-
供应链是由原材料供应商到最终客户的一系列生产和流通过程所形成的链条结构, 连接上、下游各个企业之间的关系. 供应链包含采购、生产、仓储、分销、客户服务、信息管理和资金管理等不同环节之间的物料、资源、资金和信息等的相互关联流动, 从而形成复杂的网链结构. 高效可靠的供应链对于增强企业的市场竞争力、推动社会和经济持续发展具有重要意义. 近年来, 采用复杂网络的理论和方法对供应链进行建模和分析受到了越来越多学者的关注. 本文系统性地论述基于实证数据和网络模型两种类型的供应链网络构建研究, 在此基础上探讨供应链网络的拓扑结构、脆弱性、关键节点识别、社团检测等结构性质, 阐明供应链网络的风险传播、竞争博弈等管理特性. 本文综述了基于复杂网络方法的供应链研究内容和前沿热点, 论证了复杂网络理论在供应链网络研究中的有效性和适用性, 分析了供应链网络研究现存的一些问题, 并展望若干未来的重要研究方向. 本文期望为供应链研究提供见解, 并推动复杂网络方法在供应链研究中的发展和应用.Supply chain is a chain structure formed by the sequential processes of production and distribution, spanning from raw material suppliers to end customers. An efficient and reliable supply chain is of great significance in enhancing enterprise’s market competitiveness and promoting sustainable social and economic development. The supply chain includes the interconnected flows of materials, resources, capital, and information across various stages, including procurement, production, warehousing, distribution, customer service, information management, and financial management. By representing the various participants in the supply chain as nodes and their interactions—such as the logistics, capital flow, information flow, and other interactions—as edges, the supply chain can be described and characterized as a complex network. In recent years, using complex network theory and methods to model and analyze supply chains has attracted increasing attention from researchers. This paper systematically reviews the supply chain research based on complex network theory, providing an in-depth analysis of supply chain networks in terms of network construction, structural properties, and management characteristics. First, this paper reviews two kinds of approaches to constructing supply chain network: empirical data-based approach and network model-based approach. In the empirical data-based research, scholars use common supply chain databases or integrate multiple data sources to identify the supply chain participants and clarify their attributes, behaviors, and interactions. Alternatively, the research based on network models employs the Barabási–Albert (BA) model, incorporating factors such as node distance, fitness, and edge weights, or uses hypergraph models to construct supply chain networks. Next, this paper summarizes the research on the structural properties of supply chain networks, focusing on their topological structure, key node identification, community detection, and vulnerability analysis. Relevant studies explore the topological structure of supply chain networks, uncovering the connections between nodes, hierarchical structures, and information flow paths between nodes. By analyzing factors such as node centrality, connection strength, and flow paths, the key nodes within the supply chain network are identified. Community detection algorithms are used to investigate the relationships between different structural parts and to analyze the positional structure, cooperative relationships, and interaction modes. Furthermore, quantitative evaluation indicators and management strategies are proposed for the robustness and resilience of supply chain networks. Further research has explored the management characteristics of supply chain networks, including risk propagation and competition game. Relevant studies have employed three main methods—epidemic model, cascading failure model, and agent-based model—to construct risk propagation models, simulate the spread of disruption risks, and analyze the mechanisms, paths, and extent of risk propagation within supply chain networks. These studies provide valuable insights for developing risk prevention and mitigation strategies. In addition, the game theory has been used to investigate the cooperative competition, resource allocation, and strategy selection among enterprises within the supply chain network. This paper reviews the research contents and emerging trends in supply chain studies based on complex network methods. It demonstrates the effectiveness and applicability of complex network theory in supply chain network research, discusses key challenges, such as how to obtain accurate, comprehensive, and timely supply chain network data, proposes standardized data processing methods, and determines the attributes of supply chain network nodes and the strength of their relationships. Furthermore, research on the structure of supply chain network has not yet fully captured the unique characteristics of supply chain networks. Existing models and methods for vulnerability assessment often fail to consider the dynamic and nonlinear characteristics of supply chain networks. Research on risk propagation in supply chains has not sufficiently integrated empirical data, overlooking the diversity of risk sources and the complexity of propagation paths. The asymmetry and incompleteness of information in supply chain networks, as well as multiple sources of uncertainty, make the prediction and analysis of multi-party decision-making behavior more complex. This paper also outlines several key directions for future research. One direction involves using high-order network theory to model interactions among multiple nodes and to describe the dynamics of multi-agent interactions within supply chain networks. Furthermore, integrating long short-term memory (LSTM) methods to process long-term dependence in time-series data can enhance the analysis of network structure evolution and improve the prediction of future states. The application of reinforcement learning algorithms can also adaptively adjust network structures and strategies according to changing conditions and demands, thereby improving the adaptability and response speed of supply chain networks in emergency situations. This paper aims to provide valuable insights for supplying chain research and promoting the development and application of complex network methods in this field.
