搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铁基非晶条带催化降解性能的退火晶化调控机理

余秀冬 刘海顺 薛琳 张响 杨卫明

引用本文:
Citation:

铁基非晶条带催化降解性能的退火晶化调控机理

余秀冬, 刘海顺, 薛琳, 张响, 杨卫明

Annealing crystallization control mechanism of catalytic degradation properties of Fe-based amorphous ribbons

Yu Xiu-Dong, Liu Hai-Shun, Xue Lin, Zhang Xiang, Yang Wei-Ming
PDF
HTML
导出引用
  • 非晶合金是原子结构长程无序的亚稳态材料, 具有优异的催化降解性能, 同时也很容易发生晶化, 但晶化对催化降解性能的影响机理目前尚不明确. 本文研究了退火晶化对Fe-Si-B-Cu-Nb工业非晶条带微观结构及其对酸性橙7催化降解性能的影响. 研究发现: 经460—580 ℃退火后, 条带的催化降解性能大幅下降, 其反应速率常数低于0.01 min–1, α-Fe析出相导致其非晶结构的破坏, 降低了羟基自由基的形成速率; 而经过650—700 ℃退火后, 条带的催化降解性能显著提高, 反应速率可提升至退火前的3.77倍, 降解15 min时的脱色率达99.22%, 为退火前的1.12倍, 催化降解性能的提高得益于晶化相与金属化合物间的原电池效应及富集Cu团簇和零价铁之间的置换反应. 本研究揭示了退火晶化对偶氮染料的铁基非晶条带催化降解性能的作用机理, 为利用老化的铁基非晶工业条带处理印染废水、实现“以废治废”, 提供了有益的理论与实验支撑.
    Amorphous alloys are meta-stable materials with long-range disordered atomic structure, which have excellent catalytic degradation performance and are also susceptible to crystallization, but the mechanism of the effect of crystallization on their catalytic properties has not been clarified. Therefore, the effect of the annealing crystallization process on the microstructure of Fe-Si-B-Cu-Nb industrial amorphous ribbons and their catalytic degradation properties for acid orange 7 are investigated in this work. It is found that the catalytic degradation performance of the ribbons decreases dramatically after having been annealed at 460–580 ℃ , and its reaction rate constant is less than 0.01 min–1. The main reason is the formation of α-Fe precipitation phase in the ribbons after having been annealed at high temperatures and the destruction of the substable amorphous structure. These reduce the rate of hydroxyl radical formation. In contrast, the catalytic degradation performance of the 650–700 ℃ annealed ribbons increases significantly, which increases to 3.77 times the degradation rate of the as-cast ribbons. The decolorization rate of acid orange 7 by the annealed ribbons reaches 99.22% within 15 min, which is 1.12 times that of the as-cast ribbons. The improvement of the catalytic degradation performance is attributed to the primary cell effect between the crystalline phase and the metal compounds and the substitution reaction between the Cu-enriched clusters and zero-valent iron. In this study, the influence mechanism of annealing crystallization on the performance of Fe-Si-B-Cu-Nb industrial amorphous ribbons for degrading azo dyes is revealed, which provides theoretical and experimental support for using aged iron-based amorphous ribbons to purify printing and dyeing waste-water and achieve “purification of waste-water by using alloy waste”.
      通信作者: 刘海顺, Liuhaishun@cumt.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 52371167)、江苏省科研创新计划(批准号: KYCX23_2653)和中国矿业大学硕士生“杰出人才”助力计划(批准号: 2023WLJCRCZL272)资助的课题.
      Corresponding author: Liu Hai-Shun, Liuhaishun@cumt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 52371167), the Scientific Research and Innovation Program of Jiangsu Province, China (Grant No. KYCX23_2653), and the China University of Mining and Technology Master’s Degree “Distinguished Talent”Booster Program (Grant No. 2023WLJCRCZL272).
    [1]

