搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低重复频率被动锁模半导体碟片激光器

贺亮 彭雪芳 沈小雨 朱仁江 王涛 蒋丽丹 佟存柱 宋晏蓉 张鹏

引用本文:
Citation:

低重复频率被动锁模半导体碟片激光器

贺亮, 彭雪芳, 沈小雨, 朱仁江, 王涛, 蒋丽丹, 佟存柱, 宋晏蓉, 张鹏

Low repetition rate passive mode-locked semiconductor disk laser

He Liang, Peng Xue-Fang, Shen Xiao-Yu, Zhu Ren-Jiang, Wang Tao, Jiang Li-Dan, Tong Cun-Zhu, Song Yan-Rong, Zhang Peng
PDF
HTML
导出引用
  • 锁模半导体碟片激光器(semiconductor disk laser, SDL)兼具输出功率高与光束质量好的优点, 但半导体增益介质ns量级很短的载流子寿命限制了锁模脉冲重复频率的降低, 因而在一定程度上限制了锁模脉冲峰值功率的提高. 本工作中增益芯片内较浅的量子阱所对应的载流子寿命相对较长, 结合特殊设计的较小饱和通量的半导体可饱和吸收镜(semiconductor saturable absorption mirror, SESAM), 获得了低重复频率、高峰值功率的被动锁模SDL. 当温度为12 ℃时, 利用六镜谐振腔产生的被动锁模激光脉冲重复频率低至78 MHz, 为迄今为止在SESAM锁模SDL中所获得的最低重复频率. 锁模SDL的平均输出功率为2.1 W, 脉冲宽度为2.08 ps, 对应的脉冲的峰值功率12.8 kW, 为已有报道最高值的近2倍.
    Semiconductor disk lasers (SDLs) have advantages of high output power and good beam quality. Their flexible external cavity provides convenience for inserting additional optical element to start mode locking and produce ultra-short pulse train with duration from picosecond to femtosecond. However, the very short lifetime in a range from about a few nanoseconds to tens of nanoseconds of the carrier in semiconductor gain medium limits the decrease of pulse repetition rate, thus restricting the increase of peak power of the mode-locked laser pulse to some extent. In this work, by using the relatively shallow In0.2GaAs quantum wells, which have a relatively long carrier lifetime in the active region of gain chip, as well as the particularly designed semiconductor saturable absorption mirror (SESAM) that has a relatively small saturation flux, a passively mode-locked SDL with low repetition rate and high peak power is demonstrated. The used six-mirror cavity has a spot radius of about 200 μm on the chip and a 40 μm spot on the SESAM, and the total cavity length is about 1.92 m. The SESAM passively mode-locked SDL produces a stable pulse train with a lowest repetition rate of 78 MHz. When the temperature is 12 ℃ and the transmittance of the output coupler is T = 3%, an average output power value of 2.1 W and a pulse duration of 2.08 ps are achieved. The corresponding pulse peak power reaches 12.8 kW, which is about twice the reported highest peak power in an SESAM mode-locked SDL. When T = 2% and T = 5%, the obtained average output power values are 1.34 W and 1.62 W respectively, and the corresponding pulse peak power values are 8.17 kW and 9.88 kW. Based on the values reported in the literature and the results of pulse repetition rate in our experiments, the estimated lifetime of the carriers of the In0.2GaAs quantum wells in the active region of the gain used chip is 16.4 ns. This high peak power mode-locked semiconductor disk laser has important potential applications in biomedical photonics, chemistry, and nonlinear microscopy.
      通信作者: 张鹏, zhangpeng2010@cqnu.edu.cn
    • 基金项目: 在渝本科高校与中国科学院所属院所合作项目(批准号: HZ2021007)、重庆市教委科技计划(批准号: KJQN202200557, KJQN202300525)、国家自然科学基金(批准号: 61975003, 61790584, 62025506)和重庆师范大学基金(批准号: 23XLB003)资助的课题.
      Corresponding author: Zhang Peng, zhangpeng2010@cqnu.edu.cn
    • Funds: Project supported by the Cooperation Project between Chongqing Local Universities and Institutions of Chinese Academy of Sciences, Chongqing Municipal Education Commission, China (Grant No. HZ2021007), the Science and Technology Research Program of Chongqing Municipal Education Commission, China (Grant Nos. KJQN202200557, KJQN202300525), the National Natural Science Foundation of China (Grant Nos. 61975003, 61790584, 62025506), and the Chongqing Normal University Fund Project (Grant No. 23XLB003).
    [1]

