-
时间低相干光由于其瞬时宽带的物理特性, 在激光惯性约束聚变中得到了广泛的关注. 然而其复杂的时间尖峰结构或将诱导非线性自聚焦效应的放大. 同时, 传统的非线性自聚焦特征数值的测试方法中, 多数材料的表面损伤先于体内自聚焦成丝损伤发生, 这为对比不同激光的非线性效应带来巨大影响. 本文利用短焦距透镜对熔石英进行紧聚焦, 通过调节入射激光能量, 在避免前表面损伤的前提下, 诱导熔石英产生自聚焦成丝损伤. 随后通过理论计算对光束在样品体内传输过程的光斑变化进行空间分辨处理, 并得到对应细分位置的非线性数值. 最终将各个位置对应的非线性相位变化值进行积分, 得到前表面无损条件下材料的非线性自聚焦特征数值. 测试结果表明时间低相干光的非线性自聚焦效应比传统单模脉冲激光更强. 本文不仅设计了一套更加精确的对比不同激光非线性效应的测试方法, 同时也探明了时间相干性对于非线性自聚焦效应的影响机制, 为高功率时间低相干激光器的设计提供理论依据和参考.The low-temporal coherence light (LTCL) has received extensive attention in the research of inertial confinement fusion due to its physical properties of instantaneous broadband. Recent reports demonstrated that the LTCL has significant suppression effects on laser plasma instability. However, the temporal spike structures of the LTCL will not only induce the amplification of the self-focusing effect, but also make its small-scale self-focusing characteristics and corresponding damage mechanism more complicated. Exploring the self-focusing characteristics of the LTCL will provide an important information for improving the output power of the LTCL. In this work, we design a more accurate test method for comparing the nonlinear self-focusing effects of different lasers, and compare the self-focusing effect of LTCL with single longitudinal mode (SLM) pulse. In the experiments, fused silica is tightly focused by a short focal length lens to avoid damaging the input surface. A spatially resolved test method is designed to measure the nonlinear I×L value (where I is the incident intensity, L is the distance from the head of filamentation damage to the input surface), which is accumulated from the input surface to the head of filamentation damage. The results show that the nonlinear I×L value obtained by the spatially resolved method is lower than by the traditional test method, since the energy loss caused by incident surface damage and backward stimulated Brillouin scattering (SBS) has been resolved. Furthermore, the nonlinear I×L values of the SLM pulse and the LTCL are also compared by the traditional test method and spatially resolved method. The test results show that due to the temporal spike structure, the LTCL has a lower nonlinear I×L value than the SLM pulse. The SBS effect and the different damage characteristics of the input surface are also analyzed. This study provides a more accurate test method for better analyzing the self-focusing effect of LTCL and laser pulses with different characteristics, and hence presenting a reference for designing high-power devices of low-temporal coherence light.
-
Keywords:
- inertial confinement fusion /
- low-temporal coherence light /
- nonlinear self-focusing /
- critical value /
- spatial resolved method
[1] Tollefson J, Gibney E 2022 Nature 612 597Google Scholar
[2] Clery D 2022 Science 378 1154Google Scholar