-
Keywords:
- supply chain network /
- complex networks /
- structural properties /
- management characteristics
[1] Choi T Y, Dooley K J, Rungtusanatham M 2001 J. Oper. Manag. 19 351Google Scholar
[2] Surana A, Kumara S, Greaves M, Raghavan U N 2005 Int. J. Prod. Res. 43 4235Google Scholar
[3] Helbing D, Armbruster D, Mikhailov A S, Lefeber E 2006 Physica A 363 xiGoogle Scholar
[4] Cao W G, Xie S L, Qiao X D 2008 Eighth International Conference of Chinese Logistics and Transportation Professionals Chengdu, China, July 31–August 3, 2008 p1949
[5] Zhang H M, Feng T T, Yang Y S 2022 Resour. Policy 75 102492Google Scholar
[6] Dolgui A, Ivanov D, Sokolov B 2018 Int. J. Prod. Res. 56 414Google Scholar
[7] Cruz J M 2008 Eur. J. Oper. Res. 184 1005Google Scholar
[8] Hearnshaw E J, Wilson M M 2013 Int. J. Oper. Prod. Man. 33 442Google Scholar
[9] Pathak S D, Day J M, Nair A, Sawaya W J, Kristal M M 2007 Decision Sci. 38 547Google Scholar
[10] Borgatti S P, Li X 2009 J. Supply Chain Manag. 45 5Google Scholar
[11] Ledwoch A, Yasarcan H, Brintrup A 2018 Int. J. Prod. Econ. 197 13Google Scholar
[12] Wang K Q, Zeng Z F, Sun D C 2008 Fourth International Conference on Semantics, Knowledge and Grid Beijing, China, December 3–5, 2008 p493
[13] Ou C Y, Pan F B, Lin S J 2024 Sustainability 16 5514Google Scholar
[14] Xu M J, Wang X P, Zhao L D 2014 Int. J. Syst. Sci. Oper. Logist. 1 105Google Scholar
[15] Liang D, Bhamra R, Liu Z Y, Pan Y C 2022 Mathematics 10 3008Google Scholar
[16] Chan C K, Zhou Y, Wong K H 2019 Eur. J. Oper. Res. 275 514Google Scholar
[17] Gedik R, Medal H, Rainwater C, Pohl E A, Mason S J 2014 Transp. Res. E Logist. Transp. Rev. 71 45Google Scholar
[18] Carvalho H, Naghshineh B, Govindan K, Cruz-Machado V 2022 Comput. Ind. Eng. 171 108375Google Scholar
[19] Carnovale S, Rogers D S, Yeniyurt S 2019 J. Purch. Supply Manag. 25 134Google Scholar
[20] Wuttke D A, Blome C, Henke M 2013 Int. J. Prod. Econ. 145 773Google Scholar
[21] Yu H, Li H R 2023 Resour. Policy 85 104055Google Scholar
[22] Rezapour S, Farahani R Z, Pourakbar M 2017 Eur. J. Oper. Res. 259 1017Google Scholar
[23] Ivanov D 2023 Int. J. Prod. Res. 61 1683Google Scholar
[24] Van den Brink S, Kleijn R, Sprecher B, Tukker A 2020 Resour. Conserv. Recycl. 156 104743Google Scholar
[25] Sloane A, O’reilly S 2013 Prod. Plan. Control 24 621Google Scholar
[26] Wang J P, Zhou H, Jin X D 2021 Chaos Soliton. Fract. 143 110259Google Scholar
[27] Brintrup A, Ledwoch A, Barros J 2016 Logist. Res. 9 1Google Scholar
[28] Kim Y, Choi T Y, Yan T, Dooley K 2011 J. Oper. Manag. 29 194Google Scholar
[29] 史金艳, 杨健亨, 李延喜, 张启望 2019 中国工业经济 9 136Google Scholar
Shi J Y, Yang J H, Li Y X, Zhang Q W 2019 Chin. Ind. Econ. 9 136Google Scholar
[30] Zhao K, Zuo Z, Blackhurst J V 2019 J. Oper. Manag. 65 190Google Scholar
[31] D’Ignazio A, Giovannetti E 2014 Int. J. Prod. Econ. 147 486Google Scholar
[32] Tang L B, Wang P, Ma Z J, Pauliuk S, Chen W Q, Dai T, Lin Z P 2023 J. Ind. Ecol. 27 323Google Scholar
[33] Bellamy M A, Ghosh S, Hora M 2014 J. Oper. Manag. 32 357Google Scholar
[34] Mu D, Ren H Y, Wang C, Yue X P, Du J B, Ghadimi P 2023 Resour. Policy 80 103225Google Scholar
[35] Hu X Q, Wang C, Lim M K, Chen W Q, Teng L M, Wang P, Wang H M, Zhang C, Yao C Y, Ghadimi P 2023 Renew. Sust. Energ. Rev. 173 113083Google Scholar
[36] Basole R C, Bellamy M A 2014 Decision Sci. 45 753Google Scholar
[37] Barabási A L, Albert R 1999 Science 286 509Google Scholar
[38] Albert R, Barabási A L 2002 Rev. Mod. Phys. 74 47Google Scholar
[39] Bell M, Perera S, Piraveenan M, Bliemer M, Latty T, Reid C 2017 Sci. Rep. 7 42431Google Scholar
[40] Chen H W, Chen G P, Zhang Q N, Zhang X X 2023 PLoS One 18 e0278697Google Scholar
[41] Wang J P, Zhou H, Sun X L, Yuan Y F 2023 Chaos Soliton. Fract. 170 113371Google Scholar
[42] 于海生, 赵林度, 来向红 2009 管理学报 6 187Google Scholar
Yu H S, Zhao L D, Lai X H 2009 Chin. J. Manag. 6 187Google Scholar
[43] Tian Y Z, Shi Y Q, Shi X Q, Li M H, Zhang M 2021 IEEE Access 9 91265Google Scholar
[44] Suo Q, Guo J L, Sun S W, Liu H 2018 Physica A 489 141Google Scholar
[45] 汪小帆, 李翔, 陈关荣 2012 网络科学导论 (北京: 高等教育出版社) p397
Wang X F, Li X, Chen G R 2012 Network Science: An Introduction (Beijing: High Education Press) p397
[46] 赵晴 2021 硕士学位论文 (北京: 北京邮电大学)
Zhao Q 2021 M. S. Thesis (Beijing: Beijing University of Posts and Telecommunications
[47] 石海佳, 石磊 2009 化工学报 60 1500Google Scholar
Shi H J, Shi L 2009 CIESC J. 60 1500Google Scholar
[48] 李季明, 张宁 2008 复杂系统与复杂性科学 5 72Google Scholar
Li J M, Zhang N 2008 Cmplx. Syst. Complex. Sci. 5 72Google Scholar
[49] Orenstein P 2016 Second International Symposium on Stochastic Models in Reliability Engineering, Life Science and Operations Management Beer Sheva, Israel, February 15–18, 2016 p562
[50] Yang Y, Poon J P, Liu Y, Bagchi-Sen S 2015 Energy 93 534Google Scholar
[51] Kang L, Wu W Z, Yu H, Su F Z 2022 Sensors 22 5889Google Scholar
[52] 孙军艳, 傅卫平, 王雯 2015 西安理工大学学报 31 391Google Scholar
Sun J Y, Wei P F, Wang W 2015 J. Xi’an Univ. Technol. 31 391Google Scholar