    杨卫明, 刘海顺, 敦超超, 赵玉成, 窦林名 2012 物理学报 61 106802Google Scholar

    Yang W M, Liu H S, Dun C C, Zhao Y C, Dou L M 2012 Acta Phys. Sin. 61 106802Google Scholar

    [2]

    柳延辉 2017 物理学报 66 176106Google Scholar

    Liu Y H 2017 Acta Phys. Sin. 66 176106Google Scholar

    [3]

    柯海波, 蒲朕, 张培, 张鹏国, 徐宏扬, 黄火根, 刘天伟, 王英敏 2017 物理学报 66 176104Google Scholar

    Ke H B, Pu Z, Zhang P, Zhang P G, Xu H Y, Huang H G, Liu T W, Wang Y M, 2017 Acta Phys. Sin. 66 176104Google Scholar

    [4]

    Lai L M, Liu T H, Cai X H, Wang M, Zhang S B, Chen W, Guo S F 2021 Scripta Mater 203 114095Google Scholar

    [5]

    孙奕韬, 王超, 吕玉苗, 胡远超, 罗鹏, 刘明, 咸海杰, 赵德乾, 丁大伟, 孙保安, 潘明祥, 闻平, 白海洋, 柳延辉, 汪卫华 2018 物理学报 67 126101Google Scholar

    Sun Y T, Wang C, Lu Y M, Hu Y C, Luo P, Liu M, Xian H J, Zhao D Q, Ding D W, Sun B A, Pan M X, Wen P, Bai H Y, Liu Y H, Wang W H 2018 Acta Phys. Sin. 67 126101Google Scholar

    [6]

    姚可夫, 施凌翔, 陈双琴, 邵洋, 陈娜, 贾蓟丽 2018 物理学报 67 016101Google Scholar

    Yao K F, Shi L X, Chen S Q, Shao Y, Chen N, Jia J L 2018 Acta Phys. Sin. 67 016101Google Scholar

    [7]

    Ge Y, Cheng J, Mo J, Xue L, Zhang B, Hong S, Wu Y, Liang X, Zhang X 2024 J. Alloy Compd. 976 173173Google Scholar

    [8]

    Liu H, Jiang Y, Yang D, Jiang Q, Yang W 2023 J. Mat. Res. Technol. 26 3070Google Scholar

    [9]

    Li X, Wang J G, Ke H B, Yang C, Wang W H 2022 Mater. Today Phys. 27 100782Google Scholar

    [10]

    邵梓桥, 毕恒昌, 谢骁, 万能, 孙立涛 2018 物理学报 67 167802Google Scholar

    Shao Z Q, Bi H C, Xie R, Wan N, Sun L T 2018 Acta Phys. Sin. 67 167802Google Scholar

    [11]

    Qiao J C, Wang Q, Pelletier J M, Kato H, Casalini R, Crespo D, Pineda E, Yao Y, Yang Y 2019 Prog. Mater. Sci. 104 250Google Scholar

    [12]

    Liang S X, Jia Z, Zhang W C, Li X F, Wang W M, Lin H C, Zhang L C 2018 Appl. Catal. B-Environ. 221 108Google Scholar

    [13]

    Zuo M Q, Yi S H, Choi J 2021 J. Environ. Sci. 105 116Google Scholar

    [14]

    Miao F, Wang Q Q, Di S Y, Yun L, Zhou J, Shen B L 2020 J. Mater. Sci. Technol. 53 163Google Scholar

    [15]

    Chen Q, Yan Z C, Zhang H, Zhang L C, Ma H J, Wang W L, Wang W M 2020 Materials 13 3694Google Scholar

    [16]

    Tang Y, Shao Y, Chen N, Yao K F 2015 Rsc Adv. 5 6215Google Scholar

    [17]

    Jia Z, Duan X G, Qin P, Zhang W C, Wang W M, Yang C, Sun H Q, Wang S B, Zhang L C 2017 Adv. Funct. Mat. 27 1702258Google Scholar

    [18]

