搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

周期调制四通道光学波导的PT对称特性调控和动力学研究

张光成 孙武 周志鹏 全秀娥 叶伏秋

引用本文:
Citation:

周期调制四通道光学波导的PT对称特性调控和动力学研究

张光成, 孙武, 周志鹏, 全秀娥, 叶伏秋

PT symmetry characterization and dynamics of periodically modulated four-channel optical waveguides

Zhang guang-cheng, Sun wu, Zhou zhi-peng, Quan xiu-e, Ye fu-qiu
PDF
导出引用
  • 光学系统中周期调制主要是通过周期性变化的复折射率材料来实现,类似于周期驱动系统的量子隧穿行为,宇称—时间(PT)对称光学波导系统中光的传播可以通过周期调制来进行有效操控。本文设计了一种通过周期调制波导与增益型-耗散型波导交叉放置调控PT对称性的物理模型,在高频近似下讨论了周期调制对体系能谱的影响,最后结合解析和数值的方法揭示了光在非厄米四通道光学波导中的动力学演化。结果表明,与以往周期调制波导与增益型-耗散型波导平行放置的四通道光学波导体系相比,不仅可以通过周期调制调窄完全实能谱的存在范围,且可以更早地观测到实能谱。此外,调制参数变化时,四通道波导的相对光强和光学周期更为稳定。该理论研究给出了一种更为高效、稳定的调控PT对称的构型。
    The control of parity-time (PT) symmetry in cosmic-time PT symmetry systems holds paramount significance, yet experimental realization of such optical configurations using current technologies poses formidable challenges. Conversely, the approach of periodic modulation emerges as a more viable alternative. Notably, periodic modulation in optical systems is predominantly executed through the cyclic alteration of complex refractive index materials. Distinct from conventional approaches that align periodically modulated waveguides in parallel with gain-dissipative counterparts to satisfy PT symmetry, this paper innovatively introduces a physical model featuring the cross-placement of these waveguides, marking the first instance of leveraging this configuration to manipulate PT symmetry. This paper examines the effect of periodic modulation on the energy spectrum of the system within the high-frequency approximation, elucidating the dynamical evolution of light in a non-Hermitian four-channel optical waveguide through a synergistic approach that combines analytical and numerical methods. Adjusting the modulation parameter A/ω reveals a dual capability: it modulates the extent of the real energy spectrum and precisely controls the PT symmetry of the system. Notably, at A/ω=0, the structure exhibits a fully real energy spectrum, diverging from conventional parallel four-channel waveguide configurations. Furthermore, as A/ω varies from 0 to 2.4, the relative intensity and optical periodicity within each waveguide exhibit enhanced stability compared to their conventionally arranged counterparts. Furthermore, our examination of PT symmetry's effect on light tunneling dynamics within individual waveguides reveals that in the unbroken PT symmetry phase, light oscillates periodically between waveguides, whereas in the broken PT symmetry phase, light propagation within each waveguide becomes stable. In the presence of waveguide coupling, it is observed that each waveguide within the system attains steady-state light regardless of the initial light injection point. Furthermore, under weak coupling between the gain-dissipative two-channel waveguide and the neutral waveguide, light, regardless of its entry point, becomes localized in the gain waveguide with propagation distance, vanishing from other waveguides, ultimately reaching a steady-state configuration. The findings reveal that, in contrast to traditional four-channel optical waveguide systems, periodic modulation not only narrows the range of existence for the fully real energy spectrum but also enables its earlier observation. Furthermore, the relative light intensity and optical periodicity within the four-channel waveguide exhibit greater stability against variations in modulation parameters. Hence, this theoretical inquiry not only profoundly encapsulates the ubiquitous principle of PT-symmetric tetramers, elucidating that spontaneous PT symmetry breaking drastically alters optical transmission properties, transforming periodic light propagation into steady-state illumination, but also presents an enhanced, more robust configuration for the manipulation of PT symmetry.
  • [1]

    Bender C M, Boettcher S 1998 Phys. Rev. Lett. 80 5243

    [2]

    Long Y, Xue H, Zhang B 2022 Phys. Rev. B 105 L100102

    [3]

    Bender C M 2007 Rep. Prog. Phys. 70 947

    [4]

    Xia S, Kaltsas D, Song D, Komis I, Xu J, Szameit A, Buljan H, Makris K G, Chen Z 2021 Science. 372 72-76