[53] Bombelli A, Santos B F, Tavasszy L 2020 Transp. Res. E Logist. Transp. Rev. 138 101959Google Scholar
[54] Yang J L, Chen W 2023 Resour. Policy 86 104277Google Scholar
[55] Yue X P, Mu D, Wang C, Ren H Y, Ghadimi P 2023 Int. J. Prod. Res. 61 2758Google Scholar
[56] Li Z F, Li H W, Zhang Q Q, Qi X L 2024 Ocean Coast. Manag. 248 106969Google Scholar
[57] Yuan X J, Ge C B, Liu Y P, Li N, Wang Y 2022 Sustainability 14 16059Google Scholar
[58] Xia Q F, Du D B, Cao W P, Li X Y 2023 Resour. Policy 82 103532Google Scholar
[59] Zhao G M, Li W X, Geng Y, Bleischwitz R 2023 Resour. Policy 85 103815Google Scholar
[60] 谭丹, 马顺甜 2022 经济地理 42 110Google Scholar
Tan D, Ma S T 2022 Econ. Geography 42 110Google Scholar
[61] Zuo Z L, McLellan B C, Li Y L, Guo H X, Cheng J H 2022 Resour. Policy 78 102912Google Scholar
[62] Xu M Q, Pan Q, Muscoloni A, Xia H X, Cannistraci C V 2020 Nat. Commun. 11 2849Google Scholar
[63] Lü L Y, Chen D B, Ren X L, Zhang Q M, Zhang Y C, Zhou T 2016 Phys. Rep. 650 1Google Scholar
[64] 任晓龙, 吕琳媛 2014 科学通报 59 1175Google Scholar
Ren X L, Lü L Y 2014 Chin. Sci. Bull. 59 1175Google Scholar
[65] 于明洋, 吕可夫, 阮永平 2022 系统工程理论与实践 42 1796Google Scholar
Yu M Y, Lü K F, Ruan Y P 2022 System Eng. Theor. Prac. 42 1796Google Scholar
[66] Perera S, Bell M G, Bliemer M C 2017 Appl. Netw. Sci. 2 1Google Scholar
[67] Guo Y Q, Zhao B Y, Zhang H W 2023 Energy 263 125912Google Scholar
[68] Zhu J F, Liu W, Yang Y B 2023 J. Mar. Sci. Eng. 11 724Google Scholar
[69] Mizgier K J, Jüttner M P, Wagner S M 2013 Int. J. Prod. Res. 51 1477Google Scholar
[70] Basole R C, Ghosh S, Hora M S 2017 IEEE T. Eng. Manage. 65 141Google Scholar
[71] Bonacich P 1987 Am. J. Sociol. 92 1170Google Scholar
[72] Shi J Y, Liu X, Li Y X, Yu C H, Han Y S 2022 Int. Rev. Financ. Anal. 80 102040Google Scholar
[73] Liu R X 2022 M. S. Thesis (Chengdu: Southwestern University of Finance and Economics) (in Chinese)[刘若曦 2022 硕士学位论文 (成都: 西南财经大学)]
[74] Lavassani K M, Movahedi B 2021 Int. J. Glob. Bus. 16 86Google Scholar
[75] Shi J Y, Yang J H, Li Y X 2019 J. Bus. Econ. Manag. 20 1258Google Scholar
[76] Huang H S, Zhang J P, Yan J, Gong Y, Wang L K 2024 Eur. J. Innov. Manag. 27 551Google Scholar
[77] Lou P, Chen Y T, Yan J W 2020 IEEE Access 8 148827Google Scholar
[78] Blondel V D, Guillaume J L, Lambiotte R, Lefebvre E 2008 J. Stat. Mech. : Theory Exp. 2008 P10008Google Scholar
[79] Newman M E, Girvan M 2004 Phys. Rev. E 69 026113Google Scholar
[80] Ng A, Jordan M, Weiss Y 2001 Advances in Neural Information Processing Systems Vancouver, British Columbia, Canada, December 3–8, 2001 p849
[81] Rosvall M, Bergstrom C T 2007 arXiv: 0707.0609 [physics. soc-ph]
[82] Zhang Q, Pu S H, Yin M 2023 J. Mar. Sci. Eng. 11 1585Google Scholar
[83] Kito T, Brintrup A, New S, Reed-Tsochas F 2014 Saïd Business School WP 3Google Scholar
[84] Leicht E A, Newman M E 2008 Phys. Rev. Lett. 100 118703Google Scholar
[85] Wiedmer R, Griffis S E 2021 J. Bus. Logist. 42 264Google Scholar
[86] Shi D Y, Shang F, Chen B S, Expert P, Lü L Y, Stanley H E, Lambiotte R, Evans T S, Li R Q 2024 Commun. Phys. 7 170Google Scholar
[87] Ma'arif M R 2016 Sixth International Annual Engineering Seminar Yogyakarta, Indonesia, August 1–3, 2016 p206
[88] Chakraborty T, Chauhan S S, Ouhimmou M 2020 Int. J. Prod. Res. 58 3618Google Scholar
[89] Hu X Q, Wang C, Zhu X Y, Yao C Y, Ghadimi P 2021 Resour. , Conserv. Recycl. 170 105591Google Scholar
[90] Wang W Y, Fan L W, Zhou P 2022 Energy 238 121924Google Scholar
[91] Chen G, Kong R, Wang Y X 2020 Physica A 540 123002Google Scholar
[92] Zhong W Q, An H Z, Gao X Y, Sun X Q 2014 Physica A 413 42Google Scholar
[93] Zhong W Q, An H Z, Shen L, Dai T, Fang W, Gao X Y, Dong D 2017 Energy 123 260Google Scholar
[94] Zheng S X, Zhou X R, Xing W L, Zhao P 2022 Resour. Policy 77 102783Google Scholar
[95] Li Y H, Zobel C W, Seref O, Chatfield D 2020 Int. J. Prod. Econ. 223 107529Google Scholar
[96] Shi X Q, Long W, Li Y Y, Deng D S 2022 Physica A 586 126518Google Scholar
[97] Li Y H, Zobel C W 2020 Int. J. Prod. Econ. 228 107693Google Scholar
[98] 赵志刚, 周根贵, 李虎雄 2019 计算机科学 46 138Google Scholar
Zhao Z G, Zhou G G, Li H X 2019 Comput. Sci. 46 138Google Scholar
[99] Wang J P, Zhou H, Zhao Z, Sun X L 2023 Fourth International Conference on Computer Engineering and Application Hangzhou, China, April 7–9, 2023 p61
[100] 谢廷宇, 康凯, 王军进, 张学龙 2018 数学的实践与认识 48 40Google Scholar
Xie T Y, Kang K, Wang J J, Zhang X L 2018 J. Math. Prac. Theor. 48 40Google Scholar
[101] Zhao K, Scheibe K, Blackhurst J, Kumar A 2018 IEEE T. Eng. Manage. 66 127Google Scholar
[102] 徐翔斌, 李恒 2015 系统工程 33 17Google Scholar
Xu X B, Li H 2015 Syst. Eng. 33 17Google Scholar
[103] Nair A, Vidal J M 2011 Int. J. Prod. Res. 49 1391Google Scholar
[104] Wei N, Xie W J, Zhou W X 2022 Energy 251 123939Google Scholar
[105] Sun J Y, Tang J M, Fu W P, Chen Z R, Niu Y R 2020 Comput. Ind. Eng. 144 106457Google Scholar
[106] Shahnazi R, Sajedianfard N, Melatos M 2023 Energy Rep. 10 2017Google Scholar
