搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

1 MHz, 273 W掺镱棒状光纤啁啾脉冲放大系统

王栋梁 史卓 王井上 吴洪悦 张晓辉 常国庆

引用本文:
Citation:

1 MHz, 273 W掺镱棒状光纤啁啾脉冲放大系统

王栋梁, 史卓, 王井上, 吴洪悦, 张晓辉, 常国庆

1 MHz, 273 W average power Ytterbium-doped rod-type fiber chirped pulse amplification system

Wang Dong-Liang, Shi Zhuo, Wang Jing-Shang, Wu Hong-Yue, Zhang Xiao-Hui, Chang Guo-Qing
PDF
HTML
导出引用
  • 掺镱超快光纤激光器因光束质量好、输出功率高而被广泛应用于科学研究、工业加工、医疗诊断等领域. 大模场面积的棒状光纤可以提供平均功率在百瓦量级的高能量飞秒脉冲输出, 本文基于掺镱棒状光纤搭建了啁啾脉冲放大系统, 详细研究脉冲输入功率对脉冲放大及压缩的影响. 实验结果表明, 在低放大功率下(< 160 W)增大输入功率可提升放大效率且脉冲压缩质量基本不受影响; 当放大功率进一步增大时, 需选择合适的输入功率避免积累过量非线性相位. 该啁啾脉冲放大系统可将20 W圆偏光输入放大至305 W, 压缩后产生平均功率为273 W、能量为273 μJ的264 fs脉冲, 脉冲平均功率和峰值功率比Pedersen课题组(Pedersen M E, Johansen M M, Olesen A S, Michieletto M, Gaponenko M, Maack M D 2022 Opt. Lett. 47 5172)结果约提升了一倍.
    Ytterbium-doped ultrafast fiber lasers are widely used in scientific research, industrial processing, medical diagnosis, and other fields due to their excellent beam quality and high power output. The larger mode area allows the fiber to transmit higher peak-pulse power. The commercial rod-type Ytterbium-doped fiber with a core diameter of 85 μm, produced by NKT in Denmark, can produce ultra-short pulses on the order of 100 watts and 100 microjoules. Based on this rod-type fiber, we construct a chirped-pulse amplification (CPA) system in which the high-efficiency transmission gratings and temperature-tunable chirped fiber Bragg grating (CFBG) are used to compensate for dispersion. We investigate the effect of power input on the amplified power and pulse compression quality, and find that higher power input slows down the gain saturation and improves amplification efficiency. At power inputs of 20 W and 30 W, we obtain power outputs of 305 W and 323 W respectively, with an amplification efficiency of about 80%. To reduce the accumulation of nonlinear phase shift, we use circular polarization amplification. At low power outputs (less than 160 W), the effect of nonlinear phase accumulation on the compressed pulse is negligible, and the increase in power input increases the amplification efficiency. When the power output exceeds 200 W, the cumulative increase of nonlinear phase shift reduces the pulse compression quality, which implies that the input power is appropriately reduced to the power range between 5 W and 20 W. With a power input of 20 W and pump power of 429 W, the power output can reach 305 W. After pulse is compressed by using a diffraction-grating pair, this rod-type fiber CPA system can deliver 1 MHz, 264 fs pulses with 273 W in average power. These results provide an important experimental basis for optimizing the performance of high-power and high-energy ultrafast fiber lasers.
      通信作者: 张晓辉, 202011004153@mail.scut.edu.cn ; 常国庆, guoqing.chang@iphy.ac.cn
    • 基金项目: 国家重点研发计划(批准号: 2021YFB3602602)和国家自然科学基金(批准号: 62175255, 62227822)资助的课题.
      Corresponding author: Zhang Xiao-Hui, 202011004153@mail.scut.edu.cn ; Chang Guo-Qing, guoqing.chang@iphy.ac.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2021YFB3602602) and the National Natural Science Foundation of China (Grant Nos. 62175255, 62227822).
    [1]

    Jackson S D 2012 Nat. Photonics 6 423Google Scholar

    [2]

    Chang G, Wei Z 2020 iScience 23 101101Google Scholar

    [3]

    Strickland D, Mourou G 1985 Opt. Commun. 55 447Google Scholar

    [4]

    Richardson D J, Nilsson J, Clarkson W A 2010 JOSA B 27 B63Google Scholar

    [5]

    Zervas M N 2014 Int. J. Mod. Phys. B 28 1442009Google Scholar

    [6]

