搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于膨胀效应的超临界CO2类沸腾临界点模型

张海松 卢茂聪 李志刚

引用本文:
Citation:

基于膨胀效应的超临界CO2类沸腾临界点模型

张海松, 卢茂聪, 李志刚
cstr: 32037.14.aps.73.20240293

An expansion effect based pseudo-boiling critical point model for supercritical CO2

Zhang Hai-Song, Lu Mao-Cong, Li Zhi-Gang
cstr: 32037.14.aps.73.20240293
PDF
HTML
导出引用
  • 传热恶化是超临界流体(supercutical fluid, SCF)传热研究重要问题之一, 但由于SCF在跨过拟临界点时, 流体存在非平衡过程, 类气和类液之间的转变对传热的影响尚没有统一认识. 本文假设SCF在宏观上存在类似于亚临界流动沸腾现象, 通过类比亚临界沸腾传热, 认为超临界CO2传热恶化原因之一是由于流体膨胀导致热量不能被及时从壁面被带走, 并提出一个类沸腾临界点模型. 结果表明: 类沸腾引起的传热恶化发生在大温度梯度下, 较大的温度梯度使类过热液层覆盖在壁面, 并使类气和类液呈现不同的分布形式, 从而表现出不同的传热特性; 当内壁温高于拟临界温度时, 覆盖在壁面的过热类液焓值超过一定值会发生传热恶化, 提出的理论模型能够较好地解释实验结果, 此外考虑类沸腾的传热关联式, 预测精度大大提高. 本文从理论上建立超临界和亚临界传热之间的联系, 为SCF传热恶化研究提供了新思路, 丰富了超临界压力下的传热理论.
    Heat transfer deterioration (HTD) is one of the important issues in the study of supercritical fluid (SCF) heat transfer. However, when the SCF crosses the pseudo-critical point, the none-quilibrium process occurs in liquid, so SCF is very complicated. Recently, the existence of SCF pseudo-boiling on a macro scale has sparked controversy. There is still no unified understanding of the mechanism of gas-like and liquid-like transition affecting heat transfer. In this work, it is assumed that SCF has a macroscopic phenomenon similar to subcritical flow boiling. By analogy with subcritical boiling heat transfer, a boiling critical point model is proposed to describe the HTD in supercritical CO2. Our study reveals that the HTD caused by pseudo-boiling only occurs under large temperature gradient, which makes the superheated liquid-like layer cover the wall, and the gas-like and liquid-like may present different distribution forms, thus changing the heat transfer characteristics. When the wall temperature is higher than the pseudo-critical temperature and the enthalpy of the fluid layer covering the wall exceeds a certain value, the HTD may occur. The proposed theoretical model can explain the experimental results well, and the prediction accuracy of heat transfer correlation considering pseudo-boiling is greatly improved. In this work, the connection between supercritical heat transfer and subcritical heat transfer is established theoretically, which provides a new idea for studying the deterioration of SCF heat transfer, thus enriching the theory of supercritical heat transfer.
      通信作者: 张海松, zhanghaisong@iet.cn
    • 基金项目: 中国科学院稳定支持基础研究领域青年团队计划(批准号: YSBR-043)和国家自然科学基金(批准号: 52076206)资助的课题.
      Corresponding author: Zhang Hai-Song, zhanghaisong@iet.cn
    • Funds: Project supported by the Chinese Academy of Sciences for Young Scientists in Basic Research (Grant No.YSBR-043) and the National Natural Science Foundation of China (Grant No. 52076206).
    [1]

    Jackson J D 2017 Appl. Therm. Eng. 124 1481Google Scholar

    [2]

    Huang D, Wu Z, Sunden B, Li W 2016 Appl. Energ. 162 494Google Scholar

    [3]

    Xie J Z, Liu D C, Yan H B, Xie G N, Boetcher S K S 2020 Int. J. Heat Mass Tran. 149 119233Google Scholar

    [4]

    Cabeza L, Gracia A, Fernández A, Farid M 2017 Appl. Therm. Eng. 125 799Google Scholar

    [5]

    Chen W W, Fang X D, Yu X, Su X H 2015 Ann. Nucl. Energy 76 451Google Scholar

    [6]