[3] Gao Y Q, Ji L L, Zhao X H, Cui Y, Rao D X, Feng W, Xia L, Liu D, Wang T, Shi H T, Li F J, Liu J N, Du P Y, Li X L, Liu J, Zhang T X, Shan C, Hua Y L, Ma W X, Sui Z, Pei W B, Fu S Z, Sun X, Chen X F 2020 Opt. Lett. 45 6839Google Scholar
[4] Cui Y, Gao Y Q, Rao D X, Liu D, Li F J, Ji L L, Shi H T, Liu J N, Zhao X H, Feng W, Liu J N, Wang T, Ma W X, Sui Z 2019 Opt. Lett. 44 2859Google Scholar
[5] Ji L L, Zhao X X, Liu D, Gao Y Q, Cui Y, Rao D X, Feng W, Li F J, Shi H T, Liu J N, Li X L, Xia L, Wang T, Liu J, Du P Y, Sun X, Ma W X, Sui Z, Chen X F 2019 Opt. Lett. 44 17Google Scholar
[6] Zhao X H, Ji L L, Liu D, Gao Y Q, Rao D X, Cui Y, Feng W, Li F J, Shi H T, Shan C, Ma W X, Sui Z 2020 APL Photonics 5 9Google Scholar
[7] Wang P P, An H H, Fang Z H, Xiong J, Xie Z Y, Wang C, He Z Y, Jia G, Wang R R, Zheng S, Xia L, Feng W, Shi H T, Wang W, Sun J R, Gao Y Q, Fu S Z 2024 Matter Radiat. Extrem. 9 015602Google Scholar
[8] Lei A L, Kang N, Zhao Y, Liu H Y, An H H, Xiong J, Wang R R, Xie Z Y, Tu Y C, Xu G X, Zhou X C, Fang Z H, Wang W, Xia L, Feng W, Zhao X H, Ji L L, Cui Y, Zhou X H, Liu Z J, Zheng C Y, Wang L F, Gao Y Q, Huang X G, Fu S Z 2024 Phys. Rev. Lett. 132 035102Google Scholar
[9] Suydam B 1974 IEEE J. Quantum Elect. 10 837Google Scholar
[10] Simmons W, Hunt J, Warren W 1981 IEEE J. Quantum Elect. 17 1727Google Scholar
[11] Sacks R A, Henesian M A, Haney S W, Trenholme J B 1996 The PROp 92 Fourier Beampropagation Code LLNL Laser Program Quarterly Report. UCRL-LR-105821(96-4): 207–213
[12] Williams W, Trenholme J, Orth C, Haney S, Sacks R, Auerbach J, Renard P 1996 NlF Design Optimization LLNL Laser Program Quarterly Report. UCRL-LR-105821(96-4): 181–191
[13] Williams W, Renard P A, Manes K R, Milam D, Hunt J T, Eimerl D 1966 Modeling of Self-focusing Experiments by Beam Propagation Codes UCRL-LR-105821-96-1: 7
[14] Taylor D G, Amiel A I, Luat T V, Alexander L G 2006 Opt. Express 14 5468Google Scholar
[15] Bliss E S, Speck D R, Holzrichter J F, Erkkila J H, Glass A J 1974 Appl. Phys. Lett. 25 448Google Scholar
[16] Fleck J, Morris J, Bliss E 1978 Quantum Electron. 14 353Google Scholar
[17] Ranka J K, Schirmer R W, Gaeta A L 1996 Phy. Rev. Lett. 77 3783Google Scholar
[18] Milam D, Manes K R, Williams W H 1996 Laser-Induced Damage in Optical Materials Boulder, CO, United States, May 13, 1996 p2966
[19] Bespalov V I, Talanov V I 1966 J. Exp. Theor. Phys. 3 307
[20] Feit M, Fleck Jr J 1992 Self-focusing of Broadband Laser Pulses in Dispersive Media (Washington, DC: Lawrence Livermore National Lab.) UCRL-ID-112523; ON: DE93007369
[21] 邓锡铭, 余文炎, 陈时胜, 丁丽明, 谭维翰 1983 光学学报 3 2Google Scholar
Deng X M, Yu W Y, Chen S S, Ding L M, Tan W H 1983 J. Opt. 3 2Google Scholar
[22] Deng J Q, Fu X Q, Zhang L F, Zhang J, Wen S C 2013 Opt. Laser Technol. 45 56Google Scholar
[23] Stuart B C, Feit M D, Herman S, Rubenchick A M, Shore B W, Perry M D 1996 Phys. Rev. B 53 1749Google Scholar