    Liang S X, Wang X Q, Zhang W C, Liu Y J, Wang W M, Zhang L C 2020 Appl. Mat. Today 19 100543Google Scholar

    [19]

    Wang X Q, Zhang Q Y, Liang S X, Jia Z, Zhang W C, Wang W M, Zhang L C 2020 Catalysts 10 48Google Scholar

    [20]

    Ji L, Chen J W, Zheng Z G, Qiu Z G, Peng S Y, Zhou S H, Zeng D C 2020 J. Phys. Chem. Solids 145 109546Google Scholar

    [21]

    Wang Q Q, Chen M X, Lin P H, Cui Z Q, Chu C L, Shen B L 2018 J. Mat. Chem. A 6 10686Google Scholar

    [22]

    Hou L, Wang Q Q, Fan X D, Miao F, Yang W M, Shen B L 2019 New J. Chem. 43 6126Google Scholar

    [23]

    Chen S Q, Li M, Ji Q M, Chen X, Lan S, Feng T, Yao K F 2021 J. Non-Cryst. Solids 571 121070Google Scholar

    [24]

    Tan L, Wang X Y, Wang S K, Qin X R, Xiao L F, Li C L, Sun S Q, Hu S Q 2023 New J. Chem. 47 11723Google Scholar

    [25]

    Wei J, Zheng Z G, Zhao L, Qiu Z G, Zeng D C 2023 Colloid Surface A 666 131227Google Scholar

    [26]

    Lassoued A, Li J F 2023 J. Phys. Chem. Solids 180 111475Google Scholar

    [27]

    Yang W M, Wang Q Q, Li W Y, Xue L, Liu H S, Zhou J, Mo J Y, Shen B L 2019 Mat. Design 161 136Google Scholar

    [28]

    Zheng K L, Qin X D, Zhu Z W, Zheng S J, Li H L, Fu H M, Zhang H F 2020 J. Mat. Chem. A 8 10855Google Scholar

    [29]

    Luo X K, Li R, Zong J Y, Zhang Y, Li H F, Zhang T 2014 Appl. Surf. Sci. 305 314Google Scholar

    [30]

    Tang M F, Lai L M, Ding D Y, Liu T H, Kang W Z, Guo N, Song B, Guo S F 2022 J. Non-Cryst. Solids 576 121282Google Scholar

    [31]

    Zhao B W, Zhu Z W, Qin X D, Li Z K, Zhang H F 2020 J. Mat. Sci. Technol. 46 88Google Scholar

    [32]

    Qin X D, Zhu Z W, Liu G, Fu H M, Zhang H W, Wang A M, Li H, Zhang H F, 2015 Sci. Rep. 5 18226Google Scholar

    [33]

    Xie S H, Huang P, Kruzic J J, Zeng X, Qian H 2016 Sci. Rep. 6 21947Google Scholar

    [34]

    陈双琴 2018 博士学位论文 (北京: 清华大学)

    Chen S Q 2018 Ph. D Dissertation (Beijing: Tsinghua University

    [35]

    Xie S H, Xie Y L, Jamie J, Gu K M, Yang H P, Deng Y M, Zeng X R 2020 Chemcatchem 12 750Google Scholar

  • 图 1  Fe-Si-B-Cu-Nb工业条带的(a) XRD和(b) DSC图谱

    Fig. 1.  (a) XRD spectrum and (b) DSC spectrum of Fe-Si-B-Cu-Nb industrial ribbon.

    图 2  Fe-Si-B-Cu-Nb工业条带不同温度退火后的XRD图谱

    Fig. 2.  XRD patterns of Fe-Si-B-Cu-Nb industrial ribbons after annealing at different temperatures.

    图 3  工业非晶条带及其经不同温度退火20 min后降解酸性橙7的紫外光谱图 (a) 工业非晶条带; (b) 460℃; (c) 520 ℃; (d) 580 ℃; (e) 650 ℃; (f) 700 ℃

    Fig. 3.  UV spectra of industrial amorphous ribbons and their degraded acid orange 7 after annealing at different temperatures for 20 min: (a) Industrial amorphous ribbon; (b) 460℃; (c) 520 ℃; (d) 580 ℃; (e) 650 ℃; (f) 700 ℃.