    Cheng X, Liu X J 2018 J. Nucl. Eng. Radiat Sc. 4 011003Google Scholar

    [7]

    Maxim F, Contescu C, Boillat P, Niceno B, Karalis K, Testino A, Ludwig C 2019 Nat. Commun. 10 4114Google Scholar

    [8]

    Maxim F, Karalis K, Boillat P, Banuti D, Marquez J, Damian B, Niceno P, Ludwig C 2021 Adv. Sci. 8 2002312Google Scholar

    [9]

    Liu M Y, Tang J, Liu S H 2022 J. Supercrit. Fluids 183 105554Google Scholar

    [10]

    Ackerman J W 1970 J. Heat Tran. 92 490Google Scholar

    [11]

    Zhu B G, Xu J L, Wu X M, Xie J, Li M J 2019 J Int. J. Therm. Sci. 136 254Google Scholar

    [12]

    Zhang H S, Xu J L, Zhu X J, Xie J, Li M J, Zhu B G 2021 Appl. Therm. Eng. 182 116078Google Scholar

    [13]

    Wang Q Y, Ma X J, Xu J L, Li M J, Wang Y 2021 Int. J. Heat Mass Tran. 181 121875Google Scholar

    [14]

    Tripathi P, Basu S 2021 Phys. Fluids 33 043304Google Scholar

    [15]

    Wang J T, Li Z H, Zhai Y L, Wang H 2023 Int. J. Heat Mass Tran. 201 123571Google Scholar

    [16]

    Peeters J 2022 Int. J. Heat Mass Tran. 186 122441Google Scholar

    [17]

    Fan Y H, Tang G H, Sheng Q, Li X 2023 Energy 262 125470Google Scholar

    [18]

    Banuti D T 2015 J. Supercrit. Fluids 98 12Google Scholar

    [19]

    何孝天, 徐进良, 程怡玮 2023 物理学报 72 057801Google Scholar

    He X T, Xu J L, Cheng Y W 2023 Acta Phys. Sin. 72 057801Google Scholar

    [20]

    林瑞泰 1988 沸腾换热 (北京: 科学出版社) 第278页

    Lin R T 1988 Boiling Heat Transfer (Beijing: Science Press) p278

    [21]

    Xu J L, Zhang H S, Zhu B G, Xie J 2020 Solar Eng. 195 27Google Scholar

    [22]

    张海松, 徐进良, 朱鑫杰 2021 物理学报 70 044401Google Scholar

    Zhang H S, Xu J L, Zhu X J 2021 Acta Phys. Sin. 70 044401Google Scholar

    [23]

    Zhang H S, Xu J L, Wang Q Y 2023 Int. J. Therm. Sci. 188 108242Google Scholar

    [24]

    Zhu B G, Xu J L, Yan C S, Xie J 2020 Int. J. Heat Mass Tran. 148 119080Google Scholar

    [25]

    Cheng X, Zhao M, Feuerstein F, Liu X J 2019 Int. J. Heat Mass Tran. 131 527Google Scholar

    [26]

    Gupta S, Mokry S, Pioro I 2011 Proc. ICONE-19 43503 11Google Scholar

    [27]

    Mokry S, Pioro I, Farah A, King K, Gupta S, Peiman W, Kirillov P 2011 Nucl. Eng. Des. 241 1126Google Scholar

    [28]

    Kim D, Kim M 2010 Nucl. Eng. Des. 240 3336Google Scholar

    [29]

    Petukhov B, Kirillov S 1958 Thermal Eng. 4 63

  • 图 1  超临界和亚临界相分布

    Fig. 1.  Supercritical and subcritical phase distribution.

    图 2  亚临界和超临界CO2热力学特性 (a) 密度; (b) 潜热; (c) 饱和密度

    Fig. 2.  Thermodynamic characteristics of subcritical and supercritical CO2: (a) Density; (b) latent heat; (c) saturated density.

    图 3  (a) 正常传热工况下的R22 (二氟一氯甲烷)壁温分布及流型; (b) 传热恶化工况下的R134a (四氟乙烷)壁温分布及流型

    Fig. 3.  (a) R22 (CHCLF2) wall temperature distribution and flow pattern under NHT; (b) R134a (CH2FCF3) wall temperature distribution and flow pattern under HTD.