    李玉娇, 宗楠, 彭钦军 2018 激光与光电子学进展 55 49Google Scholar

    Li Y J, Zong N, Peng Q J 2018 Laser Optoelectron. Prog. 55 49Google Scholar

    [2]

    Rahimi-Iman A 2016 J. Optics-UK 18 093003Google Scholar

    [3]

    Guina M, Rantamäki A, Härkönen A 2017 J. Phys. D Appl. Phys. 50 383001Google Scholar

    [4]

    Keller U, Weingarten K J, Kartner F X, Kopf D, Braun B, Jung I D, Fluck R, Honninger C, Matuschek N, Der Au J A 1996 IEEE J. Sel. Top. Quant. 2 435Google Scholar

    [5]

    Hoogland S, Dhanjal S, Tropper A C, Roberts S J, Häring R, Paschotta R, Keller U 2000 IEEE Photonic. Tech. L. 12 1135Google Scholar

    [6]

    Garnache A, Hoogland S, Tropper A C, Sagnes I, Saint-Girons G, Roberts J S 2002 Appl. Phys. Lett. 80 3892Google Scholar

    [7]

    Klopp P, Griebner U, Zorn M, Weyers M 2011 Appl. Phys. Lett. 98 071103Google Scholar

    [8]

    Quarterman A H, Wilcox K G, Apostolopoulos V, Mihoubi Z, Elsmere S P, Farrer I, Ritchie D A, Tropper A C 2009 Nat. Photonics 3 729Google Scholar

    [9]

    Scheller M, Wang T L, Kunert B, Stolz W, Koch S W, Moloney J V 2012 Electron. Lett. 48 588Google Scholar

    [10]

    Wilcox K G, Tropper A C, Beere H E, Ritchie D A, Kunert B, Heinen B, Stolz W 2013 Opt. Express 21 1599Google Scholar

    [11]

    Baker C W, Scheller M, Laurain A, Ruiz-Perez A, Stolz W, Addamane S, Balakrishnan G, Koch S W, Jones R J, Moloney J V 2017 IEEE Photonic. Tech. L. 29 326Google Scholar

    [12]

    Kornaszewski L, Maker G, Malcolm G P A, Butkus M, Rafailov E U, Hamilton C J 2012 Laser Photon. Rev. 6 L20Google Scholar

    [13]

    Lorenser D, Maas D J H C, Unold H J, Bellancourt A R, Rudin B, Gini E, Ebling D, Keller U 2006 IEEE J. Quantum Elect. 42 838Google Scholar

    [14]

    Saarinen E J, Rantamaki A, Chamorovskiy A, Okhotnikov O G 2012 Electron. Lett. 48 1355Google Scholar

    [15]

    Butkus M, Viktorov E A, Erneux T, Hamilton C J, Maker G, Malcolm G P A, Rafailov E U 2013 Opt. Express 21 25526Google Scholar

    [16]

    Wilcox K G, Quarterman A H, Beere H E, Ritchie D A, Tropper A C 2011 Opt. Express 19 23453Google Scholar

    [17]

    Chen Y C, Wang P, Coleman J J, Bour D P, Lee K K, Waters R G 1991 IEEE J. Quantum Elect. 27 1451Google Scholar

    [18]

    Ehrlich J E, Neilson D T, Walker A C, Kennedy G T, Grant R S, Sibbett W, Hopkinson M 1993 Semicond. Sci. Technol. 8 307Google Scholar

    [19]

    Alfieri C G E, Waldburger D, Link S M, Gini E, Golling M, Eisenstein G, Keller U 2017 Opt. Express 25 6402Google Scholar

    [20]

    Keller U 1994 Appl. Phys. B 58 347Google Scholar

    [21]

    Antal P G, Szipőcs R 2012 Appl. Phys. B 107 17Google Scholar

    [22]

    Seres E, Seres J, Spielmann C 2012 Opt. Express 20 6185Google Scholar

    [23]

    Carlin C Z, Bradshaw G K, Samberg J P, Colter P C, Bedair S M 2013 IEEE T. Electron Dev. 60 2532Google Scholar

    [24]

    Ongstad A P, Gallant D J, Dente G C 1995 Appl. Phys. Lett. 66 2730Google Scholar

    [25]

    Ongstad A P, Tilton M L, Bochove E J, Dente G C 1996 J. Appl. Phys. 80 2866Google Scholar

  • 图 1  增益芯片外延结构简图

    Fig. 1.  Diagram of the epitaxy structure of gain chip.

