-
以Cr3+为激活剂的荧光粉被认为是目前最有可能实现商业化的近红外材料. 但目前这类荧光粉的发射波长一般位于小于850 nm的近红外一区, 以Cr3+为激活剂实现近红外二区发射仍然具有挑战. 本文采用普适的固相法制备了一系列Na3Y1–x Si3O9:x Cr3+硅酸盐荧光粉, 利用Na3YSi3O9硅酸盐属性及结构中多种适于Cr3+占据的八面体位点有效红移并展宽光谱. 对样品的物相、晶体结构、微观形貌、光致发光、主发射峰衰减和热稳定性等进行了系统研究. 结果显示, 所制样品均为纯相, 形貌不均匀略有团聚, 尺寸在微米量级. Cr3+在Na3YSi3O9晶格中位于弱晶体场环境, 八面体晶体场参数Dq和Racah参数B的比值Dq/B = 2.29. 在485 nm蓝光激发下Na3Y1–x Si3O9:x Cr3+荧光粉最强发射峰位于984 nm处(NIR II区), 长于大多数Cr3+激活的荧光粉. 且得益于Cr3+在晶格中的多格位占据, 发射光谱的半峰宽高达183 nm. Na3Y1–x Si3O9:x Cr3+中最佳掺杂浓度为3%, 猝灭机理为Cr3+离子间的偶极-偶极作用. Na3Y1–x Si3O9:x Cr3+主发射峰荧光衰减动力学分析表明室温荧光寿命约为37.95 μs, 且随着掺杂浓度增大及温度升高(至423 K)逐渐降低.Phosphors-converted near-infrared LED (pc-NIR LED) possesses applications in various fields including food quality analysis, night vision, biomedical imaging, and biomedicine. The design and development of broadband near-infrared (NIR) phosphors with the required properties are of decisive significance for pc-NIR LED devices. The Cr3+ doped phosphors are considered to be most promising near-infrared materials for commercialization. Broadband NIR luminescent materials doped with Cr3+ have attracted more and more attention due to their potential applications in NIR light sources. However, the emission wavelength of Cr3+ doped phosphor is generally located in the NIR I region of less than 850 nm, and realizing the NIR II region emission is still a challenge. In this work, a series of Cr3+ doped Na3YSi3O9 new silicate phosphors is prepared by solid-state method in N2 atmosphere at 1150 ℃ for 8 h. We take advantages of the silicate nature and the multi octahedral sites suitable for Cr3+ in the studied Na3YSi3O9 materials to redshift and broaden the spectrum. The phase, crystal structure, microstructure, photoluminescence, main emission peak decay and thermal stability of the samples are systematically studied. The results show that the prepared samples are pure phases, with uneven morphology, slight agglomeration, and the sizes in the micrometer range. The Cr3+ is located in the weak crystal field environment of Na3YSi3O9 lattice, with a Dq/B value of 2.29. Under the excitation of blue light at a wavelength of 485 nm, the strongest emission peaks of Na3Y1–x Si3O9:x Cr3+ phosphors are located at 984 nm (NIR II region), which is longer than those of most Cr3+ activated phosphors. Due to the multi-site occupation of Cr3+ in the lattice, the full width at half maximum (FWHM) of the emission spectrum is as high as 183 nm. The optimal doping concentration of Na3Y1–x Si3O9:x Cr3+ is 3%, and the quenching mechanism is the dipole-dipole interaction between Cr3+ ions. Fluorescence decay curves show that the luminescence lifetime of Na3Y0.97Si3O9:0.03Cr3+ sample gradually decreases with the increase of doping concentration and temperature. The results of the temperature-dependent spectra show that the emission intensity decreases in a temperature range from 298 K to 423 K, and the activation energy ΔE of Cr3+ is 0.157 eV.