    图 4  Fe-Si-B-Cu-Nb工业非晶条带及其经不同温度退火后对酸性橙7的降解 (a) Ct/C0归一曲线; (b)染料脱色率; (c) -ln函数; (d)反应速率常数柱状图

    Fig. 4.  Degradation of acid orange II processed by Fe-Si-B-Cu-Nb industrial amorphous ribbons in the as-cast state and after different annealing temperatures: (a) Ct/C0 normalized graph; (b) dye decolorization rate graph; (c) variation of the -ln function graph; (d) histogram of reaction rate constants.

    图 5  不同温度退火条带降解酸性橙7后的表面SEM图 (a)—(d)未退火; (e)—(h) 580 ℃退火; (i)—(l) 700 ℃退火

    Fig. 5.  SEM images of the alloy surface after degrading the acid orange II: (a)–(d) As-cast alloys without annealing; (e)–(h) after annealing at 580 ℃; (i)–(l) after annealing at 700 ℃.

    图 6  700 ℃退火20 min后条带表面(a) SEM图像及对应的(b) Cu, (c) O, (d) C, (e) Fe和(f) Si元素分布图像

    Fig. 6.  SEM images of Fe-Si-B-Cu-Nb alloy after annealing at 700 ℃ for 20 min (a); the corresponding elemental distribution maps of (b) Cu, (c) O, (d) C, (e) Fe, and (f) Si.

    表 1  用于偶氮染料催化降解的典型非晶合金比较

    Table 1.  Comparison of typical amorphous alloys for catalytic degradation of azo dyes.

    合金成分 样品
    状态
    染料种类 反应速率常数(kobs) 循环次数 参考
    文献
    Fe83Si5B8P4 条带 亚甲基蓝 0.514 [13]
    (Fe78Si9B13)99Zr1 条带 亚甲基蓝 0.24 [14]
    Fe84B16 条带 直接蓝6 0.110 [16]
    Fe78Si9B13 条带 甲基蓝 0.085 [17]
    Fe78Si11B9P2 条带 酸性橙7 0.082 17 [20]
    Fe80P13C7 条带 亚甲基蓝 0.56 23 [21]
    Cu46Zr44.5Al7.5Gd2 条带 酸性橙7 0.48 80 [28]
    Mg65Cu25Y10 粉末 直接蓝6 0.585 [29]
    Co65Mo15B20 非晶丝 直接蓝6 2.31 20 [30]
    Cu47.5Zr46Al6.5 条带 酸性橙7 0.165 10 [31]
    Co78Si8B14 粉末 酸性橙7 8 [32]
    FeSiBCuNb 条带 酸性橙7 0.094 50 本工作
    FeSiBCuNb (700℃退火后) 条带 酸性橙7 0.36 本工作
    下载: 导出CSV

    表 2  α-Fe晶粒尺寸计算结果

    Table 2.  Calculation results of α-Fe grain size.

    温度/℃
    460 520 580 650 700
    βhkl/(°) 0.80 0.71 0.66 0.27 0.21
    Dhkl/nm 11.54 12.68 13.72 33.74 42.52
    (hkl) (220) (220) (220) (220) (220)
    下载: 导出CSV
  • [1]

    杨卫明, 刘海顺, 敦超超, 赵玉成, 窦林名 2012 物理学报 61 106802Google Scholar

    Yang W M, Liu H S, Dun C C, Zhao Y C, Dou L M 2012 Acta Phys. Sin. 61 106802Google Scholar

    [2]

    柳延辉 2017 物理学报 66 176106Google Scholar

    Liu Y H 2017 Acta Phys. Sin. 66 176106Google Scholar

    [3]