    图 2  低重复频率SESAM锁模SDL光路图

    Fig. 2.  Schematic of the low repetition frequency SESAM mode-locked SDL.

    图 3  SESAM锁模SDL实物图, 图中标出了谐振腔中各元件及光路

    Fig. 3.  Photograph of the SESAM mode-locked SDL. The resonant cavity and optical path are also plotted.

    图 4  谐振腔中激光腔模半径大小随位置的变化

    Fig. 4.  Evolution of the radius of cavity mode in the resonator.

    图 5  连续光功率随吸收泵浦功率的变化, 内插图为激光光谱

    Fig. 5.  Output power of the continuous-wave laser vs. absorbed pump power, the inset is the laser spectrum.

    图 6  78 MHz锁模SDL时域波形图

    Fig. 6.  Pulse train of the 78 MHz mode-locked SDL.

    图 7  78 MHz锁模SDL射频频谱图

    Fig. 7.  Radio frequency spectrum of the 78 MHz mode-locked SDL.

    图 8  (a) 78 MHz锁模SDL光谱图; (b) 脉冲宽度的自相关测量结果

    Fig. 8.  (a) Spectrum of the 78 MHz mode-locked SDL; (b) autocorrelation trace of the mode-locked pulses.

    图 9  不同输出镜透过率下锁模SDL的输出功率

    Fig. 9.  Output power of the mode-locked SDL under different OC with various transmittance.

    表 1  已报道锁模SDL的重要成果一览表

    Table 1.  List of important results of mode-locked SDL have been reported.

    年份平均功率/W峰值功率/kW脉宽
    /fs
    重复频率
    /GHz
    波长
    /nm
    参考文献
    20000.015350002.5974[5]
    20020.10.1524771.211040[6]
    20060.1330050960[13]
    20090.035601037[8]
    20110.0031075.1361030[7]
    20125.16821.711030[9]
    20121.56.89300.21985[12]
    20120.98301931050[14]
    20130.360.0857989[15]
    20133.34.354001.671013[10]
    20171.146.34100.391030[11]
    下载: 导出CSV
  • [1]

    李玉娇, 宗楠, 彭钦军 2018 激光与光电子学进展 55 49Google Scholar

    Li Y J, Zong N, Peng Q J 2018 Laser Optoelectron. Prog. 55 49Google Scholar

    [2]

    Rahimi-Iman A 2016 J. Optics-UK 18 093003Google Scholar

    [3]

    Guina M, Rantamäki A, Härkönen A 2017 J. Phys. D Appl. Phys. 50 383001Google Scholar

    [4]

    Keller U, Weingarten K J, Kartner F X, Kopf D, Braun B, Jung I D, Fluck R, Honninger C, Matuschek N, Der Au J A 1996 IEEE J. Sel. Top. Quant. 2 435Google Scholar

    [5]

    Hoogland S, Dhanjal S, Tropper A C, Roberts S J, Häring R, Paschotta R, Keller U 2000 IEEE Photonic. Tech. L. 12 1135Google Scholar

    [6]

    Garnache A, Hoogland S, Tropper A C, Sagnes I, Saint-Girons G, Roberts J S 2002 Appl. Phys. Lett. 80 3892Google Scholar

    [7]

    Klopp P, Griebner U, Zorn M, Weyers M 2011 Appl. Phys. Lett. 98 071103Google Scholar

    [8]

    Quarterman A H, Wilcox K G, Apostolopoulos V, Mihoubi Z, Elsmere S P, Farrer I, Ritchie D A, Tropper A C 2009 Nat. Photonics 3 729Google Scholar

    [9]

    Scheller M, Wang T L, Kunert B, Stolz W, Koch S W, Moloney J V 2012 Electron. Lett. 48 588Google Scholar

    [10]