-
Keywords:
- silicate /
- Cr3+ /
- broadband near-Infrared /
- multi-sites
[1] Chen Y, Wang S F, Zhang F 2023 Nat. Rev. Bioeng. 1 60Google Scholar
[2] Wu H Y, Jiang L H, Li K, Li C Y, Zhang H J 2021 J. Mater. Chem. C 9 11761Google Scholar
[3] Zhong J Y, Li C J, Zhao W R, You S H, Brgoch J 2022 Chem. Mater. 34 337Google Scholar
[4] Zhang H S, Zhong J Y, Du F, Chen L, Zhang X L, Mu Z F, Zhao W R 2022 ACS Appl. Mater. Interfaces 14 11663Google Scholar
[5] Lai J, Shen W H, Qiu J B, Zhou D C, Long Z W, Yang Y, Zhang K, Khan I, Wang Q 2020 J. Am. Ceram. Soc. 103 5067Google Scholar
[6] Liu T Y, Cai H, Mao N, Song Z, Liu Q L 2021 J. Am. Ceram. Soc. 104 4577Google Scholar
[7] Zhong J Y, Zhuo Y, Du F, Zhang H S, Zhao W R, Brgoch J 2021 ACS Appl. Mater. Interfaces 13 31835Google Scholar
[8] Yang Z, Zhao Y, Zhou Y, Qiao J, Chuang Y C, Molokeev M S, Xia Z 2022 Adv. Funct. Mater. 32 2103927Google Scholar
[9] Xiao Y, Xiao W, Wu D, Guan L, Luo M, Sun L D 2022 Adv. Funct. Mater. 32 2109618Google Scholar
[10] Chen X Z, Li Y, Huang K, Huang L, Tian X M, Dong H F, Kang R, Hu Y H, Nie J M, Qiu J R, Han G 2021 Adv. Mater. 33 2008722Google Scholar
[11] Dang P P, Wei Y, Liu D J, Li G G, Lin J 2023 Adv. Opt. Mater. 11 2201739Google Scholar
[12] Liu D J, Dang P P, Zhang G D, Lian H Z, Li G G, Lin J 2024 Infomat 6 e12542Google Scholar
[13] Rajendran V, Huang W T, Chen K C, Chang H, Liu R S 2022 J. Mater. Chem. C 10 14367Google Scholar
[14] Huang W T, Chen K C, Huang M H, Liu R S 2023 Adv. Opt. Mater. 11 2301166Google Scholar
[15] Liu Y, Stasio F D, Bi C H, Zhang J B, Xia Z G, Shi Z F, Manna L 2024 Adv. Mater. 36 2312482Google Scholar
[16] Zhang H, Zhong J, Li C, Wang L, Zhao W 2022 J. Lumin. 251 119211Google Scholar
[17] Zhou Y P, Li X J, Seto Y, Wang Y H 2021 ACS Sustain. Chem. Eng. 9 3145Google Scholar
[18] Malysa B, Meijerink A, Jüstel T 2018 J. Lumin. 202 523Google Scholar
[19] Zou X, Wang X, Zhang H, Kang Y, Yang X, Zhang X, Molokeev M S, Lei B 2022 Chem. Eng. J. 428 132003Google Scholar
[20] Jiang H J, Chen L Y, Zheng G J, Luo Z H, Wu X H, Liu Z H, Li R Y, Liu Y F, Sun P, Jiang J 2022 Adv. Opt. Mater. 10 2102741Google Scholar
[21] Mao M Q, Zhou T L, Zeng H T, Wang L, Huang F, Tang X Y, Xie R J 2020 J. Mater. Chem. C 8 1981Google Scholar
[22] Li C J, Zhong J Y 2023 Adv. Opt. Mater. 11 2202323Google Scholar
[23] Dumesso M U, Xiao W, Zheng G, Basore E T, Tang M, Liu X, Qiu J 2022 Adv. Opt. Mater. 10 2200676Google Scholar
[24] Huang D, Liang S, Chen D, Hu J, Xu K, Zhu H 2021 Chem. Eng. J. 426 131332Google Scholar
[25] Pan L, Lu R, Zhu Q, McGrath J M, Tu K 2015 Postharvest Biol. Tec. 102 42Google Scholar
[26] Cai H, Liu S Q, Song Z, Liu Q L 2021 J. Mater. Chem. C 9 5469Google Scholar
[27] Kenry, Duan Y, Liu B 2018 Adv. Mater. 30 1802394Google Scholar
