sun X, Ma W X, Sui Z, Chen X F 2019 Opt. Lett. 44 17Google Scholar

    [6]

    Zhao X H, Ji L L, Liu D, Gao Y Q, Rao D X, Cui Y, Feng W, Li F J, Shi H T, Shan C, Ma W X, Sui Z 2020 APL Photonics 5 9Google Scholar

    [7]

    Wang P P, An H H, Fang Z H, Xiong J, Xie Z Y, Wang C, He Z Y, Jia G, Wang R R, Zheng S, Xia L, Feng W, Shi H T, Wang W, Sun J R, Gao Y Q, Fu S Z 2024 Matter Radiat. Extrem. 9 015602Google Scholar

    [8]

    Lei A L, Kang N, Zhao Y, Liu H Y, An H H, Xiong J, Wang R R, Xie Z Y, Tu Y C, Xu G X, Zhou X C, Fang Z H, Wang W, Xia L, Feng W, Zhao X H, Ji L L, Cui Y, Zhou X H, Liu Z J, Zheng C Y, Wang L F, Gao Y Q, Huang X G, Fu S Z 2024 Phys. Rev. Lett. 132 035102Google Scholar

    [9]

    Suydam B 1974 IEEE J. Quantum Elect. 10 837Google Scholar

    [10]

    Simmons W, Hunt J, Warren W 1981 IEEE J. Quantum Elect. 17 1727Google Scholar

    [11]

    Sacks R A, Henesian M A, Haney S W, Trenholme J B 1996 The PROp 92 Fourier Beampropagation Code LLNL Laser Program Quarterly Report. UCRL-LR-105821(96-4): 207–213

    [12]

    Williams W, Trenholme J, Orth C, Haney S, Sacks R, Auerbach J, Renard P 1996 NlF Design Optimization LLNL Laser Program Quarterly Report. UCRL-LR-105821(96-4): 181–191

    [13]

    Williams W, Renard P A, Manes K R, Milam D, Hunt J T, Eimerl D 1966 Modeling of Self-focusing Experiments by Beam Propagation Codes UCRL-LR-105821-96-1: 7

    [14]

    Taylor D G, Amiel A I, Luat T V, Alexander L G 2006 Opt. Express 14 5468Google Scholar

    [15]

    Bliss E S, Speck D R, Holzrichter J F, Erkkila J H, Glass A J 1974 Appl. Phys. Lett. 25 448Google Scholar

    [16]

    Fleck J, Morris J, Bliss E 1978 Quantum Electron. 14 353Google Scholar

    [17]

    Ranka J K, Schirmer R W, Gaeta A L 1996 Phy. Rev. Lett. 77 3783Google Scholar

    [18]

    Milam D, Manes K R, Williams W H 1996 Laser-Induced Damage in Optical Materials Boulder, CO, United States, May 13, 1996 p2966

    [19]

    Bespalov V I, Talanov V I 1966 J. Exp. Theor. Phys. 3 307

    [20]

    Feit M, Fleck Jr J 1992 Self-focusing of Broadband Laser Pulses in Dispersive Media (Washington, DC: Lawrence Livermore National Lab.) UCRL-ID-112523; ON: DE93007369

    [21]

    邓锡铭, 余文炎, 陈时胜, 丁丽明, 谭维翰 1983 光学学报 3 2Google Scholar

    Deng X M, Yu W Y, Chen S S, Ding L M, Tan W H 1983 J. Opt. 3 2Google Scholar

    [22]

    Deng J Q, Fu X Q, Zhang L F, Zhang J, Wen S C 2013 Opt. Laser Technol. 45 56Google Scholar

    [23]

    Stuart B C, Feit M D, Herman S, Rubenchick A M, Shore B W, Perry M D 1996 Phys. Rev. B 53 1749Google Scholar

    [24]

    Rubenchik A M, Feit M D 2002 Laser-Induced Damage in Optical Materials Boulder, CO, United States, April 9, 2002 p4679

    [25]

    Fibich G, Eisenmann S, Ilan B, Erlich Y, Fraenkel M, Henis Z, Gaeta A L, Zigler A 2005 Opt. Express 13 5897Google Scholar

    [26]

    Yoshida H, Fujita H, Nakatsuka M 1997 Opt. Eng. 36 3739Google Scholar

    [27]

    Murray J R, Smith J R, Ehrlich R B, Kyrazis D T, Thompson C E, Weiland T L, Wilcox R B 1989 J. Opt. Soc. Am. B 6 2402Google Scholar

    [28]

    Zhang J, Wen S C, Fu X Q, Zhang L F, Deng J Q, Fan D Y 2010 High-Power Lasers and Applications V Beijing, China, November 16, 2010 p7843

    [29]

    McKenty P W, Skupsky S, Kelly J H, Cotton C T 1994 J. Appl. Phys. 76 2027Google Scholar

    [30]

    Melloni A, Frasca M, Garavaglia A, Tonini A, Martinelli M 1998 Opt. Lett. 23 691Google Scholar

    [31]

    Bercegol H, Lamaignère L, Cavaro V, Loiseau M 2005 Laser-Induced Damage in Optical Materials Boulder, CO, United States, February 7, 2006 p5991

    [32]

    Bercegol H, Boscheron A, Lepage C, Mazataud E, Donval T, Lamaignère L, Loiseau M, Razé G, Sudre C 2004 Laser-Induced Damage in Optical Materials Boulder, Co, United States, June 10, 2004 p5273