[24] Rubenchik A M, Feit M D 2002 Laser-Induced Damage in Optical Materials Boulder, CO, United States, April 9, 2002 p4679
[25] Fibich G, Eisenmann S, Ilan B, Erlich Y, Fraenkel M, Henis Z, Gaeta A L, Zigler A 2005 Opt. Express 13 5897Google Scholar
[26] Yoshida H, Fujita H, Nakatsuka M 1997 Opt. Eng. 36 3739Google Scholar
[27] Murray J R, Smith J R, Ehrlich R B, Kyrazis D T, Thompson C E, Weiland T L, Wilcox R B 1989 J. Opt. Soc. Am. B 6 2402Google Scholar
[28] Zhang J, Wen S C, Fu X Q, Zhang L F, Deng J Q, Fan D Y 2010 High-Power Lasers and Applications V Beijing, China, November 16, 2010 p7843
[29] McKenty P W, Skupsky S, Kelly J H, Cotton C T 1994 J. Appl. Phys. 76 2027Google Scholar
[30] Melloni A, Frasca M, Garavaglia A, Tonini A, Martinelli M 1998 Opt. Lett. 23 691Google Scholar
[31] Bercegol H, Lamaignère L, Cavaro V, Loiseau M 2005 Laser-Induced Damage in Optical Materials Boulder, CO, United States, February 7, 2006 p5991
[32] Bercegol H, Boscheron A, Lepage C, Mazataud E, Donval T, Lamaignère L, Loiseau M, Razé G, Sudre C 2004 Laser-Induced Damage in Optical Materials Boulder, Co, United States, June 10, 2004 p5273
-
表 1 传统测试法和空间分辨法测得的单模脉冲激光和时间低相干光的非线性$ I\times {L}_{{\mathrm{m}}{\mathrm{i}}{\mathrm{n}}} $
Table 1. Nonlinear $ I\times {L}_{{\mathrm{m}}{\mathrm{i}}{\mathrm{n}}} $ of single longitudinal mode pulse laser and the low-temporal coherence light measured by traditional test method and spatial resolved method.
$ I\times {L}_{{\mathrm{m}}{\mathrm{i}}{\mathrm{n}}} $ /(GW·cm–1) 单模脉冲激光 时间低相干光 传统测试法 157.56 49.70 空间分辨法 15.19 7.48 -
[1] Tollefson J, Gibney E 2022 Nature 612 597Google Scholar
[2] Clery D 2022 Science 378 1154Google Scholar
[3] Gao Y Q, Ji L L, Zhao X H, Cui Y, Rao D X, Feng W, Xia L, Liu D, Wang T, Shi H T, Li F J, Liu J N, Du P Y, Li X L, Liu J, Zhang T X, Shan C, Hua Y L, Ma W X, Sui Z, Pei W B, Fu S Z, Sun X, Chen X F 2020 Opt. Lett. 45 6839Google Scholar
[4] Cui Y, Gao Y Q, Rao D X, Liu D, Li F J, Ji L L, Shi H T, Liu J N, Zhao X H, Feng W, Liu J N, Wang T, Ma W X, Sui Z 2019 Opt. Lett. 44 2859Google Scholar
[5] Ji L L, Zhao X X, Liu D, Gao Y Q, Cui Y, Rao D X, Feng W, Li F J, Shi H T, Liu J N, Li X L, Xia L, Wang T, Liu J, Du P Y, Sun X, Ma W X, Sui Z, Chen X F 2019 Opt. Lett. 44 17Google Scholar
[6] Zhao X H, Ji L L, Liu D, Gao Y Q, Rao D X, Cui Y, Feng W, Li F J, Shi H T, Shan C, Ma W X, Sui Z 2020 APL Photonics 5 9Google Scholar
[7] Wang P P, An H H, Fang Z H, Xiong J, Xie Z Y, Wang C, He Z Y, Jia G, Wang R R, Zheng S, Xia L, Feng W, Shi H T, Wang W, Sun J R, Gao Y Q, Fu S Z 2024 Matter Radiat. Extrem. 9 015602Google Scholar
[8] Lei A L, Kang N, Zhao Y, Liu H Y, An H H, Xiong J, Wang R R, Xie Z Y, Tu Y C, Xu G X, Zhou X C, Fang Z H, Wang W, Xia L, Feng W, Zhao X H, Ji L L, Cui Y, Zhou X H, Liu Z J, Zheng C Y, Wang L F, Gao Y Q, Huang X G, Fu S Z 2024 Phys. Rev. Lett. 132 035102Google Scholar