[107] Wen T, Gao Q Y, Chen Y W, Cheong K H 2022 Reliab. Eng. Syst. Safe. 226 108578Google Scholar
[108] Tan W J, Zhang A N, Cai W 2019 Int. J. Prod. Res. 57 6385Google Scholar
[109] Xu M Q, Deng W H, Zhu Y F, Linyuan L 2023 Reliab. Eng. Syst. Safe. 240 109576Google Scholar
[110] Xu X J, Zhu Y F, Xu M Q, Deng W H, Zuo Y Q 2022 Ocean Coast. Manag. 229 106325Google Scholar
[111] Xu M Q, Zhu Y F, Deng W H, Shen Y H, Li T 2024 Global Netw. 24 e12445Google Scholar
[112] Vugrin E D, Warren D E, Ehlen M A 2011 Process Saf. Prog. 30 280Google Scholar
[113] Turnquist M, Vugrin E 2013 Environ. Syst. Decis. 33 104Google Scholar
[114] Yildiz H, Yoon J, Talluri S, Ho W 2016 Decision Sci. 47 661Google Scholar
[115] Hosseini S, Barker K 2016 Comput. Ind. Eng. 93 252Google Scholar
[116] Hosseini S, Barker K 2016 Int. J. Prod. Econ. 180 68Google Scholar
[117] Bai X W, Ma Z J, Zhou Y M 2023 Transp. Res. E Logist. Transp. Rev. 170 103016Google Scholar
[118] Jin P F, Wang S G, Meng Z, Chen B 2023 Resour. Policy 87 104339Google Scholar
[119] Yu Y, Ma D P, Zhu W W 2023 Resour. Policy 83 103636Google Scholar
[120] Yu Y, Ma D P, Qian Y M 2023 Resour. Policy 86 104296Google Scholar
[121] Kim Y, Chen Y S, Linderman K 2015 J. Oper. Manag. 33 43Google Scholar
[122] Azad N, Hassini E 2019 Eur. J. Oper. Res. 275 481Google Scholar
[123] Li Z Y, Zhao P X, Han X 2022 Physica A 589 126611Google Scholar
[124] Ponomarov S Y, Holcomb M C 2009 Int. J. Logist. Manag. 20 124Google Scholar
[125] Hethcote H W 2000 SIAM Rev. 42 599Google Scholar
[126] 杨康, 张仲义 2013 系统科学与数学 33 1224Google Scholar
Yang K, Zhang Z Y 2013 J. Syst. Sci. Math. Sci. 33 1224Google Scholar
[127] 易慧妮 2015 硕士学位论文 (成都: 西南交通大学)
Yi H N 2015 M. S. Thesis (Chengdu: Southwest Jiaotong University
[128] Berger N, Schulze-Schwering S, Long E, Spinler S 2023 Eur. J. Oper. Res. 304 1036Google Scholar
[129] Wang C, Huang X, Hu X Q, Zhao L F, Liu C, Ghadimi P 2021 Appl. Energy 290 116744Google Scholar
[130] Guo H Y, Cheng Y Y 2019 Physica A 529 121400Google Scholar
[131] Guo H Y, Cheng Y Y, Xie X X 2020 Physica A 545 123506Google Scholar
[132] Kang X Y, Wang M X, Chen L, Li X 2023 Resour. Policy 85 103797Google Scholar
[133] Zheng S X, Zhou X R, Tan Z L, Zhang H, Liu C, Hao H C, Hu H, Cai X M, Yang H S, Luo W B 2022 Energy Sustain. Dev. 71 517Google Scholar
[134] Tang L, Jing K, He J, Stanley H E 2016 Physica A 443 58Google Scholar
[135] 马靖莲 2016 博士学位论文 (西安: 长安大学)
Ma J L 2016 Ph. D. Dissertation (Sian: Chang’an University
[136] Yue X P, Mu D, Wang C, Ren H Y, Peng R, Du J B 2024 Reliab. Eng. Syst. Safe. 242 109728Google Scholar
[137] Wang Y, Zhang F 2018 Nonlinear Dynam. 92 1403Google Scholar
[138] Liu H, Han Y Y, Ni J L, Zhu A D 2022 Math. Probl. Eng. 2022 1Google Scholar
[139] Proselkov Y, Zhang J, Xu L, Hofmann E, Choi T Y, Rogers D, Brintrup A 2024 Int. J. Prod. Res. 62 823Google Scholar
[140] Inoue H, Todo Y 2019 Nat. Sustain. 2 841Google Scholar
[141] 石霞虹 2012 硕士学位论文 (杭州: 杭州电子科技大学)
Shi X H 2012 M. S. Thesis (Hangzhou: Hangzhou Dianzi University
[142] Sytch M, Kim Y, Page S 2022 Calif. Manage. Rev. 64 119Google Scholar
[143] Li Y H, Chen K D, Collignon S, Ivanov D 2021 Eur. J. Oper. Res. 291 1117Google Scholar
[144] Nash Jr J F 1950 Proc. Natl. Acad. Sci. U. S. A. 36 48Google Scholar
[145] Peng Y T, Xu D, Veglianti E, Magnaghi E 2023 J. Ind. Manag. Optim. 19 3459Google Scholar
[146] Chen Z B, Tian C Y, Zhang D, Chen D Y 2020 Oper. Res. 20 649Google Scholar
[147] Nagurney A, Loo J, Dong J, Zhang D 2002 Netnomics 4 187Google Scholar
[148] Nagurney A, Dong J, Zhang D 2002 Transp. Res. E Logist. Transp. Rev. 38 281Google Scholar
[149] Dong J, Zhang D 2002 Transportation and Traffic Theory in the 21st Century Adelaide, Australia, July 16–18, 2002 p179
[150] Dong J, Zhang D, Nagurney A 2004 Eur. J. Oper. Res. 156 194Google Scholar
[151] Dong J, Zhang D, Yan H, Nagurney A 2005 Ann. Oper. Res. 135 155Google Scholar
[152] Feyzian-Tary I, Razmi J, Sangari M S 2018 Ann. Oper. Res. 264 89Google Scholar
[153] He S X, Cui Y T 2023 Supply Chain Anal. 4 100039Google Scholar
[154] Von Stackelberg H, Peacock A T, Schneider E, Hutchison T W 1953 Economica 20 384Google Scholar
[155] Wang D P, Du G, Jiao R J, Wu R, Yu J P, Yang D 2016 Int. J. Prod. Econ. 172 1Google Scholar
[156] 房艳君, 吴梦娜 2016 统计与决策 17 49Google Scholar
Fang Y J, Wu M N 2016 Stat. Decis. 17 49Google Scholar
[157] Tan J, Jiang G Q, Wang Z G 2019 Int. J. Intell. Inf. Technol. 15 54Google Scholar
[158] Daniele P 2010 Transp. Res. E Logist. Transp. Rev. 46 855Google Scholar
[159] Nagurney A 2021 Eur. J. Oper. Res. 293 880Google Scholar
-
图 3 全球电动汽车锂电池供应链网络, 粉色节点代表供应核心部件的公司, 绿色节点代表供应关键矿物的公司, 橙色节点代表供应汽车的公司, 蓝色节点代表电池制造商, 节点大小与企业规模成正比[34]
Fig. 3. Visualization of the Electric Vehicle Lithium-ion Battery supply chain network, pink nodes represent supplying core components of firms, green nodes represent supplying critical minerals of firms, orange nodes represent supplying auto of firms, blue nodes represent battery manufacturer, where node size is proportional to company volume[34].