    柯海波, 蒲朕, 张培, 张鹏国, 徐宏扬, 黄火根, 刘天伟, 王英敏 2017 物理学报 66 176104Google Scholar

    Ke H B, Pu Z, Zhang P, Zhang P G, Xu H Y, Huang H G, Liu T W, Wang Y M, 2017 Acta Phys. Sin. 66 176104Google Scholar

    [4]

    Lai L M, Liu T H, Cai X H, Wang M, Zhang S B, Chen W, Guo S F 2021 Scripta Mater 203 114095Google Scholar

    [5]

    孙奕韬, 王超, 吕玉苗, 胡远超, 罗鹏, 刘明, 咸海杰, 赵德乾, 丁大伟, 孙保安, 潘明祥, 闻平, 白海洋, 柳延辉, 汪卫华 2018 物理学报 67 126101Google Scholar

    Sun Y T, Wang C, Lu Y M, Hu Y C, Luo P, Liu M, Xian H J, Zhao D Q, Ding D W, Sun B A, Pan M X, Wen P, Bai H Y, Liu Y H, Wang W H 2018 Acta Phys. Sin. 67 126101Google Scholar

    [6]

    姚可夫, 施凌翔, 陈双琴, 邵洋, 陈娜, 贾蓟丽 2018 物理学报 67 016101Google Scholar

    Yao K F, Shi L X, Chen S Q, Shao Y, Chen N, Jia J L 2018 Acta Phys. Sin. 67 016101Google Scholar

    [7]

    Ge Y, Cheng J, Mo J, Xue L, Zhang B, Hong S, Wu Y, Liang X, Zhang X 2024 J. Alloy Compd. 976 173173Google Scholar

    [8]

    Liu H, Jiang Y, Yang D, Jiang Q, Yang W 2023 J. Mat. Res. Technol. 26 3070Google Scholar

    [9]

    Li X, Wang J G, Ke H B, Yang C, Wang W H 2022 Mater. Today Phys. 27 100782Google Scholar

    [10]

    邵梓桥, 毕恒昌, 谢骁, 万能, 孙立涛 2018 物理学报 67 167802Google Scholar

    Shao Z Q, Bi H C, Xie R, Wan N, Sun L T 2018 Acta Phys. Sin. 67 167802Google Scholar

    [11]

    Qiao J C, Wang Q, Pelletier J M, Kato H, Casalini R, Crespo D, Pineda E, Yao Y, Yang Y 2019 Prog. Mater. Sci. 104 250Google Scholar

    [12]

    Liang S X, Jia Z, Zhang W C, Li X F, Wang W M, Lin H C, Zhang L C 2018 Appl. Catal. B-Environ. 221 108Google Scholar

    [13]

    Zuo M Q, Yi S H, Choi J 2021 J. Environ. Sci. 105 116Google Scholar

    [14]

    Miao F, Wang Q Q, Di S Y, Yun L, Zhou J, Shen B L 2020 J. Mater. Sci. Technol. 53 163Google Scholar

    [15]

    Chen Q, Yan Z C, Zhang H, Zhang L C, Ma H J, Wang W L, Wang W M 2020 Materials 13 3694Google Scholar

    [16]

    Tang Y, Shao Y, Chen N, Yao K F 2015 Rsc Adv. 5 6215Google Scholar

    [17]

    Jia Z, Duan X G, Qin P, Zhang W C, Wang W M, Yang C, Sun H Q, Wang S B, Zhang L C 2017 Adv. Funct. Mat. 27 1702258Google Scholar

    [18]

    Liang S X, Wang X Q, Zhang W C, Liu Y J, Wang W M, Zhang L C 2020 Appl. Mat. Today 19 100543Google Scholar

    [19]

    Wang X Q, Zhang Q Y, Liang S X, Jia Z, Zhang W C, Wang W M, Zhang L C 2020 Catalysts 10 48Google Scholar

    [20]