    图 4  (a) 亚临界压力下的汽泡层模型; (b) 超临界压力下的膨胀层模型

    Fig. 4.  (a) Bubble layer model under subcritical pressure; (b) expansion layer model under supercritical pressure.

    图 5  CO2在不同压力下的膨胀能力

    Fig. 5.  Expansion capacity of CO2 under different pressures.

    图 6  SBO的微小变化决定两种传热特性的突变 (a)正常传热; (b)传热恶化

    Fig. 6.  Sudden changes of two heat transfer characteristics with small deviation from the critical SBO: (a) Normal heat transfer; (b) heat transfer deterioration.

    图 7  不同超临界压力流体在正常传热和恶化传热过程中的Twi/TPBTb/TPB随焓值变化分布

    Fig. 7.  Distribution of Twi/TPB and Tb/TPB with enthalpy during normal heat transfer and heat transfer deterioration of different supercritical fluids.

    图 8  上升流和下降流大温度梯度下的sCO2传热恶化 (a) 传热恶化工况下的壁温分布; (b) 温度梯度分布

    Fig. 8.  The HTD under large temperature gradient in upflow and downflow operation: (a) Wall temperature distribution at heat transfer deterioration; (b) temperature gradient distribution.

    图 9  K数关联预测超临界H2O、超临界R134a和sCO2壁温的能力 (a) 超临界H2O; (b) 超临界R134a; (c) 超临界CO2

    Fig. 9.  Capability of the K number correlation to predict the H2O, R134a and CO2 data at supercritical: (a) Supercritical water; (b) supercritical R134a; (c) supercritical CO2.

    图 10  K数关联式和其他传热关联式预测结果与实验数据比较

    Fig. 10.  Comparison of the K number correlation and other heat transfer correlations with experimental database.

    表 1  超临界流体传热关联式回顾

    Table 1.  Review of supercutical fluids heat transfer correlations.