图 5 基于超图模型构建的供应链网络的演化机制 (a)玫红色圆代表现存节点, 绿色实线代表初始超边; (b) 添加新超边, 在现存节点之间添加新超边, 橙色虚线代表新超边; (c) 重组超边, 删除初始超边, 添加新超边, 蓝色虚线代表重组之后的新超边; (d) 链接新节点, 新增节点根据超边优先链接机制与现存节点连接形成新超边, 天蓝色圆代表新节点, 紫色虚线代表链接新节点的超边[44]
Fig. 5. Evolution mechanisms of supply chain networks constructed based on hypergraph models: (a) Magenta circles represent existing nodes and green solid lines represent original hyperedges; (b) add new hyperedges, add new hyperedges between existing nodes, orange dashed lines represent new hyperedges; (c) rewire hyperedges, delete original hyperedges and add new hyperedges, blue dashed lines represent new hyperedges by rewired; (d) link new nodes, link newly-added nodes with previously existing nodes according to their hyperedge preferential mechanism, sky blue circles represent new nodes, purple dashed lines represent hyperedges linking the new nodes[44].
图 6 全球原油贸易网络在代表性年份呈现出“核心-边缘”结构, 其中深红色和浅红色节点分别代表核心国家和次核心国家, 白色节点代表边缘国家, 节点越大, 颜色越深, 说明其在网络中的地位越核心[57] (a) 2007年; (b) 2010年; (c) 2020年
Fig. 6. Global crude oil trade network exhibits a core-edge structure in representative years, where dark red and light red nodes represent core and sub-core countries, respectively, and white nodes represent marginal countries, the larger node and darker color illustrate the greater the trade influence[57]: (a) 2007; (b) 2010; (c) 2020.
图 7 2000, 2002, 2004, 2009, 2018和2020年全球高岭土贸易网络的社团演变, 不同的颜色代表不同的社团, 节点的大小代表贸易国家的加权度[94]
Fig. 7. Evolution of communities in the global kaolin trade network in 2000, 2002, 2004, 2009, 2018, and 2020, different colours represent different associations, size of the nodes in the network represents the weighted degree of the trading country[94].
图 8 供应链网络的脆弱性随时间的状态转换[95], 其中TIME =0 时, y0表示中断事件的初始影响, TIME = tmax时, ytmax表示中断事件的全部影响, T表示网络从中断中恢复的时间速度. y0和ytmax 刻画了网络的鲁棒性, 而T则描述了网络的可恢复能力
Fig. 8. State transitions of supply chain network vulnerability over time[95], where TIME = 0, y0 represents the initial impact of the disruption event, TIME = tmax, ytmax represents the complete impact of the disruption event, and T denotes the speed at which the network recovers from the disruption. y0 and ytmax characterize the robustness of the network, while T describes the network's recoverability.
图 9 节点中断条件下铜贸易多层网络风险传播模型, 网络中的节点代表国家, 边代表贸易关系, 红色节点代表受风险冲击影响的国家, 红色边代表受风险冲击的边, 虚线表示产业链的层间关系[132]
Fig. 9. Risk propagation model of copper trade multilayer networks under node interruption conditions, nodes in the network represent countries, the edges represent trade relations, red nodes represent countries affected by the shock, the red edge indicates the edge affected by the shock, the dotted line represents the inter-layer relationship of the industrial chain[132].
表 1 常见的供应链网络类型
Table 1. Common types of supply chain networks.
-
[1] Choi T Y, Dooley K J, Rungtusanatham M 2001 J. Oper. Manag. 19 351Google Scholar
[2] Surana A, Kumara S, Greaves M, Raghavan U N 2005 Int. J. Prod. Res. 43 4235Google Scholar
[3] Helbing D, Armbruster D, Mikhailov A S, Lefeber E 2006 Physica A 363 xiGoogle Scholar
[4] Cao W G, Xie S L, Qiao X D 2008 Eighth International Conference of Chinese Logistics and Transportation Professionals Chengdu, China, July 31–August 3, 2008 p1949
[5] Zhang H M, Feng T T, Yang Y S 2022 Resour. Policy 75 102492Google Scholar
[6] Dolgui A, Ivanov D, Sokolov B 2018 Int. J. Prod. Res. 56 414Google Scholar
[7] Cruz J M 2008 Eur. J. Oper. Res. 184 1005Google Scholar
[8] Hearnshaw E J, Wilson M M 2013 Int. J. Oper. Prod. Man. 33 442Google Scholar
[9] Pathak S D, Day J M, Nair A, Sawaya W J, Kristal M M 2007 Decision Sci. 38 547Google Scholar
[10] Borgatti S P, Li X 2009 J. Supply Chain Manag. 45 5Google Scholar
[11] Ledwoch A, Yasarcan H, Brintrup A 2018 Int. J. Prod. Econ. 197 13Google Scholar
[12] Wang K Q, Zeng Z F, Sun D C 2008 Fourth International Conference on Semantics, Knowledge and Grid Beijing, China, December 3–5, 2008 p493
[13] Ou C Y, Pan F B, Lin S J 2024 Sustainability 16 5514Google Scholar
[14] Xu M J, Wang X P, Zhao L D 2014 Int. J. Syst. Sci. Oper. Logist. 1 105Google Scholar
[15] Liang D, Bhamra R, Liu Z Y, Pan Y C 2022 Mathematics 10 3008Google Scholar
[16] Chan C K, Zhou Y, Wong K H 2019 Eur. J. Oper. Res. 275 514Google Scholar
[17] Gedik R, Medal H, Rainwater C, Pohl E A, Mason S J 2014 Transp. Res. E Logist. Transp. Rev. 71 45Google Scholar