    Ji L, Chen J W, Zheng Z G, Qiu Z G, Peng S Y, Zhou S H, Zeng D C 2020 J. Phys. Chem. Solids 145 109546Google Scholar

    [21]

    Wang Q Q, Chen M X, Lin P H, Cui Z Q, Chu C L, Shen B L 2018 J. Mat. Chem. A 6 10686Google Scholar

    [22]

    Hou L, Wang Q Q, Fan X D, Miao F, Yang W M, Shen B L 2019 New J. Chem. 43 6126Google Scholar

    [23]

    Chen S Q, Li M, Ji Q M, Chen X, Lan S, Feng T, Yao K F 2021 J. Non-Cryst. Solids 571 121070Google Scholar

    [24]

    Tan L, Wang X Y, Wang S K, Qin X R, Xiao L F, Li C L, Sun S Q, Hu S Q 2023 New J. Chem. 47 11723Google Scholar

    [25]

    Wei J, Zheng Z G, Zhao L, Qiu Z G, Zeng D C 2023 Colloid Surface A 666 131227Google Scholar

    [26]

    Lassoued A, Li J F 2023 J. Phys. Chem. Solids 180 111475Google Scholar

    [27]

    Yang W M, Wang Q Q, Li W Y, Xue L, Liu H S, Zhou J, Mo J Y, Shen B L 2019 Mat. Design 161 136Google Scholar

    [28]

    Zheng K L, Qin X D, Zhu Z W, Zheng S J, Li H L, Fu H M, Zhang H F 2020 J. Mat. Chem. A 8 10855Google Scholar

    [29]

    Luo X K, Li R, Zong J Y, Zhang Y, Li H F, Zhang T 2014 Appl. Surf. Sci. 305 314Google Scholar

    [30]

    Tang M F, Lai L M, Ding D Y, Liu T H, Kang W Z, Guo N, Song B, Guo S F 2022 J. Non-Cryst. Solids 576 121282Google Scholar

    [31]

    Zhao B W, Zhu Z W, Qin X D, Li Z K, Zhang H F 2020 J. Mat. Sci. Technol. 46 88Google Scholar

    [32]

    Qin X D, Zhu Z W, Liu G, Fu H M, Zhang H W, Wang A M, Li H, Zhang H F, 2015 Sci. Rep. 5 18226Google Scholar

    [33]

    Xie S H, Huang P, Kruzic J J, Zeng X, Qian H 2016 Sci. Rep. 6 21947Google Scholar

    [34]

    陈双琴 2018 博士学位论文 (北京: 清华大学)

    Chen S Q 2018 Ph. D Dissertation (Beijing: Tsinghua University

    [35]

    Xie S H, Xie Y L, Jamie J, Gu K M, Yang H P, Deng Y M, Zeng X R 2020 Chemcatchem 12 750Google Scholar