    Limpert J, Stutzki F, Jansen F, Otto H J, Eidam T, Jauregui C, Tünnermann A 2012 Light: Sci. Appl. 1 e8Google Scholar

    [7]

    Stutzki F, Jansen F, Otto H J, Jauregui C, Limpert J, Tünnermann A 2014 Optica 1 233Google Scholar

    [8]

    Eidam T, Rothhardt J, Stutzki F, Jansen F, Hädrich S, Carstens H, Jauregui C, Limpert J, Tünnermann A 2011 Opt. Express 19 255Google Scholar

    [9]

    Stutzki F, Jansen F, Liem A, Jauregui C, Limpert J, Tünnermann A 2012 Opt. Lett. 37 1073Google Scholar

    [10]

    Shi Z, Wang J S, Zhang Y, Wang J L, Wei Z Y, Chang G Q 2023 JOSA B 40 2429Google Scholar

    [11]

    Stark H, Benner M, Buldt J, Klenke A, Limpert J 2023 Opt. Lett. 48 3007Google Scholar

    [12]

    Müller M, Kienel M, Klenke A, Gottschall T, Shestaev E, Plötner M, Limpert J, Tünnermann A 2016 Opt. Lett. 41 3439Google Scholar

    [13]

    Stark H, Buldt J, Müller M, Klenke A, Limpert J 2021 Opt. Lett. 46 969Google Scholar

    [14]

    Pedersen M E, Johansen M M, Olesen A S, Michieletto M, Gaponenko M, Maack M D 2022 Opt. Lett. 47 5172Google Scholar

    [15]

    Limpert J, Roser F, Schimpf D N, Seise E, Eidam T, Hadrich S, Rothhardt J, Misas C J, Tunnermann A 2009 IEEE J. Sel. Topics Quantum Electron. 15 159Google Scholar

    [16]

    Schimpf D N, Eidam T, Seise E, Hädrich S, Limpert J, Tünnermann A 2009 Opt. Express 17 18774Google Scholar

    [17]

    Zhang Y, Chen R Z, Huang H D, Liu Y Z, Teng H, Fang S B, Liu W, Kaertner F, Wang J L, Chang G Q, Wei Z Y 2020 OSA Continuum 3 1988Google Scholar

    [18]

    Zhang Y, Wang J S, Teng H, Fang S B, Wang J L, Chang G Q, Wei Z Y 2021 Opt. Lett. 46 3115Google Scholar

    [19]

    Wang T, Li C, Ren B, Guo K, Wu J, Leng J, Zhou P 2023 High Power Laser Sci. Eng. 11 e25Google Scholar

    [20]

    Müller M, Aleshire C, Klenke A, Haddad E, Légaré F, Tünnermann A, Limpert J 2020 Opt. Lett. 45 3083Google Scholar

    [21]

    Müller M, Buldt J, Stark H, Grebing C, Limpert J 2021 Opt. Lett. 46 2678Google Scholar

  • 图 1  基于棒状光纤的CPA系统示意图(HR, 高反镜; ISO, 光隔离器; QWP, 1/4波片; L, 透镜; Rod-type fiber, 棒状光子晶体光纤; DM, 双色镜; LD system, 泵浦; TG, 透射光栅)

    Fig. 1.  Schematic setup of the CPA system using the rod-type fiber (HR, high-reflection mirror; ISO, isolator; QWP, quarter-wave plate; L, lens; Rod-type fiber, rod photonic crystal fiber; DM, dichroic mirror; LD system, pump; TG, transmission grating).

    图 2  不同前端功率输出曲线

    Fig. 2.  Relationship between output power and pump power.

    图 3  前端功率20 W时的P偏振光功率曲线和偏振消光比

    Fig. 3.  P-polarized light power and polarization extinction ratio at 20 W front end power.

    图 4  不同前端功率放大至160 W时脉冲压缩结果

    Fig. 4.  Pulse compression results at different front-end power amplifications up to 160 W.

    图 5  不同前端功率下脉冲压缩结果

    Fig. 5.  Pulse compression results under different frontend power.

    图 6  20 W前端放大到300 W时光谱及对应变换极限脉冲, 插图为光谱, 黑色虚线为变换极限脉冲自相关曲线, 红色实线为实测自相关轨迹

    Fig. 6.  20 W front end amplification to 300 W spectrum and transform limit pulse, illustration (spectrum), measured autocorrelation (red) and transform-limited autocorrelation (black dashed) trace.

    图 7  M2测量结果, 插图为压缩后光斑

    Fig. 7.  Beam quality factor (M2) of the compressed output beam, illustration (compressed beam).