    Wilcox K G, Tropper A C, Beere H E, Ritchie D A, Kunert B, Heinen B, Stolz W 2013 Opt. Express 21 1599Google Scholar

    [11]

    Baker C W, Scheller M, Laurain A, Ruiz-Perez A, Stolz W, Addamane S, Balakrishnan G, Koch S W, Jones R J, Moloney J V 2017 IEEE Photonic. Tech. L. 29 326Google Scholar

    [12]

    Kornaszewski L, Maker G, Malcolm G P A, Butkus M, Rafailov E U, Hamilton C J 2012 Laser Photon. Rev. 6 L20Google Scholar

    [13]

    Lorenser D, Maas D J H C, Unold H J, Bellancourt A R, Rudin B, Gini E, Ebling D, Keller U 2006 IEEE J. Quantum Elect. 42 838Google Scholar

    [14]

    Saarinen E J, Rantamaki A, Chamorovskiy A, Okhotnikov O G 2012 Electron. Lett. 48 1355Google Scholar

    [15]

    Butkus M, Viktorov E A, Erneux T, Hamilton C J, Maker G, Malcolm G P A, Rafailov E U 2013 Opt. Express 21 25526Google Scholar

    [16]

    Wilcox K G, Quarterman A H, Beere H E, Ritchie D A, Tropper A C 2011 Opt. Express 19 23453Google Scholar

    [17]

    Chen Y C, Wang P, Coleman J J, Bour D P, Lee K K, Waters R G 1991 IEEE J. Quantum Elect. 27 1451Google Scholar

    [18]

    Ehrlich J E, Neilson D T, Walker A C, Kennedy G T, Grant R S, Sibbett W, Hopkinson M 1993 Semicond. Sci. Technol. 8 307Google Scholar

    [19]

    Alfieri C G E, Waldburger D, Link S M, Gini E, Golling M, Eisenstein G, Keller U 2017 Opt. Express 25 6402Google Scholar

    [20]

    Keller U 1994 Appl. Phys. B 58 347Google Scholar

    [21]

    Antal P G, Szipőcs R 2012 Appl. Phys. B 107 17Google Scholar

    [22]

    Seres E, Seres J, Spielmann C 2012 Opt. Express 20 6185Google Scholar

    [23]

    Carlin C Z, Bradshaw G K, Samberg J P, Colter P C, Bedair S M 2013 IEEE T. Electron Dev. 60 2532Google Scholar

    [24]

    Ongstad A P, Gallant D J, Dente G C 1995 Appl. Phys. Lett. 66 2730Google Scholar

    [25]

    Ongstad A P, Tilton M L, Bochove E J, Dente G C 1996 J. Appl. Phys. 80 2866Google Scholar