    [5]

    Moiseyev N 2011 Non-Hermitian quantum mechanics (Cambridge University Press)

    [6]

    Witoński P, Mossakowska-Wyszyńska A, Szczepański P 2023 Crystals. 13 258

    [7]

    Li H, Jia Q, Lyu B, Cao F, Yang G, Liu D, Shi J 2023 Opt. Express. 31 14986-14996

    [8]

    Şeker E, Olyaeefar B, Dadashi K., Şengül S, Teimourpour M H, El-Ganainy R, Demir A 2023 Sci. Appl. 12 149

    [9]

    Fu L X, Fan M J, Ding Y Q, Fu M X 2023 Appl. Phys. 13 183(in Chinese)[付林雪,范孟军,丁亚琼,付新铭2023应用物理13 183]

    [10]

    Yao S, Wang Z 2018 Phys. Rev. Lett. 121 086803

    [11]

    Ke S, Wen W, Zhao D, Wang Y 2023 Phys. Rev. A 107 053508

    [12]

    Zhu W, Gong J 2023 Phys. Rev. B 108 035406

    [13]

    Tang W, Ding K, Ma G 2021 Phys. Rev. Lett. 127 034301

    [14]

    Parkavi, J R,Chandrasekar V K, Lakshmanan M 2021 Phys. Rev. A 103 023721

    [15]

    Guo Z W, Chen H 2024 Physics. 53 33-41(in Chinese)[郭志伟,陈鸿2024物理53 33-41]

    [16]

    El-Ganainy R, Makris K G, Khajavikhan M, Musslimani Z H, Rotter S, Christodoulides D N 2018 Nat. Phys. 14 11-19

    [17]

    Morfonios C V, Kalozoumis P A, Diakonos F K, Schmelcher P 2017 Ann. Phys. 385 623-649

    [18]

    Wang H F, Jie B Y, Zhan P, Lu M H, Chen Y F 2019 Acta. Phys. Sin. 68 51-68(in Chinese)[王洪飞,解碧野,詹鹏,卢明辉,陈延峰2019物理学报68 51-68]

    [19]

    Jin L 2018 Phys. Rev. A 98 022117

    [20]

    Xu H S, Jin L 2021 Phys. Rev. A 104 012218

    [21]

    Parto M, Wittek S, Hodaei H, Harari G, Bandres M A, Ren J, Khajavikhan M 2018 Phys. Rev. Lett. 120 113901

    [22]

    Ge L, Türeci H E 2013 Phys. Rev. A 88 53810

    [23]

    Zhang J, Feng Z, Sun X 2022 arXiv. Preprint. arXiv. 2201 00948

    [24]

    Cai R H, Liu W W, Chen H, Tian J G, Chen S Q 2021 Acta. Opt. Sin. 41 0123001(in Chinese)[柴若衡,刘文玮,程化,田建国,陈树琪2021光学学报41 0123001]

    [25]

    Longhi S 2009 Phys. Rev. Lett. 103 123601

    [26]

    Klaiman S, Günther U, Moiseyev N 2008 Phys. Rev. Lett. 101 080402

    [27]

    Rüter C E, Makris K G, El-Ganainy R, Christodoulides D N, Segev M, Kip D 2010 Nat Phys. 6 192

    [28]

    Qu D F, Fan Y, Xue P 2022 Acta. Phys. Sin. 71 8-14(in Chinese)[曲登科,范毅,薛鹏2022物理学报71 8-14]

    [29]

    Feng L, Wong Z J, Ma R M, Wang Y, Zhang X 2014 Science. 346 972

    [30]

    Miao P, Zhang Z, Sun J, Walasik W, Longhi S, Litchinitser N M, Feng L 2016 Science. 353 464

    [31]

    Zhu B, Zhong H, Jia J, Ye F, Fu L 2020 Phys. Rev. A. 102 053510

    [32]

    Morandotti R, Peschel U, Aitchison J S, Eisenberg H S, Silberberg Y 1999 Phys. Rev. Lett. 83 4756

    [33]

    Trompeter H, Pertsch T, Lederer F, Michaelis D, Streppel U, Bräuer A, Peschel U 2006 Phys. Rev. Lett. 96 023901

    [34]

    Trompeter H, Krolikowski W, Neshev D N, Desyatnikov A S, Sukhorukov A A, Kivshar Y S, Lederer F 2006 Phys. Rev. Lett. 96 053903