[18] Carvalho H, Naghshineh B, Govindan K, Cruz-Machado V 2022 Comput. Ind. Eng. 171 108375Google Scholar
[19] Carnovale S, Rogers D S, Yeniyurt S 2019 J. Purch. Supply Manag. 25 134Google Scholar
[20] Wuttke D A, Blome C, Henke M 2013 Int. J. Prod. Econ. 145 773Google Scholar
[21] Yu H, Li H R 2023 Resour. Policy 85 104055Google Scholar
[22] Rezapour S, Farahani R Z, Pourakbar M 2017 Eur. J. Oper. Res. 259 1017Google Scholar
[23] Ivanov D 2023 Int. J. Prod. Res. 61 1683Google Scholar
[24] Van den Brink S, Kleijn R, Sprecher B, Tukker A 2020 Resour. Conserv. Recycl. 156 104743Google Scholar
[25] Sloane A, O’reilly S 2013 Prod. Plan. Control 24 621Google Scholar
[26] Wang J P, Zhou H, Jin X D 2021 Chaos Soliton. Fract. 143 110259Google Scholar
[27] Brintrup A, Ledwoch A, Barros J 2016 Logist. Res. 9 1Google Scholar
[28] Kim Y, Choi T Y, Yan T, Dooley K 2011 J. Oper. Manag. 29 194Google Scholar
[29] 史金艳, 杨健亨, 李延喜, 张启望 2019 中国工业经济 9 136Google Scholar
Shi J Y, Yang J H, Li Y X, Zhang Q W 2019 Chin. Ind. Econ. 9 136Google Scholar
[30] Zhao K, Zuo Z, Blackhurst J V 2019 J. Oper. Manag. 65 190Google Scholar
[31] D’Ignazio A, Giovannetti E 2014 Int. J. Prod. Econ. 147 486Google Scholar
[32] Tang L B, Wang P, Ma Z J, Pauliuk S, Chen W Q, Dai T, Lin Z P 2023 J. Ind. Ecol. 27 323Google Scholar
[33] Bellamy M A, Ghosh S, Hora M 2014 J. Oper. Manag. 32 357Google Scholar
[34] Mu D, Ren H Y, Wang C, Yue X P, Du J B, Ghadimi P 2023 Resour. Policy 80 103225Google Scholar
[35] Hu X Q, Wang C, Lim M K, Chen W Q, Teng L M, Wang P, Wang H M, Zhang C, Yao C Y, Ghadimi P 2023 Renew. Sust. Energ. Rev. 173 113083Google Scholar
[36] Basole R C, Bellamy M A 2014 Decision Sci. 45 753Google Scholar
[37] Barabási A L, Albert R 1999 Science 286 509Google Scholar
[38] Albert R, Barabási A L 2002 Rev. Mod. Phys. 74 47Google Scholar
[39] Bell M, Perera S, Piraveenan M, Bliemer M, Latty T, Reid C 2017 Sci. Rep. 7 42431Google Scholar
[40] Chen H W, Chen G P, Zhang Q N, Zhang X X 2023 PLoS One 18 e0278697Google Scholar
[41] Wang J P, Zhou H, Sun X L, Yuan Y F 2023 Chaos Soliton. Fract. 170 113371Google Scholar
[42] 于海生, 赵林度, 来向红 2009 管理学报 6 187Google Scholar
Yu H S, Zhao L D, Lai X H 2009 Chin. J. Manag. 6 187Google Scholar
[43] Tian Y Z, Shi Y Q, Shi X Q, Li M H, Zhang M 2021 IEEE Access 9 91265Google Scholar
[44] Suo Q, Guo J L, Sun S W, Liu H 2018 Physica A 489 141Google Scholar
[45] 汪小帆, 李翔, 陈关荣 2012 网络科学导论 (北京: 高等教育出版社) p397
Wang X F, Li X, Chen G R 2012 Network Science: An Introduction (Beijing: High Education Press) p397
[46] 赵晴 2021 硕士学位论文 (北京: 北京邮电大学)
Zhao Q 2021 M. S. Thesis (Beijing: Beijing University of Posts and Telecommunications
[47] 石海佳, 石磊 2009 化工学报 60 1500Google Scholar
Shi H J, Shi L 2009 CIESC J. 60 1500Google Scholar
[48] 李季明, 张宁 2008 复杂系统与复杂性科学 5 72Google Scholar
Li J M, Zhang N 2008 Cmplx. Syst. Complex. Sci. 5 72Google Scholar
[49] Orenstein P 2016 Second International Symposium on Stochastic Models in Reliability Engineering, Life Science and Operations Management Beer Sheva, Israel, February 15–18, 2016 p562
[50] Yang Y, Poon J P, Liu Y, Bagchi-Sen S 2015 Energy 93 534Google Scholar
[51] Kang L, Wu W Z, Yu H, Su F Z 2022 Sensors 22 5889Google Scholar
[52] 孙军艳, 傅卫平, 王雯 2015 西安理工大学学报 31 391Google Scholar
Sun J Y, Wei P F, Wang W 2015 J. Xi’an Univ. Technol. 31 391Google Scholar
[53] Bombelli A, Santos B F, Tavasszy L 2020 Transp. Res. E Logist. Transp. Rev. 138 101959Google Scholar
[54] Yang J L, Chen W 2023 Resour. Policy 86 104277Google Scholar
[55] Yue X P, Mu D, Wang C, Ren H Y, Ghadimi P 2023 Int. J. Prod. Res. 61 2758Google Scholar
[56] Li Z F, Li H W, Zhang Q Q, Qi X L 2024 Ocean Coast. Manag. 248 106969Google Scholar
[57] Yuan X J, Ge C B, Liu Y P, Li N, Wang Y 2022 Sustainability 14 16059Google Scholar
[58] Xia Q F, Du D B, Cao W P, Li X Y 2023 Resour. Policy 82 103532Google Scholar
[59] Zhao G M, Li W X, Geng Y, Bleischwitz R 2023 Resour. Policy 85 103815Google Scholar
[60] 谭丹, 马顺甜 2022 经济地理 42 110Google Scholar
Tan D, Ma S T 2022 Econ. Geography 42 110Google Scholar
[61] Zuo Z L, McLellan B C, Li Y L, Guo H X, Cheng J H 2022 Resour. Policy 78 102912Google Scholar
[62] Xu M Q, Pan Q, Muscoloni A, Xia H X, Cannistraci C V 2020 Nat. Commun. 11 2849Google Scholar
[63] Lü L Y, Chen D B, Ren X L, Zhang Q M, Zhang Y C, Zhou T 2016 Phys. Rep. 650 1Google Scholar