    Ref. Correlation Operatings parameters
    [25] $N{u_{\text{b}}} = 0.023 Re_{\text{b}}^{1.03}Pr_{\text{b}}^{0.5}{F_1}{F_2} \qquad\qquad \qquad \qquad \qquad \qquad \qquad \qquad $ CO2/H2O/R134a
    ${F_1} = \left\{ {\begin{aligned} &0.98, & &{\text{ for }}{{\textit{π}} _{\text{A}}} < 1.75 \times {{10}^{ - 4}}, \\ &0.85 + 0.056{{\left( {{{10}^4}{{\textit{π}} _{\text{A}}}} \right)}^{1.5}}, & &{\text{ for }}1.75 \times {{10}^{ - 4}} \leqslant {{\textit{π}} _{\text{A}}} < 3.75 \times {{10}^{ - 4}}, \\ &13.1/4.5 + {{\left( {104{{\textit{π}} _{\text{A}}}} \right)}^{1.35}}, & &{\text{ for }}3.75 \times {{10}^{ - 4}} < {{\textit{π}} _{\text{A}}} ,\end{aligned}} \right.$
    $ {F_2} = \left\{ {\begin{aligned} & 0.93 Pr_{\text{b}}^{0.265}, & &{\text{ for }}P{r_{\text{b}}} \leqslant 2.5, \\ &1.61 Pr_{\text{b}}^{ - 0.333}, & &{\text{ for }}P{r_{\text{b}}} > 2.5, \end{aligned}} \right. \qquad {{\textit{π}} _{\text{A}}} = \dfrac{{{q_{\text{w}}}{\beta _{\text{b}}}}}{{G{c_{{\text{p}}, {\text{b}}}}}} \qquad\qquad \qquad\qquad $
    [26] $N u_{\mathrm{w}}=0.0033 R e_{\mathrm{w}}^{0.94} \overline{Pr}_{\mathrm{w}}^{0.76}\left( {\rho_{\mathrm{w}}}/{\rho_{\mathrm{b}}}\right)^{0.16}\left( {\mu_{\mathrm{w}}}/{\mu_{\mathrm{b}}}\right)^{0.4} $
    [27] $N u_{\mathrm{b}}=0.0061 R e_{\mathrm{b}}^{0.904} P r_{\mathrm{b}, \mathrm{ave}}^{0.684}\left({\rho_{\mathrm{w}}}/{\rho_{\mathrm{b}}}\right)^{0.564}$ H2O
    P = 24 MPa; di = 10.0 mm
    G = 200—1500 kg/(m2·s)
    qw = 0—1250 kW/m2
    $P{r_{{\mathrm{b, ave}}}} = \dfrac{{{\mu _{\text{b}}}}}{{{\lambda _{{\mathrm{b}}} }}}\dfrac{{{i_{{\mathrm{w}}} } - {i_{{\mathrm{b}}} }}}{{{T_{{\mathrm{w}}} } - {T_{{\mathrm{b}}} }}}$
    [28] $ N{u_{\mathrm{b}}} = 0.226 Re_{\mathrm{b}}^{1.174}Pr_{{{\mathrm{b}}} , {\mathrm{ave}}}^{1.057}{\left( {\dfrac{{{\rho _{\mathrm{w}}}}}{{{\rho _{{\mathrm{b}}} }}}} \right)^{0.571}}{\left( {\dfrac{{{{\overline c }_{{{\mathrm{p, b}}}}}}}{{{c_{{{\mathrm{p} , b}}}}}}} \right)^{1.023}}A{c^{0.489}}B{u^{0.0021}} $ CO2
    P = 7.46—10.26 MPa
    di = 4.5 mm
    G = 208–847 kg/(m2·s)
    qw = 38—234 kW/m2
    $Ac = \dfrac{{{q_{{\mathrm{w}}} }{\beta _{{\mathrm{b}}} }}}{{G{c_{{{\mathrm{p}}} , {\mathrm{b}}}}Re_{{\mathrm{b}}} ^{0.625}}}\left( {\dfrac{{{\mu _{{\mathrm{w}}} }}}{{{\mu _{{\mathrm{b}}} }}}} \right){\left( {\dfrac{{{\rho _{{\mathrm{b}}} }}}{{{\rho _{{\mathrm{w}}} }}}} \right)^{0.5}}$, $Gr{=}\dfrac{{{g} {\beta _{{\mathrm{b}}} }d_{\mathrm{i}}^4{q_{{\mathrm{w}}} }}}{{v_{\mathrm{b}}^2{\lambda _{{\mathrm{b}}} }}}$
    $ Bu = \dfrac{{Gr}}{{Re_{{\mathrm{b}}} ^{3.425}P{r^{0.8}}}}\left( {\dfrac{{{\mu _{{\mathrm{w}}} }}}{{{\mu _{{\mathrm{b}}} }}}} \right){\left( {\dfrac{{{\rho _{{\mathrm{b}}} }}}{{{\rho _{{\mathrm{w}}} }}}} \right)^{0.5}}$, ${\overline c _{{{\mathrm{p, b}}}}} = \dfrac{{{i_{{\mathrm{w}}} } - {i_{{\mathrm{b}}} }}}{{{T_{{\mathrm{w}}} } - {T_{{\mathrm{b}}} }}}$
    [29] $ N u_{\mathrm{b}}=\dfrac{(\xi / 8) R e_{\mathrm{b}} \overline{{Pr}}_{\mathrm{b}}}{1+900 / R e_{\mathrm{b}}+12.7 \sqrt{\xi / 8}\left(\overline{P r}_{\mathrm{b}}^{2 / 3}-1\right)}$
    $\xi=\left[1.82 \log _{10}\left(R e_{\mathrm{b}}\right)-1.64\right]^{-2}\left( {\rho_{\mathrm{w}}}/{\rho_{\mathrm{b}}}\right)^{0.4}\left({\mu_{\mathrm{w}}}/{\mu_{\mathrm{b}}}\right)^{0.2}$
    下载: 导出CSV
  • [1]

    Jackson J D 2017 Appl. Therm. Eng. 124 1481Google Scholar

    [2]

    Huang D, Wu Z, Sunden B, Li W 2016 Appl. Energ. 162 494Google Scholar

    [3]

    Xie J Z, Liu D C, Yan H B, Xie G N, Boetcher S K S 2020 Int. J. Heat Mass Tran. 149 119233Google Scholar

    [4]