  • [1] 郭富城, 李翠, 厉彦忠. 定向红外光空间分布误差对冷冻靶温度场的影响分析. 物理学报, 2022, 71(11): 110702. doi: 10.7498/aps.71.20212351
    [2] 赵海龙, 王刚华, 肖波, 王强, 阚明先, 段书超, 谢龙. 磁化套筒惯性聚变中轴向磁场演化特征与Nernst效应影响. 物理学报, 2021, 70(13): 135201. doi: 10.7498/aps.70.20202215
    [3] 邹雄, 漆小波, 张涛先, 高章帆, 黄卫星. 惯性约束聚变靶丸内杂质气体抽空流洗过程的数值模拟. 物理学报, 2021, 70(7): 075207. doi: 10.7498/aps.70.20201491
    [4] 郭富城, 李翠, 厉彦忠. 定向红外条件下光纤布置形式及光源参数对低温靶温度场的影响. 物理学报, 2021, 70(16): 160703. doi: 10.7498/aps.70.20210029
    [5] 赵海龙, 肖波, 王刚华, 王强, 章征伟, 孙奇志, 邓建军. 磁化套筒惯性聚变一维集成化数值模拟. 物理学报, 2020, 69(3): 035203. doi: 10.7498/aps.69.20191411
    [6] 高妍琦, 赵晓晖, 贾果, 李福建, 崔勇, 饶大幸, 季来林, 刘栋, 冯伟, 黄秀光, 马伟新, 隋展. 基于低相干光的阵列透镜束匀滑技术研究. 物理学报, 2019, 68(7): 075201. doi: 10.7498/aps.68.20182138
    [7] 唐熊忻, 邱基斯, 樊仲维, 王昊成, 刘悦亮, 刘昊, 苏良碧. 用于惯性约束核聚变激光驱动器的激光二极管抽运Nd,Y:CaF2激光放大器的实验研究. 物理学报, 2016, 65(20): 204206. doi: 10.7498/aps.65.204206
    [8] 陈雪梅, 张静, 易兴文, 曾登科, 杨合明, 邱昆. 基于数字相干叠加的相干光正交频分复用系统中光纤非线性容忍性研究. 物理学报, 2015, 64(14): 144203. doi: 10.7498/aps.64.144203
    [9] 阮望超, 岑兆丰, 李晓彤, 刘洋舟, 庞武斌. 基于光线光学的非线性自聚焦现象的仿真分析. 物理学报, 2013, 62(4): 044202. doi: 10.7498/aps.62.044202
    [10] 晏骥, 江少恩, 苏明, 巫顺超, 林稚伟. X射线相衬成像应用于惯性约束核聚变多层球壳靶丸检测. 物理学报, 2012, 61(6): 068703. doi: 10.7498/aps.61.068703
    [11] 毕鹏, 雷海乐, 刘元琼, 黎军, 杨向东. 红外光诱导氘氘固体再分布的研究. 物理学报, 2012, 61(6): 062802. doi: 10.7498/aps.61.062802
    [12] 李湘衡, 张冰志, 佘卫龙. 相干光伏空间孤子非对称碰撞研究. 物理学报, 2011, 60(7): 074216. doi: 10.7498/aps.60.074216
    [13] 占江徽, 姚欣, 高福华, 阳泽健, 张怡霄, 郭永康. 惯性约束聚变驱动器连续相位板前置时频率转换晶体内部光场研究. 物理学报, 2011, 60(1): 014205. doi: 10.7498/aps.60.014205
    [14] 王晓方, 王晶宇. 菲涅耳波带板应用于聚变靶的高分辨X射线成像分析. 物理学报, 2011, 60(2): 025212. doi: 10.7498/aps.60.025212
    [15] 毕鹏, 刘元琼, 唐永建, 杨向东, 雷海乐. 液氢平面低温冷冻靶的红外吸收谱. 物理学报, 2010, 59(11): 7531-7534. doi: 10.7498/aps.59.7531
    [16] 汪 萍, 戴新刚. 外强迫作用下正压大气非线性特征数值模拟. 物理学报, 2005, 54(10): 4961-4970. doi: 10.7498/aps.54.4961
    [17] 彭志涛, 景峰, 刘兰琴, 朱启华, 陈波, 张昆, 刘华, 张清泉, 程晓峰, 蒋东镔, 刘红婕, 彭翰生. 自聚焦激光束光束质量评价的功率谱密度方法. 物理学报, 2003, 52(1): 87-90. doi: 10.7498/aps.52.87
    [18] 谢勇, 徐健学, 杨红军, 胡三觉. 皮层脑电时间序列的相空间重构及非线性特征量的提取. 物理学报, 2002, 51(2): 205-214. doi: 10.7498/aps.51.205
    [19] 佘卫龙, 何穗荣, 汪河洲, 余振新, 莫党. 热自聚焦诱导光折变非对称自散焦. 物理学报, 1996, 45(12): 2022-2026. doi: 10.7498/aps.45.2022
    [20] 罗诗裕, 刘曾荣, 邵明珠. 半导体光磁电效应的非线性特征. 物理学报, 1987, 36(5): 547-554. doi: 10.7498/aps.36.547
计量
  • 文章访问数:  2059
  • PDF下载量:  130
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-19
  • 修回日期:  2024-02-15
  • 上网日期:  2024-03-02
  • 刊出日期:  2024-05-05

/

返回文章
返回