  • [1] 沈晓红, 曾盈莹, 毛琳, 朱仁江, 王涛, 罗海军, 佟存柱, 汪丽杰, 宋晏蓉, 张鹏. 双波长自锁模半导体薄片激光器. 物理学报, 2022, 71(20): 204202. doi: 10.7498/aps.71.20220483
    [2] 戴川生, 董志鹏, 林加强, 姚培军, 许立新, 顾春. 基于纯水可饱和吸收体的1.9 μm波段被动调Q和锁模掺铥光纤激光器. 物理学报, 2022, 71(17): 174202. doi: 10.7498/aps.71.20212125
    [3] 周峰, 蔡宇, 邹德峰, 胡丁桐, 张亚静, 宋有建, 胡明列. 钛宝石飞秒激光器中孤子分子的内部动态探测. 物理学报, 2020, 69(8): 084202. doi: 10.7498/aps.69.20191989
    [4] 窦志远, 张斌, 刘帅林, 侯静. 高功率全光纤1.6微米类噪声方形脉冲激光器. 物理学报, 2020, 69(16): 164202. doi: 10.7498/aps.69.20200245
    [5] 俞强, 郭琨, 陈捷, 王涛, 汪进, 史鑫尧, 吴坚, 张凯, 周朴. MnPS3可饱和吸收体被动锁模掺铒光纤激光器双波长激光. 物理学报, 2020, 69(18): 184208. doi: 10.7498/aps.69.20200342
    [6] 令维军, 夏涛, 董忠, 刘勍, 路飞平, 王勇刚. 基于WS2可饱和吸收体的调Q锁模Tm,Ho:LLF激光器. 物理学报, 2017, 66(11): 114207. doi: 10.7498/aps.66.114207
    [7] 刘瑞霞, 张明江, 张建忠, 刘毅, 靳宝全, 白清, 李哲哲. 一种利用布里渊增益谱边带解调提高布里渊光时域反射系统测温精度的方法. 物理学报, 2016, 65(24): 244203. doi: 10.7498/aps.65.244203
    [8] 窦志远, 田金荣, 李克轩, 于振华, 胡梦婷, 霍明超, 宋晏蓉. 高重复频率全光纤被动锁模掺铒光纤激光器. 物理学报, 2015, 64(6): 064206. doi: 10.7498/aps.64.064206
    [9] 张小军, 杨富, 王勇刚, 孙利群, 文侨, 牛憨笨. 基于传播圆补偿像散的被动锁模激光器谐振腔设计方法. 物理学报, 2013, 62(2): 024211. doi: 10.7498/aps.62.024211
    [10] 冯德军, 黄文育, 姜守振, 季伟, 贾东方. 基于少数层石墨烯可饱和吸收的锁模光纤激光器. 物理学报, 2013, 62(5): 054202. doi: 10.7498/aps.62.054202
    [11] 白扬博, 向望华, 祖鹏, 张贵忠. 基于体光栅的被动锁模可调谐线型腔掺镱光纤激光器. 物理学报, 2012, 61(21): 214208. doi: 10.7498/aps.61.214208
    [12] 刘凌宇, 田慧平, 纪越峰. 光子晶体波导中的孤子传输及其延迟特性研究. 物理学报, 2011, 60(10): 104216. doi: 10.7498/aps.60.104216
    [13] 曹士英, 朱月, 柴路, 王清月, 张志刚. 半导体可饱和吸收镜锁模的钒酸盐混晶Nd:Gd0.1Y0.9VO4激光器. 物理学报, 2009, 58(9): 6269-6272. doi: 10.7498/aps.58.6269
    [14] 林宏奂, 卢振华, 王建军, 张 颖, 王凤蕊, 许党朋, 张 锐, 李明中, 邓青华, 罗亦鸣, 唐 军, 丁 磊. 正色散激光器中的增益导引孤子. 物理学报, 2008, 57(9): 5646-5650. doi: 10.7498/aps.57.5646
    [15] 宋有建, 胡明列, 刘庆文, 李进延, 陈 伟, 柴 路, 王清月. 掺Yb3+双包层大模场面积光纤锁模激光器. 物理学报, 2008, 57(8): 5045-5048. doi: 10.7498/aps.57.5045
    [16] 令维军, 魏志义, 孙敬华, 王兆华, 田金荣, 贾玉磊, 王 鹏, 韩海年. 低阈值掺钛蓝宝石激光器实验研究. 物理学报, 2005, 54(9): 4182-4185. doi: 10.7498/aps.54.4182
    [17] 王 专, 王清月, 宋有建, 邢岐荣, 柴 路. 含负克尔效应半导体可饱和吸收镜的五镜腔飞秒钛宝石激光器的理论分析. 物理学报, 2005, 54(11): 5164-5167. doi: 10.7498/aps.54.5164
    [18] 孙敬华, 章若冰, 胡有方, 张志刚, 王清月. 自启动KLM钛宝石激光器谐振腔的理论计算. 物理学报, 2002, 51(6): 1272-1278. doi: 10.7498/aps.51.1272
    [19] 柴 路, 王清月, 张志刚, 赵江山, 王 勇, 张伟力, 邢歧荣. 用腔内半导体可饱和吸收镜钛宝石激光器中自锁模状态的实验研究. 物理学报, 2001, 50(1): 68-72. doi: 10.7498/aps.50.68
    [20] 柴路, 王清月, 赵江山, 邢歧荣, 张志刚. 半导体可饱和吸收镜启动克尔透镜锁模机理的实验研究. 物理学报, 2001, 50(7): 1298-1301. doi: 10.7498/aps.50.1298
计量
  • 文章访问数:  1761
  • PDF下载量:  111
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-28
  • 修回日期:  2024-04-22
  • 上网日期:  2024-04-25
  • 刊出日期:  2024-06-20

/

返回文章
返回