    Cabeza L, Gracia A, Fernández A, Farid M 2017 Appl. Therm. Eng. 125 799Google Scholar

    [5]

    Chen W W, Fang X D, Yu X, Su X H 2015 Ann. Nucl. Energy 76 451Google Scholar

    [6]

    Cheng X, Liu X J 2018 J. Nucl. Eng. Radiat Sc. 4 011003Google Scholar

    [7]

    Maxim F, Contescu C, Boillat P, Niceno B, Karalis K, Testino A, Ludwig C 2019 Nat. Commun. 10 4114Google Scholar

    [8]

    Maxim F, Karalis K, Boillat P, Banuti D, Marquez J, Damian B, Niceno P, Ludwig C 2021 Adv. Sci. 8 2002312Google Scholar

    [9]

    Liu M Y, Tang J, Liu S H 2022 J. Supercrit. Fluids 183 105554Google Scholar

    [10]

    Ackerman J W 1970 J. Heat Tran. 92 490Google Scholar

    [11]

    Zhu B G, Xu J L, Wu X M, Xie J, Li M J 2019 J Int. J. Therm. Sci. 136 254Google Scholar

    [12]

    Zhang H S, Xu J L, Zhu X J, Xie J, Li M J, Zhu B G 2021 Appl. Therm. Eng. 182 116078Google Scholar

    [13]

    Wang Q Y, Ma X J, Xu J L, Li M J, Wang Y 2021 Int. J. Heat Mass Tran. 181 121875Google Scholar

    [14]

    Tripathi P, Basu S 2021 Phys. Fluids 33 043304Google Scholar

    [15]

    Wang J T, Li Z H, Zhai Y L, Wang H 2023 Int. J. Heat Mass Tran. 201 123571Google Scholar

    [16]

    Peeters J 2022 Int. J. Heat Mass Tran. 186 122441Google Scholar

    [17]

    Fan Y H, Tang G H, Sheng Q, Li X 2023 Energy 262 125470Google Scholar

    [18]

    Banuti D T 2015 J. Supercrit. Fluids 98 12Google Scholar

    [19]

    何孝天, 徐进良, 程怡玮 2023 物理学报 72 057801Google Scholar

    He X T, Xu J L, Cheng Y W 2023 Acta Phys. Sin. 72 057801Google Scholar

    [20]

    林瑞泰 1988 沸腾换热 (北京: 科学出版社) 第278页

    Lin R T 1988 Boiling Heat Transfer (Beijing: Science Press) p278

    [21]

    Xu J L, Zhang H S, Zhu B G, Xie J 2020 Solar Eng. 195 27Google Scholar

    [22]

    张海松, 徐进良, 朱鑫杰 2021 物理学报 70 044401Google Scholar

    Zhang H S, Xu J L, Zhu X J 2021 Acta Phys. Sin. 70 044401Google Scholar

    [23]

    Zhang H S, Xu J L, Wang Q Y 2023 Int. J. Therm. Sci. 188 108242Google Scholar

    [24]

    Zhu B G, Xu J L, Yan C S, Xie J 2020 Int. J. Heat Mass Tran. 148 119080Google Scholar

    [25]

    Cheng X, Zhao M, Feuerstein F, Liu X J 2019 Int. J. Heat Mass Tran. 131 527Google Scholar

    [26]

    Gupta S, Mokry S, Pioro I 2011 Proc. ICONE-19 43503 11Google Scholar

    [27]

    Mokry S, Pioro I, Farah A, King K, Gupta S, Peiman W, Kirillov P 2011 Nucl. Eng. Des. 241 1126Google Scholar

    [28]

    Kim D, Kim M 2010 Nucl. Eng. Des. 240 3336Google Scholar

    [29]