[28] Xia Z G, Zhou J, Mao Z Y 2013 J. Mater. Chem. C 1 5917Google Scholar
[29] Wang F, Jin Y, Liu Y F, Zhang L L, Dong R, Zhang J H 2019 J. Lumin 206 227Google Scholar
[30] Zhou J B, Zhong J P, Guo J Y, Liang H B, Su Q, Tang Q, Tao Y, Moretti F, Lebbou K, Dujardin C 2016 J. Phys. Chem. C 120 18741Google Scholar
[31] Halada G P, Clayton C R 1991 J. Electrochem. Soc. 138 2921Google Scholar
[32] Kim Y I, Page K, Limarga A M, Clarke D R, Seshadri R 2007 Phys. Rev. B 76 115204Google Scholar
[33] Wang C P, Zhang Y X, Han X, Hu D F, He D P, Wang X M, Jiao H 2021 J. Mater. Chem. C 9 4583Google Scholar
[34] 刘云鹏, 盛伟繁, 吴忠华 2021 无机材料学报 36 901Google Scholar
Liu Y P, Sheng W F, Wu Z H 2021 J. Inorg. Mater. 36 901Google Scholar
[35] Farges F 2009 Phys. Chem. Miner. 36 463Google Scholar
[36] Xie W, Jiang W, Zhou R F, Li J H, Ding J H, Ni H Y, Zhang Q H, Tang Q, Meng J X, Lin L T 2021 Inorg. Chem. 60 2219Google Scholar
[37] Tobase T, Yoshiasa A, Hiratoko T, Nakatsuka A 2018 J. Synchrotron Radiat. 25 1129Google Scholar
[38] Zhu F M, Gao Y, Zhu B M, Huang L, Qiu J B 2024 Chem. Eng. J 479 147568.Google Scholar
[39] Tanabe Y, Sugano S 1954 J. Phys. Soc. Jpn. 9 766Google Scholar
[40] Trueba A, Garcia-Fernandez P, Garcia-Lastra J M, Aramburu J A, Barriuso M T, Moreno M 2011 J. Phys. Chem. A 115 1423Google Scholar
[41] Mondal A, Das S, Manam J 2019 Phys. B Condens. Matter 569 20Google Scholar
[42] Zhang L L, Zhang S, Hao Z D, Zhang X, Pan G H, Luo Y S, Wu H J, Zhang J H 2018 J. Mater. Chem. C 6 4967Google Scholar
[43] Huyen N T, Tu N, Tung D T, Trung D Q, Anh D D, Duc T T, Nga T T T, Huy P T 2020 Opt. Mater. 108 110207Google Scholar
[44] Blasse G 1968 Phys. Lett. A 28 444Google Scholar
[45] Xiao F, Yi R X, Yuan H L, Zang G J, Xie C N 2018 Spectrochim. Acta A 202 352Google Scholar
[46] Hussen M K, Dejene F B 2019 Optik 181 514Google Scholar
[47] Si J Y, Wang L, Liu L H, Yi W, Cai G M, Takeda T, Funahashi S, Hirosaki N, Xie R J 2019 J. Mater. Chem. C 7 733Google Scholar
[48] Wang X J, Wang X J, Wang Z H, Zhu Q, Wang C, Xin S Y, Li J G 2018 J. Am. Ceram. Soc. 101 5477Google Scholar
[49] Wang X J, Meng Q H, Li M T, Wang X J, Wang Z H, Zhu Q, Li J G 2019 J. Am. Ceram. Soc. 102 3296Google Scholar
[50] Sun Z C, Zhou T L, Liu R H, Tang X Y, Xie R J 2023 J. Am. Ceram. Soc. 106 3446Google Scholar
[51] Gao T Y, Zhuang W D, Liu R H, Liu Y H, Chen X X, Xue Y 2020 J. Alloys Compd. 848 156557Google Scholar
-
图 1 (a) Na3Y1–x Si3O9:x Cr3+ (x = 0—0.1)样品的XRD图谱; (b) Na3Y0.97Si3O9:0.03Cr3+样品Rietveld精修结果; (c) Na3YSi3O9的晶体结构; (d) Na3Y0.97Si3O9:0.03Cr3+样品FE-SEM及元素扫描分布图
Fig. 1. (a) The XRD patterns of the Na3Y1–x Si3O9:x Cr3+ (x = 0–0.1) samples; (b) Rietveld refinement results of the Na3Y0.97Si3O9:0.03Cr3+ sample; (c) crystal structure of Na3YSi3O9; (d) the FE-SEM morphology and elemental mapping of the Na3Y0.97Si3O9:0.03Cr3+ sample.