[64] 任晓龙, 吕琳媛 2014 科学通报 59 1175Google Scholar
Ren X L, Lü L Y 2014 Chin. Sci. Bull. 59 1175Google Scholar
[65] 于明洋, 吕可夫, 阮永平 2022 系统工程理论与实践 42 1796Google Scholar
Yu M Y, Lü K F, Ruan Y P 2022 System Eng. Theor. Prac. 42 1796Google Scholar
[66] Perera S, Bell M G, Bliemer M C 2017 Appl. Netw. Sci. 2 1Google Scholar
[67] Guo Y Q, Zhao B Y, Zhang H W 2023 Energy 263 125912Google Scholar
[68] Zhu J F, Liu W, Yang Y B 2023 J. Mar. Sci. Eng. 11 724Google Scholar
[69] Mizgier K J, Jüttner M P, Wagner S M 2013 Int. J. Prod. Res. 51 1477Google Scholar
[70] Basole R C, Ghosh S, Hora M S 2017 IEEE T. Eng. Manage. 65 141Google Scholar
[71] Bonacich P 1987 Am. J. Sociol. 92 1170Google Scholar
[72] Shi J Y, Liu X, Li Y X, Yu C H, Han Y S 2022 Int. Rev. Financ. Anal. 80 102040Google Scholar
[73] Liu R X 2022 M. S. Thesis (Chengdu: Southwestern University of Finance and Economics) (in Chinese)[刘若曦 2022 硕士学位论文 (成都: 西南财经大学)]
[74] Lavassani K M, Movahedi B 2021 Int. J. Glob. Bus. 16 86Google Scholar
[75] Shi J Y, Yang J H, Li Y X 2019 J. Bus. Econ. Manag. 20 1258Google Scholar
[76] Huang H S, Zhang J P, Yan J, Gong Y, Wang L K 2024 Eur. J. Innov. Manag. 27 551Google Scholar
[77] Lou P, Chen Y T, Yan J W 2020 IEEE Access 8 148827Google Scholar
[78] Blondel V D, Guillaume J L, Lambiotte R, Lefebvre E 2008 J. Stat. Mech. : Theory Exp. 2008 P10008Google Scholar
[79] Newman M E, Girvan M 2004 Phys. Rev. E 69 026113Google Scholar
[80] Ng A, Jordan M, Weiss Y 2001 Advances in Neural Information Processing Systems Vancouver, British Columbia, Canada, December 3–8, 2001 p849
[81] Rosvall M, Bergstrom C T 2007 arXiv: 0707.0609 [physics. soc-ph]
[82] Zhang Q, Pu S H, Yin M 2023 J. Mar. Sci. Eng. 11 1585Google Scholar
[83] Kito T, Brintrup A, New S, Reed-Tsochas F 2014 Saïd Business School WP 3Google Scholar
[84] Leicht E A, Newman M E 2008 Phys. Rev. Lett. 100 118703Google Scholar
[85] Wiedmer R, Griffis S E 2021 J. Bus. Logist. 42 264Google Scholar
[86] Shi D Y, Shang F, Chen B S, Expert P, Lü L Y, Stanley H E, Lambiotte R, Evans T S, Li R Q 2024 Commun. Phys. 7 170Google Scholar
[87] Ma'arif M R 2016 Sixth International Annual Engineering Seminar Yogyakarta, Indonesia, August 1–3, 2016 p206
[88] Chakraborty T, Chauhan S S, Ouhimmou M 2020 Int. J. Prod. Res. 58 3618Google Scholar
[89] Hu X Q, Wang C, Zhu X Y, Yao C Y, Ghadimi P 2021 Resour. , Conserv. Recycl. 170 105591Google Scholar
[90] Wang W Y, Fan L W, Zhou P 2022 Energy 238 121924Google Scholar
[91] Chen G, Kong R, Wang Y X 2020 Physica A 540 123002Google Scholar
[92] Zhong W Q, An H Z, Gao X Y, Sun X Q 2014 Physica A 413 42Google Scholar
[93] Zhong W Q, An H Z, Shen L, Dai T, Fang W, Gao X Y, Dong D 2017 Energy 123 260Google Scholar
[94] Zheng S X, Zhou X R, Xing W L, Zhao P 2022 Resour. Policy 77 102783Google Scholar
[95] Li Y H, Zobel C W, Seref O, Chatfield D 2020 Int. J. Prod. Econ. 223 107529Google Scholar
[96] Shi X Q, Long W, Li Y Y, Deng D S 2022 Physica A 586 126518Google Scholar
[97] Li Y H, Zobel C W 2020 Int. J. Prod. Econ. 228 107693Google Scholar
[98] 赵志刚, 周根贵, 李虎雄 2019 计算机科学 46 138Google Scholar
Zhao Z G, Zhou G G, Li H X 2019 Comput. Sci. 46 138Google Scholar
[99] Wang J P, Zhou H, Zhao Z, Sun X L 2023 Fourth International Conference on Computer Engineering and Application Hangzhou, China, April 7–9, 2023 p61
[100] 谢廷宇, 康凯, 王军进, 张学龙 2018 数学的实践与认识 48 40Google Scholar
Xie T Y, Kang K, Wang J J, Zhang X L 2018 J. Math. Prac. Theor. 48 40Google Scholar
[101] Zhao K, Scheibe K, Blackhurst J, Kumar A 2018 IEEE T. Eng. Manage. 66 127Google Scholar
[102] 徐翔斌, 李恒 2015 系统工程 33 17Google Scholar
Xu X B, Li H 2015 Syst. Eng. 33 17Google Scholar
[103] Nair A, Vidal J M 2011 Int. J. Prod. Res. 49 1391Google Scholar
[104] Wei N, Xie W J, Zhou W X 2022 Energy 251 123939Google Scholar
[105] Sun J Y, Tang J M, Fu W P, Chen Z R, Niu Y R 2020 Comput. Ind. Eng. 144 106457Google Scholar
[106] Shahnazi R, Sajedianfard N, Melatos M 2023 Energy Rep. 10 2017Google Scholar
[107] Wen T, Gao Q Y, Chen Y W, Cheong K H 2022 Reliab. Eng. Syst. Safe. 226 108578Google Scholar
[108] Tan W J, Zhang A N, Cai W 2019 Int. J. Prod. Res. 57 6385Google Scholar
[109] Xu M Q, Deng W H, Zhu Y F, Linyuan L 2023 Reliab. Eng. Syst. Safe. 240 109576Google Scholar