    Petukhov B, Kirillov S 1958 Thermal Eng. 4 63

  • [1] 于博文, 何孝天, 徐进良. 超临界CO2池式传热流固耦合传热特性数值模拟. 物理学报, 2024, 73(10): 104401. doi: 10.7498/aps.73.20231953
    [2] 程亮元, 徐进良. 流动方向对超临界二氧化碳流动传热特性的影响. 物理学报, 2024, 73(2): 024401. doi: 10.7498/aps.73.20231142
    [3] 张春艳. H离子团簇高次谐波平台展宽与团簇膨胀. 物理学报, 2023, 72(21): 214203. doi: 10.7498/aps.72.20230534
    [4] 何孝天, 徐进良, 程怡玮. 光纤探针测量及多尺度熵鉴别超临界类沸腾传热模式. 物理学报, 2023, 72(5): 057801. doi: 10.7498/aps.72.20222060
    [5] 郅长红, 徐双东, 韩盼盼, 陈科, 尤云祥. 高阶单向传播内孤立波理论模型适用性. 物理学报, 2022, 71(17): 174701. doi: 10.7498/aps.71.20220411
    [6] 孙辉, 刘婧楠, 章立新, 杨其国, 高明. 超临界CO2类液-类气区边界线数值分析. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211464
    [7] 庄晓如, 徐心海, 杨智, 赵延兴, 余鹏. 高温吸热管内超临界CO2传热特性的数值模拟. 物理学报, 2021, 70(3): 034401. doi: 10.7498/aps.70.20201005
    [8] 张海松, 徐进良, 朱鑫杰. 基于拟沸腾理论的超临界CO2管内传热恶化量纲分析. 物理学报, 2021, 70(4): 044401. doi: 10.7498/aps.70.20201546
    [9] 张海松, 朱鑫杰, 朱兵国, 徐进良, 刘欢. 浮升力和流动加速对超临界CO2管内流动传热影响. 物理学报, 2020, 69(6): 064401. doi: 10.7498/aps.69.20191521
    [10] 闫晨帅, 徐进良. 超临界压力CO2在水平圆管内流动传热数值分析. 物理学报, 2020, 69(4): 044401. doi: 10.7498/aps.69.20191513
    [11] 徐肖肖, 吴杨杨, 刘朝, 王开正, 叶建. 水平螺旋管内超临界CO2冷却换热的数值模拟. 物理学报, 2015, 64(5): 054401. doi: 10.7498/aps.64.054401
    [12] 李多芳, 曹天光, 耿金鹏, 展永. 电离辐射致植物诱变效应的损伤-修复模型. 物理学报, 2015, 64(24): 248701. doi: 10.7498/aps.64.248701
    [13] 梁源, 邢怀中, 晁明举, 梁二军. CO2激光烧结合成负热膨胀材料Sc2(MO4)3(M=W, Mo)及其拉曼光谱. 物理学报, 2014, 63(24): 248106. doi: 10.7498/aps.63.248106
    [14] 高嵩, 李巍, 尤云祥, 胡天群. 气液混输管线与立管系统严重段塞流数值研究. 物理学报, 2012, 61(10): 104701. doi: 10.7498/aps.61.104701
    [15] 胡永刚, 肖建中, 夏风, 武玺旺, 闫双志. 基于热膨胀性质的ZrO2 固体电解质性能与相关系模型. 物理学报, 2010, 59(10): 7447-7451. doi: 10.7498/aps.59.7447
    [16] 刘超, 张冬仙, 章海军. 微型光热驱动机构的光热膨胀理论模型与实验研究. 物理学报, 2009, 58(4): 2619-2624. doi: 10.7498/aps.58.2619
    [17] 肖波齐, 陈玲霞, 蒋国平, 饶连周, 王宗篪, 魏茂金. 池沸腾传热的数学分析. 物理学报, 2009, 58(4): 2523-2527. doi: 10.7498/aps.58.2523
    [18] 房振乾, 胡 明, 张 伟, 张绪瑞. 基于微拉曼光谱技术的氧化介孔硅热导率研究. 物理学报, 2008, 57(1): 103-110. doi: 10.7498/aps.57.103
    [19] 张红鹰, 吴师岗. 飞秒激光作用下薄膜破坏的力学过程. 物理学报, 2007, 56(9): 5314-5317. doi: 10.7498/aps.56.5314
    [20] 王德真, 马腾才. 重粒子在阴极鞘层中输运的理论模型. 物理学报, 2000, 49(12): 2404-2407. doi: 10.7498/aps.49.2404
计量
  • 文章访问数:  781
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-26
  • 修回日期:  2024-08-20
  • 上网日期:  2024-08-27
  • 刊出日期:  2024-09-20

/

返回文章
返回