图 4 (a)—(c) Na3Y0.97Si3O9:0.03Cr3+样品的(a)归一化的激发和发射光谱、(b) 田边-菅野图、(c) 80—300 K 范围内变温发射光谱; (d)—(f) Na3Y1–x Si3O9:x Cr3+ (x = 0—0.1)样品的(d)发射光谱; (e) log(x)-log(I/x)对应关系; (f) 荧光衰减曲线(λex = 485 nm, λem = 984 nm)
Fig. 4. (a) Normalized excitation and emission spectra, (b) Tanabe-Sugano energy level diagram, (c) temperature-dependent emission spectra in the range of 80—300 K for the Na3Y0.97Si3O9:0.03Cr3+ samples; (d) emission spectra, (e) the log(x) versus log(I/x) plot, (f) luminescence decay curves (λex = 485 nm, λem = 984 nm) for the Na3Y1–x Si3O9:x Cr3+ (x = 0–0.1) samples.
图 5 (a) Na3Y0.97Si3O9:0.03Cr3+样品变温发射光谱的等高线图; (b) 1/kT与ln[(I0/I) -1]的对应关系; (c) Cr3+热猝灭过程的位形坐标示意图; (d) 不同温度下的荧光衰减曲线
Fig. 5. (a) Contour plot of the temperature-dependent PL spectra of Na3Y0.97Si3O9:0.03Cr3+; (b) ln[(I0/I) -1] vs. 1/kT relationship; (c) the thermal quenching process of Cr3+ depicted with the configurational coordinate diagram; (d) fluorescence decay curves at different temperatures.
表 1 由Na3Y0.97Si3O9:0.03Cr3+样品XRD图谱精修所得的结构参数和可靠因子及纯相Na3YSi3O9晶胞参数信息 (PDF #72-2455)
Table 1. Structure parameters and reliability factors obtained via refinement of the XRD pattern for Na3Y0.97Si3O9:0.03Cr3+ sample and the cell parameters from pure Na3YSi3O9 (PDF #72-2455).
Chemical formula Na3YSi3O9 Na3Y0.97Si3O9:0.03Cr3+ Space group P212121 P212121 a/Å 15.408(4) 15.0362(4) b/Å 15.312(5) 15.2116(5) c/Å 15.222(4) 15.1460(4) α/(°) 90 90 β/(°) 90 90 γ /(°) 90 90 V/Å3 3591.016(18) 3464.26(18) Rp/% — 4.75 Rwp/% — 7.41 χ2 — 2.140 表 2 Na3Y0.97Si3O9:0.03Cr3+样品中4种[YO6]多面体键长及多面体畸变指数汇总
Table 2. Bond length and distortion index of four kinds [YO6] polyhedrons in Na3Y0.97Si3O9:0.03Cr3+ sample.
Bond d1 d2 d3 d4 d5 d6 dav ddis Y1—O 2.4937 2.1867 2.0643 2.2623 3.1427 3.0236 2.2589 0.1461 Y2—O 2.1108 2.2302 2.2744 2.8329 2.1218 2.1108 2.2801 0.0808 Y3—O 2.2707 1.9528 2.7648 1.8012 3.8077 2.8960 2.5822 0.2223 Y4—O 2.2642 2.052 1.6169 1.8874 3.1401 3.2249 2.3643 0.2307 表 3 Na3Y1–x Si3O9:x Cr3+ (x = 0—0.1)样品荧光衰减曲线拟合结果 (λex = 485 nm, λem = 984 nm)
Table 3. Fluorescence decay curve fitting results of Na3Y1–x Si3O9:x Cr3+ (x = 0–0.1) samples (λex = 485 nm, λem = 984 nm)
浓度 λem/nm A1 A2 τ1 τ2 χ2 τ/μs 0.005 984 2020.38 802.09 16.50 54.35 0.987 37.95 0.01 984 1993.95 836.83 15.08 50.03 1.054 35.42 0.02 984 1808.84 729.58 12.14 44.47 1.059 31.42 0.03 984 1963.30 726.19 12.61 45.56 0.961 31.45 0.05 984 1837.09 818.42 13.02 43.06 0.986 30.91 0.10 984 1985.01 692.64 13.29 45.20 0.984 30.61 -
[1] Chen Y, Wang S F, Zhang F 2023 Nat. Rev. Bioeng. 1 60Google Scholar