[9] Suydam B 1974 IEEE J. Quantum Elect. 10 837Google Scholar
[10] Simmons W, Hunt J, Warren W 1981 IEEE J. Quantum Elect. 17 1727Google Scholar
[11] Sacks R A, Henesian M A, Haney S W, Trenholme J B 1996 The PROp 92 Fourier Beampropagation Code LLNL Laser Program Quarterly Report. UCRL-LR-105821(96-4): 207–213
[12] Williams W, Trenholme J, Orth C, Haney S, Sacks R, Auerbach J, Renard P 1996 NlF Design Optimization LLNL Laser Program Quarterly Report. UCRL-LR-105821(96-4): 181–191
[13] Williams W, Renard P A, Manes K R, Milam D, Hunt J T, Eimerl D 1966 Modeling of Self-focusing Experiments by Beam Propagation Codes UCRL-LR-105821-96-1: 7
[14] Taylor D G, Amiel A I, Luat T V, Alexander L G 2006 Opt. Express 14 5468Google Scholar
[15] Bliss E S, Speck D R, Holzrichter J F, Erkkila J H, Glass A J 1974 Appl. Phys. Lett. 25 448Google Scholar
[16] Fleck J, Morris J, Bliss E 1978 Quantum Electron. 14 353Google Scholar
[17] Ranka J K, Schirmer R W, Gaeta A L 1996 Phy. Rev. Lett. 77 3783Google Scholar
[18] Milam D, Manes K R, Williams W H 1996 Laser-Induced Damage in Optical Materials Boulder, CO, United States, May 13, 1996 p2966
[19] Bespalov V I, Talanov V I 1966 J. Exp. Theor. Phys. 3 307
[20] Feit M, Fleck Jr J 1992 Self-focusing of Broadband Laser Pulses in Dispersive Media (Washington, DC: Lawrence Livermore National Lab.) UCRL-ID-112523; ON: DE93007369
[21] 邓锡铭, 余文炎, 陈时胜, 丁丽明, 谭维翰 1983 光学学报 3 2Google Scholar
Deng X M, Yu W Y, Chen S S, Ding L M, Tan W H 1983 J. Opt. 3 2Google Scholar
[22] Deng J Q, Fu X Q, Zhang L F, Zhang J, Wen S C 2013 Opt. Laser Technol. 45 56Google Scholar
[23] Stuart B C, Feit M D, Herman S, Rubenchick A M, Shore B W, Perry M D 1996 Phys. Rev. B 53 1749Google Scholar
[24] Rubenchik A M, Feit M D 2002 Laser-Induced Damage in Optical Materials Boulder, CO, United States, April 9, 2002 p4679
[25] Fibich G, Eisenmann S, Ilan B, Erlich Y, Fraenkel M, Henis Z, Gaeta A L, Zigler A 2005 Opt. Express 13 5897Google Scholar
[26] Yoshida H, Fujita H, Nakatsuka M 1997 Opt. Eng. 36 3739Google Scholar
[27] Murray J R, Smith J R, Ehrlich R B, Kyrazis D T, Thompson C E, Weiland T L, Wilcox R B 1989 J. Opt. Soc. Am. B 6 2402Google Scholar
[28] Zhang J, Wen S C, Fu X Q, Zhang L F, Deng J Q, Fan D Y 2010 High-Power Lasers and Applications V Beijing, China, November 16, 2010 p7843
[29] McKenty P W, Skupsky S, Kelly J H, Cotton C T 1994 J. Appl. Phys. 76 2027Google Scholar
[30] Melloni A, Frasca M, Garavaglia A, Tonini A, Martinelli M 1998 Opt. Lett. 23 691Google Scholar
[31] Bercegol H, Lamaignère L, Cavaro V, Loiseau M 2005 Laser-Induced Damage in Optical Materials Boulder, CO, United States, February 7, 2006 p5991
[32] Bercegol H, Boscheron A, Lepage C, Mazataud E, Donval T, Lamaignère L, Loiseau M, Razé G, Sudre C 2004 Laser-Induced Damage in Optical Materials Boulder, Co, United States, June 10, 2004 p5273
计量
- 文章访问数: 2047
- PDF下载量: 129
- 被引次数: 0