  • [1]

    Jackson S D 2012 Nat. Photonics 6 423Google Scholar

    [2]

    Chang G, Wei Z 2020 iScience 23 101101Google Scholar

    [3]

    Strickland D, Mourou G 1985 Opt. Commun. 55 447Google Scholar

    [4]

    Richardson D J, Nilsson J, Clarkson W A 2010 JOSA B 27 B63Google Scholar

    [5]

    Zervas M N 2014 Int. J. Mod. Phys. B 28 1442009Google Scholar

    [6]

    Limpert J, Stutzki F, Jansen F, Otto H J, Eidam T, Jauregui C, Tünnermann A 2012 Light: Sci. Appl. 1 e8Google Scholar

    [7]

    Stutzki F, Jansen F, Otto H J, Jauregui C, Limpert J, Tünnermann A 2014 Optica 1 233Google Scholar

    [8]

    Eidam T, Rothhardt J, Stutzki F, Jansen F, Hädrich S, Carstens H, Jauregui C, Limpert J, Tünnermann A 2011 Opt. Express 19 255Google Scholar

    [9]

    Stutzki F, Jansen F, Liem A, Jauregui C, Limpert J, Tünnermann A 2012 Opt. Lett. 37 1073Google Scholar

    [10]

    Shi Z, Wang J S, Zhang Y, Wang J L, Wei Z Y, Chang G Q 2023 JOSA B 40 2429Google Scholar

    [11]

    Stark H, Benner M, Buldt J, Klenke A, Limpert J 2023 Opt. Lett. 48 3007Google Scholar

    [12]

    Müller M, Kienel M, Klenke A, Gottschall T, Shestaev E, Plötner M, Limpert J, Tünnermann A 2016 Opt. Lett. 41 3439Google Scholar

    [13]

    Stark H, Buldt J, Müller M, Klenke A, Limpert J 2021 Opt. Lett. 46 969Google Scholar

    [14]

    Pedersen M E, Johansen M M, Olesen A S, Michieletto M, Gaponenko M, Maack M D 2022 Opt. Lett. 47 5172Google Scholar

    [15]

    Limpert J, Roser F, Schimpf D N, Seise E, Eidam T, Hadrich S, Rothhardt J, Misas C J, Tunnermann A 2009 IEEE J. Sel. Topics Quantum Electron. 15 159Google Scholar

    [16]

    Schimpf D N, Eidam T, Seise E, Hädrich S, Limpert J, Tünnermann A 2009 Opt. Express 17 18774Google Scholar

    [17]

    Zhang Y, Chen R Z, Huang H D, Liu Y Z, Teng H, Fang S B, Liu W, Kaertner F, Wang J L, Chang G Q, Wei Z Y 2020 OSA Continuum 3 1988Google Scholar

    [18]

    Zhang Y, Wang J S, Teng H, Fang S B, Wang J L, Chang G Q, Wei Z Y 2021 Opt. Lett. 46 3115Google Scholar

    [19]

    Wang T, Li C, Ren B, Guo K, Wu J, Leng J, Zhou P 2023 High Power Laser Sci. Eng. 11 e25Google Scholar

    [20]

    Müller M, Aleshire C, Klenke A, Haddad E, Légaré F, Tünnermann A, Limpert J 2020 Opt. Lett. 45 3083Google Scholar

    [21]

    Müller M, Buldt J, Stark H, Grebing C, Limpert J 2021 Opt. Lett. 46 2678Google Scholar