[2] Wu H Y, Jiang L H, Li K, Li C Y, Zhang H J 2021 J. Mater. Chem. C 9 11761Google Scholar
[3] Zhong J Y, Li C J, Zhao W R, You S H, Brgoch J 2022 Chem. Mater. 34 337Google Scholar
[4] Zhang H S, Zhong J Y, Du F, Chen L, Zhang X L, Mu Z F, Zhao W R 2022 ACS Appl. Mater. Interfaces 14 11663Google Scholar
[5] Lai J, Shen W H, Qiu J B, Zhou D C, Long Z W, Yang Y, Zhang K, Khan I, Wang Q 2020 J. Am. Ceram. Soc. 103 5067Google Scholar
[6] Liu T Y, Cai H, Mao N, Song Z, Liu Q L 2021 J. Am. Ceram. Soc. 104 4577Google Scholar
[7] Zhong J Y, Zhuo Y, Du F, Zhang H S, Zhao W R, Brgoch J 2021 ACS Appl. Mater. Interfaces 13 31835Google Scholar
[8] Yang Z, Zhao Y, Zhou Y, Qiao J, Chuang Y C, Molokeev M S, Xia Z 2022 Adv. Funct. Mater. 32 2103927Google Scholar
[9] Xiao Y, Xiao W, Wu D, Guan L, Luo M, Sun L D 2022 Adv. Funct. Mater. 32 2109618Google Scholar
[10] Chen X Z, Li Y, Huang K, Huang L, Tian X M, Dong H F, Kang R, Hu Y H, Nie J M, Qiu J R, Han G 2021 Adv. Mater. 33 2008722Google Scholar
[11] Dang P P, Wei Y, Liu D J, Li G G, Lin J 2023 Adv. Opt. Mater. 11 2201739Google Scholar
[12] Liu D J, Dang P P, Zhang G D, Lian H Z, Li G G, Lin J 2024 Infomat 6 e12542Google Scholar
[13] Rajendran V, Huang W T, Chen K C, Chang H, Liu R S 2022 J. Mater. Chem. C 10 14367Google Scholar
[14] Huang W T, Chen K C, Huang M H, Liu R S 2023 Adv. Opt. Mater. 11 2301166Google Scholar
[15] Liu Y, Stasio F D, Bi C H, Zhang J B, Xia Z G, Shi Z F, Manna L 2024 Adv. Mater. 36 2312482Google Scholar
[16] Zhang H, Zhong J, Li C, Wang L, Zhao W 2022 J. Lumin. 251 119211Google Scholar
[17] Zhou Y P, Li X J, Seto Y, Wang Y H 2021 ACS Sustain. Chem. Eng. 9 3145Google Scholar
[18] Malysa B, Meijerink A, Jüstel T 2018 J. Lumin. 202 523Google Scholar
[19] Zou X, Wang X, Zhang H, Kang Y, Yang X, Zhang X, Molokeev M S, Lei B 2022 Chem. Eng. J. 428 132003Google Scholar
[20] Jiang H J, Chen L Y, Zheng G J, Luo Z H, Wu X H, Liu Z H, Li R Y, Liu Y F, Sun P, Jiang J 2022 Adv. Opt. Mater. 10 2102741Google Scholar
[21] Mao M Q, Zhou T L, Zeng H T, Wang L, Huang F, Tang X Y, Xie R J 2020 J. Mater. Chem. C 8 1981Google Scholar
[22] Li C J, Zhong J Y 2023 Adv. Opt. Mater. 11 2202323Google Scholar
[23] Dumesso M U, Xiao W, Zheng G, Basore E T, Tang M, Liu X, Qiu J 2022 Adv. Opt. Mater. 10 2200676Google Scholar
[24] Huang D, Liang S, Chen D, Hu J, Xu K, Zhu H 2021 Chem. Eng. J. 426 131332Google Scholar
[25] Pan L, Lu R, Zhu Q, McGrath J M, Tu K 2015 Postharvest Biol. Tec. 102 42Google Scholar
[26] Cai H, Liu S Q, Song Z, Liu Q L 2021 J. Mater. Chem. C 9 5469Google Scholar