    [35]

    Zhu B 2016 M.S. Thesis (Jishou:Jishou University)(in Chinese)[朱博2016硕士学位论文(吉首:吉首大学)]

  • [1] 方靖岳, 文之豪, 朱海碧涛, 李欣幸, 邓联文. 基于集成法布里-珀罗微腔阵列的16通道快照式多光谱成像. 物理学报, doi: 10.7498/aps.73.20231775
    [2] 邵凯花, 席忠红, 席保龙, 涂朴, 王青青, 马金萍, 赵茜, 石玉仁. 双组分玻色-爱因斯坦凝聚体中PT对称势下的异步量子Kármán涡街. 物理学报, doi: 10.7498/aps.73.20232003
    [3] 宁啸坤, 耿滔. 频谱非对称包络调制的圆对称艾里光束的传播特性研究. 物理学报, doi: 10.7498/aps.71.20220019
    [4] 陈礼元, 高超, 林机, 李慧军. $ {\cal{PT}}$对称极化子凝聚体系统中的稳定孤子及其调控. 物理学报, doi: 10.7498/aps.71.20220475
    [5] 刘永棠, 盛亮, 李阳, 张金海, 孟伦, 李豪卿, 袁媛, 孙铁平, 欧阳晓平. 周期调制结构平面薄膜电爆炸实验研究. 物理学报, doi: 10.7498/aps.70.20201574
    [6] 谢天婷, 邓科, 罗懋康. 二维非对称周期时移波状通道中的粒子定向输运问题. 物理学报, doi: 10.7498/aps.65.150501
    [7] 屠浙, 赖莉, 罗懋康. 分数阶非对称耦合系统在对称周期势中的定向输运. 物理学报, doi: 10.7498/aps.63.120503
    [8] 张恒, 段文山. 双势阱中玻色-费米混合气体的周期调制效应. 物理学报, doi: 10.7498/aps.62.160303
    [9] 苟学强, 闫明, 令伟栋, 赵红玉, 段文山. 费米气体在光晶格中的自俘获现象及其周期调制. 物理学报, doi: 10.7498/aps.62.130308
    [10] 邢耀亮, 杨志安. 半导体光折变介质中光束传输的自囚禁及周期调制. 物理学报, doi: 10.7498/aps.62.130302
    [11] 刘维浩, 张雅鑫, 周俊, 龚森, 刘盛纲. 偏心电子注激励周期加载波导角向非对称模衍射辐射. 物理学报, doi: 10.7498/aps.61.234209
    [12] 陈德彝, 王忠龙. 偏置信号调制下噪声关联的周期调制对单模激光随机共振的影响. 物理学报, doi: 10.7498/aps.58.2907
    [13] 陈德彝, 王忠龙. 信号调制下色噪声间关联的周期调制对单模激光随机共振的影响. 物理学报, doi: 10.7498/aps.58.1403
    [14] 胡 昕, 江少恩, 崔延莉, 黄翼翔, 丁永坤, 刘忠礼, 易荣清, 李朝光, 张景和, 张华全. 一种时间分辨三通道软X射线光谱仪. 物理学报, doi: 10.7498/aps.56.1447
    [15] 林 敏, 黄咏梅. 调制与解调用于随机共振的微弱周期信号检测. 物理学报, doi: 10.7498/aps.55.3277
    [16] 周金苟, 杜桂强, 张亚文, 刘念华. 双周期厚度调制的一维光子晶体的电磁模. 物理学报, doi: 10.7498/aps.54.3703
    [17] 靳艳飞, 徐 伟, 李 伟, 徐 猛. 具有周期信号调制噪声的线性模型的随机共振. 物理学报, doi: 10.7498/aps.54.2562
    [18] 王冠芳, 傅立斌, 赵 鸿, 刘 杰. 双势阱玻色-爱因斯坦凝聚体系的自俘获现象及其周期调制效应. 物理学报, doi: 10.7498/aps.54.5003
    [19] 高红, 王选章, 吕树臣. 周期性调制稀释Ising体系的相变. 物理学报, doi: 10.7498/aps.45.2054
    [20] 王德宁, 潘慧珍. 四层不对称波导的一些近似关系式. 物理学报, doi: 10.7498/aps.33.1610
计量
  • 文章访问数:  69
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 上网日期:  2024-07-09

/

返回文章
返回