  • [1] 姜晓月, 黄志敏, 王璇, 张响, 杨卫明, 刘海顺. 基板温度对激光选区熔化制备铁基非晶合金晶化的影响. 物理学报, 2025, 74(1): 017501. doi: 10.7498/aps.74.20240662
    [2] 孟绍怡, 郝奇, 吕国建, 乔吉超. La基非晶合金β弛豫行为: 退火和加载应变的影响. 物理学报, 2023, 72(7): 076101. doi: 10.7498/aps.72.20222389
    [3] 姚可夫, 施凌翔, 陈双琴, 邵洋, 陈娜, 贾蓟丽. 铁基软磁非晶/纳米晶合金研究进展及应用前景. 物理学报, 2018, 67(1): 016101. doi: 10.7498/aps.67.20171473
    [4] 柯海波, 蒲朕, 张培, 张鹏国, 徐宏扬, 黄火根, 刘天伟, 王英敏. 铀基非晶合金的发展现状. 物理学报, 2017, 66(17): 176104. doi: 10.7498/aps.66.176104
    [5] 廖光开, 龙志林, 许福, 刘为, 张志洋, 杨妙. 基于分数阶流变模型的铁基块体非晶合金黏弹性行为研究. 物理学报, 2015, 64(13): 136101. doi: 10.7498/aps.64.136101
    [6] 叶凤霞, 陈燕, 余鹏, 罗强, 曲寿江, 沈军. 通过AC-HVAF方法制备铁基非晶合金涂层的结构分析. 物理学报, 2014, 63(7): 078101. doi: 10.7498/aps.63.078101
    [7] 杨全民, 许启明, 方允樟, 莫婵娟. Fe基纳米晶合金的晶化机理研究. 物理学报, 2009, 58(6): 4072-4079. doi: 10.7498/aps.58.4072
    [8] 彭建, 龙志林, 危洪清, 李乡安, 张志纯. 铁基块体非晶合金在纳米压痕过程中的蠕变行为研究. 物理学报, 2009, 58(6): 4059-4065. doi: 10.7498/aps.58.4059
    [9] 闫志杰, 李金富, 周尧和, 仵彦卿. 压痕塑性变形诱导非晶合金的晶化. 物理学报, 2007, 56(2): 999-1003. doi: 10.7498/aps.56.999
    [10] 赵鹤云, 阚家德, 柳清菊, 刘佐权. 几种铁基非晶合金激波诱导晶化中的若干奇异物理效应研究. 物理学报, 2005, 54(4): 1711-1718. doi: 10.7498/aps.54.1711
    [11] 晁月盛, 李明扬, 耿 岩, 刘吉刚. 铁基非晶的低频脉冲磁场处理效应. 物理学报, 2004, 53(10): 3453-3456. doi: 10.7498/aps.53.3453
    [12] 张川江, 吴佑实, 董守义, 石元昌, 周国荣. 铝基非晶合金微观结构的特点与演变. 物理学报, 2002, 51(11): 2575-2579. doi: 10.7498/aps.51.2575
    [13] 王焕荣, 滕新营, 石志强, 叶以富, 闵光辉. 非晶态Cu56Zr44合金的结构及其等温退火晶化过程的研究. 物理学报, 2001, 50(11): 2192-2197. doi: 10.7498/aps.50.2192
    [14] 李印峰, 陈笃行, 沈保根, M.VAZQUEZ, A.HERNANDO. 非晶态铁基合金退火样品的偏移回线. 物理学报, 2001, 50(5): 953-957. doi: 10.7498/aps.50.953
    [15] 孙剑威, 王晓光, 闫文胜, 徐法强, 刘文汉, 陈昌荣, 韦世强. XAFS研究Ni-P和Ni-Ce-P超细非晶合金的退火晶化. 物理学报, 2000, 49(10): 1988-1994. doi: 10.7498/aps.49.1988
    [16] 吴玉程, 张立德, 李广海, 陶 杰. 自催化沉积非晶态复合材料的组成与晶化特性研究. 物理学报, 1999, 48(1): 102-106. doi: 10.7498/aps.48.102
    [17] 卢志超, 鲜于泽, 沈保根. 铁基纳米晶合金的热膨胀研究. 物理学报, 1994, 43(5): 799-802. doi: 10.7498/aps.43.799
    [18] 何正明, 赵妙余, 张玲芬, 汪晓光. 铁基非晶合金磁致伸缩的温度效应. 物理学报, 1990, 39(4): 656-660. doi: 10.7498/aps.39.656
    [19] 车广灿, 沈保根, 赵见高, 詹文山, 梁敬魁. 组份对铁基非晶合金晶化温度的影响. 物理学报, 1987, 36(4): 483-489. doi: 10.7498/aps.36.483
    [20] 赖宗和, 吴玉琨, 郭可信. 非晶Ni-P合金的晶化相. 物理学报, 1984, 33(8): 1182-1186. doi: 10.7498/aps.33.1182
计量
  • 文章访问数:  4711
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-05
  • 修回日期:  2024-03-09
  • 上网日期:  2024-03-13
  • 刊出日期:  2024-05-05

/

返回文章
返回