[27] Kenry, Duan Y, Liu B 2018 Adv. Mater. 30 1802394Google Scholar
[28] Xia Z G, Zhou J, Mao Z Y 2013 J. Mater. Chem. C 1 5917Google Scholar
[29] Wang F, Jin Y, Liu Y F, Zhang L L, Dong R, Zhang J H 2019 J. Lumin 206 227Google Scholar
[30] Zhou J B, Zhong J P, Guo J Y, Liang H B, Su Q, Tang Q, Tao Y, Moretti F, Lebbou K, Dujardin C 2016 J. Phys. Chem. C 120 18741Google Scholar
[31] Halada G P, Clayton C R 1991 J. Electrochem. Soc. 138 2921Google Scholar
[32] Kim Y I, Page K, Limarga A M, Clarke D R, Seshadri R 2007 Phys. Rev. B 76 115204Google Scholar
[33] Wang C P, Zhang Y X, Han X, Hu D F, He D P, Wang X M, Jiao H 2021 J. Mater. Chem. C 9 4583Google Scholar
[34] 刘云鹏, 盛伟繁, 吴忠华 2021 无机材料学报 36 901Google Scholar
Liu Y P, Sheng W F, Wu Z H 2021 J. Inorg. Mater. 36 901Google Scholar
[35] Farges F 2009 Phys. Chem. Miner. 36 463Google Scholar
[36] Xie W, Jiang W, Zhou R F, Li J H, Ding J H, Ni H Y, Zhang Q H, Tang Q, Meng J X, Lin L T 2021 Inorg. Chem. 60 2219Google Scholar
[37] Tobase T, Yoshiasa A, Hiratoko T, Nakatsuka A 2018 J. Synchrotron Radiat. 25 1129Google Scholar
[38] Zhu F M, Gao Y, Zhu B M, Huang L, Qiu J B 2024 Chem. Eng. J 479 147568.Google Scholar
[39] Tanabe Y, Sugano S 1954 J. Phys. Soc. Jpn. 9 766Google Scholar
[40] Trueba A, Garcia-Fernandez P, Garcia-Lastra J M, Aramburu J A, Barriuso M T, Moreno M 2011 J. Phys. Chem. A 115 1423Google Scholar
[41] Mondal A, Das S, Manam J 2019 Phys. B Condens. Matter 569 20Google Scholar
[42] Zhang L L, Zhang S, Hao Z D, Zhang X, Pan G H, Luo Y S, Wu H J, Zhang J H 2018 J. Mater. Chem. C 6 4967Google Scholar
[43] Huyen N T, Tu N, Tung D T, Trung D Q, Anh D D, Duc T T, Nga T T T, Huy P T 2020 Opt. Mater. 108 110207Google Scholar
[44] Blasse G 1968 Phys. Lett. A 28 444Google Scholar
[45] Xiao F, Yi R X, Yuan H L, Zang G J, Xie C N 2018 Spectrochim. Acta A 202 352Google Scholar
[46] Hussen M K, Dejene F B 2019 Optik 181 514Google Scholar
[47] Si J Y, Wang L, Liu L H, Yi W, Cai G M, Takeda T, Funahashi S, Hirosaki N, Xie R J 2019 J. Mater. Chem. C 7 733Google Scholar
[48] Wang X J, Wang X J, Wang Z H, Zhu Q, Wang C, Xin S Y, Li J G 2018 J. Am. Ceram. Soc. 101 5477Google Scholar
[49] Wang X J, Meng Q H, Li M T, Wang X J, Wang Z H, Zhu Q, Li J G 2019 J. Am. Ceram. Soc. 102 3296Google Scholar
[50] Sun Z C, Zhou T L, Liu R H, Tang X Y, Xie R J 2023 J. Am. Ceram. Soc. 106 3446Google Scholar
[51] Gao T Y, Zhuang W D, Liu R H, Liu Y H, Chen X X, Xue Y 2020 J. Alloys Compd. 848 156557Google Scholar
计量
- 文章访问数: 1687
- PDF下载量: 40
- 被引次数: 0