  • [1] 李昀, 苏桐, 盛立志, 张蕊利, 刘舵, 刘永安, 强鹏飞, 杨向辉, 许泽方. 基于超快激光调制的纳秒脉冲X射线发射源. 物理学报, 2024, 73(4): 040701. doi: 10.7498/aps.73.20231505
    [2] 周瑞, 李阳, 朱润徽, 张祖兴. 超快光纤激光器中可控脉冲产生与湮灭动力学. 物理学报, 2024, 73(17): 174201. doi: 10.7498/aps.73.20240673
    [3] 王井上, 王栋梁, 常国庆. 基于色散管理的自相位调制光谱展宽滤波技术. 物理学报, 2023, 72(9): 094205. doi: 10.7498/aps.72.20230088
    [4] 盛泉, 王盟, 史朝督, 田浩, 张钧翔, 刘俊杰, 史伟, 姚建铨. 基于锯齿波脉冲抑制自相位调制的高功率窄线宽单频脉冲光纤激光放大器. 物理学报, 2021, 70(21): 214202. doi: 10.7498/aps.70.20210496
    [5] 王井上, 张瑶, 王军利, 魏志义, 常国庆. 飞秒光纤激光相干合成技术最新进展. 物理学报, 2021, 70(3): 034206. doi: 10.7498/aps.70.20201683
    [6] 王聪, 刘杰, 张晗. 基于二维纳米材料的超快脉冲激光器. 物理学报, 2019, 68(18): 188101. doi: 10.7498/aps.68.20190751
    [7] 何鹏, 滕浩, 张宁华, 刘阳阳, 王兆华, 魏志义. 腔模可调的高平均功率飞秒激光再生放大器. 物理学报, 2016, 65(24): 244201. doi: 10.7498/aps.65.244201
    [8] 汪超, 韦辉, 王江峰, 姜有恩, 范薇, 李学春. 激光二极管抽运的高重频高平均功率Nd:YAG激光器. 物理学报, 2014, 63(22): 224204. doi: 10.7498/aps.63.224204
    [9] 张颖, 刘兰琴, 王文义, 黄晚晴, 谢旭东, 朱启华. 多程放大中激光脉冲交叠放大的物理建模与计算方法. 物理学报, 2013, 62(6): 064208. doi: 10.7498/aps.62.064208
    [10] 葛绪雷, 马景龙, 郑轶, 鲁欣, 蒋刚, 李玉同, 魏志义, 张杰. 多脉冲序列飞秒钛宝石激光的啁啾脉冲放大. 物理学报, 2012, 61(21): 214206. doi: 10.7498/aps.61.214206
    [11] 董小林, 肖虎, 马阎星, 周朴, 郭少锋. 高功率全光纤保偏主振荡功率放大型光纤激光器的实验研究. 物理学报, 2012, 61(6): 064207. doi: 10.7498/aps.61.064207
    [12] 祁春超, 左都罗, 孟凡奇, 卢彦兆, 纠智先, 程祖海. 基于光放大的长脉冲抽运太赫兹激光. 物理学报, 2009, 58(7): 4641-4646. doi: 10.7498/aps.58.4641
    [13] 刘兰琴, 粟敬钦, 罗 斌, 王文义, 景 峰, 魏晓峰. 基于混合加宽的宽带激光脉冲放大的物理模型. 物理学报, 2007, 56(11): 6749-6753. doi: 10.7498/aps.56.6749
    [14] 莫嘉琪, 张伟江, 何 铭. 激光脉冲放大器传输波的计算. 物理学报, 2006, 55(7): 3233-3236. doi: 10.7498/aps.55.3233
    [15] 刘艳格, 张春书, 孙婷婷, 鲁云飞, 王 志, 袁树忠, 开桂云, 董孝义. 输出平均功率大于2W的高功率、包层抽运、超短脉冲铒镱共掺光纤激光器. 物理学报, 2006, 55(9): 4679-4685. doi: 10.7498/aps.55.4679
    [16] 薄 勇, 耿爱丛, 毕 勇, 孙志培, 杨晓东, 李瑞宁, 崔大复, 许祖彦. 高平均功率调Q准连续Nd:YAG激光器. 物理学报, 2006, 55(3): 1171-1175. doi: 10.7498/aps.55.1171
    [17] 吴 昆, 吴 健, 徐 晗, 曾和平. 超短激光脉冲调制上转换放大. 物理学报, 2005, 54(8): 3749-3756. doi: 10.7498/aps.54.3749
    [18] 刘仁红, 蔡希洁, 杨 琳, 张志祥, 毕纪军. 激光脉冲放大器的增益通量曲线研究. 物理学报, 2005, 54(7): 3140-3143. doi: 10.7498/aps.54.3140
    [19] 刘红军, 陈国夫, 赵卫, 王屹山, 赵尚弘. 用光学参量啁啾脉冲放大技术产生TW级激光脉冲系统的最优化设计. 物理学报, 2001, 50(9): 1717-1722. doi: 10.7498/aps.50.1717
    [20] 沈宇震, 王清月, 邢歧荣, 石季英. 啁啾脉冲激光放大中的自相位调制效应. 物理学报, 1996, 45(2): 214-221. doi: 10.7498/aps.45.214
计量
  • 文章访问数:  1969
  • PDF下载量:  90
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-28
  • 修回日期:  2024-05-20
  • 上网日期:  2024-05-24
  • 刊出日期:  2024-07-05

/

返回文章
返回