[110] Xu X J, Zhu Y F, Xu M Q, Deng W H, Zuo Y Q 2022 Ocean Coast. Manag. 229 106325Google Scholar
[111] Xu M Q, Zhu Y F, Deng W H, Shen Y H, Li T 2024 Global Netw. 24 e12445Google Scholar
[112] Vugrin E D, Warren D E, Ehlen M A 2011 Process Saf. Prog. 30 280Google Scholar
[113] Turnquist M, Vugrin E 2013 Environ. Syst. Decis. 33 104Google Scholar
[114] Yildiz H, Yoon J, Talluri S, Ho W 2016 Decision Sci. 47 661Google Scholar
[115] Hosseini S, Barker K 2016 Comput. Ind. Eng. 93 252Google Scholar
[116] Hosseini S, Barker K 2016 Int. J. Prod. Econ. 180 68Google Scholar
[117] Bai X W, Ma Z J, Zhou Y M 2023 Transp. Res. E Logist. Transp. Rev. 170 103016Google Scholar
[118] Jin P F, Wang S G, Meng Z, Chen B 2023 Resour. Policy 87 104339Google Scholar
[119] Yu Y, Ma D P, Zhu W W 2023 Resour. Policy 83 103636Google Scholar
[120] Yu Y, Ma D P, Qian Y M 2023 Resour. Policy 86 104296Google Scholar
[121] Kim Y, Chen Y S, Linderman K 2015 J. Oper. Manag. 33 43Google Scholar
[122] Azad N, Hassini E 2019 Eur. J. Oper. Res. 275 481Google Scholar
[123] Li Z Y, Zhao P X, Han X 2022 Physica A 589 126611Google Scholar
[124] Ponomarov S Y, Holcomb M C 2009 Int. J. Logist. Manag. 20 124Google Scholar
[125] Hethcote H W 2000 SIAM Rev. 42 599Google Scholar
[126] 杨康, 张仲义 2013 系统科学与数学 33 1224Google Scholar
Yang K, Zhang Z Y 2013 J. Syst. Sci. Math. Sci. 33 1224Google Scholar
[127] 易慧妮 2015 硕士学位论文 (成都: 西南交通大学)
Yi H N 2015 M. S. Thesis (Chengdu: Southwest Jiaotong University
[128] Berger N, Schulze-Schwering S, Long E, Spinler S 2023 Eur. J. Oper. Res. 304 1036Google Scholar
[129] Wang C, Huang X, Hu X Q, Zhao L F, Liu C, Ghadimi P 2021 Appl. Energy 290 116744Google Scholar
[130] Guo H Y, Cheng Y Y 2019 Physica A 529 121400Google Scholar
[131] Guo H Y, Cheng Y Y, Xie X X 2020 Physica A 545 123506Google Scholar
[132] Kang X Y, Wang M X, Chen L, Li X 2023 Resour. Policy 85 103797Google Scholar
[133] Zheng S X, Zhou X R, Tan Z L, Zhang H, Liu C, Hao H C, Hu H, Cai X M, Yang H S, Luo W B 2022 Energy Sustain. Dev. 71 517Google Scholar
[134] Tang L, Jing K, He J, Stanley H E 2016 Physica A 443 58Google Scholar
[135] 马靖莲 2016 博士学位论文 (西安: 长安大学)
Ma J L 2016 Ph. D. Dissertation (Sian: Chang’an University
[136] Yue X P, Mu D, Wang C, Ren H Y, Peng R, Du J B 2024 Reliab. Eng. Syst. Safe. 242 109728Google Scholar
[137] Wang Y, Zhang F 2018 Nonlinear Dynam. 92 1403Google Scholar
[138] Liu H, Han Y Y, Ni J L, Zhu A D 2022 Math. Probl. Eng. 2022 1Google Scholar
[139] Proselkov Y, Zhang J, Xu L, Hofmann E, Choi T Y, Rogers D, Brintrup A 2024 Int. J. Prod. Res. 62 823Google Scholar
[140] Inoue H, Todo Y 2019 Nat. Sustain. 2 841Google Scholar
[141] 石霞虹 2012 硕士学位论文 (杭州: 杭州电子科技大学)
Shi X H 2012 M. S. Thesis (Hangzhou: Hangzhou Dianzi University
[142] Sytch M, Kim Y, Page S 2022 Calif. Manage. Rev. 64 119Google Scholar
[143] Li Y H, Chen K D, Collignon S, Ivanov D 2021 Eur. J. Oper. Res. 291 1117Google Scholar
[144] Nash Jr J F 1950 Proc. Natl. Acad. Sci. U. S. A. 36 48Google Scholar
[145] Peng Y T, Xu D, Veglianti E, Magnaghi E 2023 J. Ind. Manag. Optim. 19 3459Google Scholar
[146] Chen Z B, Tian C Y, Zhang D, Chen D Y 2020 Oper. Res. 20 649Google Scholar
[147] Nagurney A, Loo J, Dong J, Zhang D 2002 Netnomics 4 187Google Scholar
[148] Nagurney A, Dong J, Zhang D 2002 Transp. Res. E Logist. Transp. Rev. 38 281Google Scholar
[149] Dong J, Zhang D 2002 Transportation and Traffic Theory in the 21st Century Adelaide, Australia, July 16–18, 2002 p179
[150] Dong J, Zhang D, Nagurney A 2004 Eur. J. Oper. Res. 156 194Google Scholar
[151] Dong J, Zhang D, Yan H, Nagurney A 2005 Ann. Oper. Res. 135 155Google Scholar
[152] Feyzian-Tary I, Razmi J, Sangari M S 2018 Ann. Oper. Res. 264 89Google Scholar
[153] He S X, Cui Y T 2023 Supply Chain Anal. 4 100039Google Scholar
[154] Von Stackelberg H, Peacock A T, Schneider E, Hutchison T W 1953 Economica 20 384Google Scholar
[155] Wang D P, Du G, Jiao R J, Wu R, Yu J P, Yang D 2016 Int. J. Prod. Econ. 172 1Google Scholar
[156] 房艳君, 吴梦娜 2016 统计与决策 17 49Google Scholar
Fang Y J, Wu M N 2016 Stat. Decis. 17 49Google Scholar
[157] Tan J, Jiang G Q, Wang Z G 2019 Int. J. Intell. Inf. Technol. 15 54Google Scholar
[158] Daniele P 2010 Transp. Res. E Logist. Transp. Rev. 46 855Google Scholar
[159] Nagurney A 2021 Eur. J. Oper. Res. 293 880Google Scholar
计量
- 文章访问数: 893
- PDF下载量: 61
- 被引次数: 0