搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

机器学习在光电子能谱中的应用及展望

邓祥文 伍力源 赵锐 王嘉鸥 赵丽娜

引用本文:
Citation:

机器学习在光电子能谱中的应用及展望

邓祥文, 伍力源, 赵锐, 王嘉鸥, 赵丽娜

Application and Prospect of Machine Learning in Photoelectron Spectroscopy

Deng Xiang-Wen, Wu Li-Yuan, Zhao Rui, Wang Jia-Ou, Zhao Li-Na
PDF
导出引用
  • 光电子能谱是一项在物质科学中被广泛应用的表征技术.尤其是角分辨光电子能谱(ARPES),可以直接给出材料体系内电子的能量-动量色散关系和费米面结构,是研究多体相互作用和关联量子材料的利器.随着先进ARPES如时间分辨ARPES,Nano-ARPES等技术的不断发展,以及同步辐射装置的更新换代,将会产生越来越多的高通量实验数据.因此,探索准确,高效,同时能挖掘深层物理信息的数据处理方法变得愈发迫切.由于机器学习天然具有的自动化处理复杂高维数据能力,推动了包括ARPES在内的诸多领域的变革和技术创新.本文综述了机器学习在光电子能谱中的应用,包括对光谱数据进行降噪,进行电子结构分析,化学组成分析,以及结合理论计算获得的电子结构信息进行光谱预测.进一步,展望了更多机器学习算法在光电子能谱中的应用,最终有望形成更加自动化的数据采集、预处理系统以及数据分析的工作流,推动光电子能谱技术的发展,从而推进量子材料和凝聚态物理前沿研究.
    Photoelectron spectroscopy serves as a prevalent characterization technique within the realm of material science. Specifically, angle-resolved photoelectron spectroscopy (ARPES) provides a direct method for determining the energy-momentum dispersion relationship and Fermi surface structure of electrons within a material system. This makes ARPES a potent tool for the investigation of many-body interactions and correlated quantum materials. The field of photoelectron spectroscopy has seen continuous advancements, with the emergence of technologies such as time-resolved ARPES and nano-ARPES. Concurrently, the evolution of synchrotron radiation devices has led to the generation of an increasing volume of high throughput and high dimension experimental data. This underscores the growing urgency for the development of more efficient and precise data processing methods, as well as the extraction of deeper physical information. In light of these developments, machine learning is poised to play an increasingly significant role across various fields, including but not limited to ARPES. This paper reviews the application of machine learning in photoelectron spectroscopy, which primarily encompasses three aspects:
    1.Data Denoising: Machine learning can be utilized for denoising photoelectron spectroscopy data. The denoising process via machine learning algorithms can be bifurcated into two methods. Both of the two methods do not need for manual data annotation. The first approach involves the use of noise generation algorithms to simulate experimental noise, thereby obtaining effective low signal-to-noise ratio to high signal-to-noise ratio data pairs. Alternatively, the second approach can be employed to extract noise and clean spectral data, respectively.
    2.Electronic Structure and Chemical Composition Analysis: Machine learning can be applied for the analysis of electronic structure and chemical composition. (Angle-resolved) photoelectron spectroscopy contains abundant information about material structure. Information such as energy band structure, self-energy, binding energy, and other condensed matter data can be rapidly acquired through machine learning schemes.
    3.Prediction of Photoelectron Spectroscopy: the electronic structure information obtained by combining first-principles calculation can also predict the photoelectron spectroscopy. The rapid acquisition of photoelectron spectroscopy data through machine learning algorithms also holds significance for material design. Photoelectron spectroscopy holds significant importance in the study of condensed matter physics. In the context of synchrotron radiation development, the construction of an automated data acquisition and analysis system could play a pivotal role in condensed matter physics research. In addition, adding more physical constraints to the machine learning model will improve the interpretability and accuracy of the model. There exists a close relationship between photoelectron spectroscopy and first-principles calculations with respect to electronic structure properties. The integration of these two through machine learning is anticipated to significantly contribute to the study of electronic structure properties. Furthermore, as machine learning algorithms continue to evolve, the application of more advanced machine learning algorithms in photoelectron spectroscopy research is expected. By building automated data acquisition and analysis systems, designing comprehensive workflows based on machine learning and first-principles methods, and integrating new machine learning techniques, it will help accelerate the progress of photoelectron spectroscopy experiments and facilitate the analysis of electronic structure properties and microscopic physical mechanisms, which will advance the frontier research in quantum materials and condensed matter physics.
  • [1]

    Hoesch M, Greber T, Petrov V, Muntwiler M, Hengsberger M, Auwärter W, Osterwalder J 2002 J. Electron Spectrosc. Relat. Phenom. 124 263

    [2]

    Dil J H 2009 J. Phys.: Condes. Matter 21 403001

    [3]

    Yaji K, Harasawa A, Kuroda K, Toyohisa S, Nakayama M, Ishida Y, Fukushima A, Watanabe S, Chen C, Komori F, Shin S 2016 Rev. Sci. Instrum. 87 053111

    [4]

    Nordling C, Sokolowski E, Siegbahn K 1957 Phys. Rev. 105 1676

    [5]

    Damascelli A, Hussain Z, Shen Z X 2003 Rev. Mod. Phys. 75 473

    [6]

    Hashimoto M, He R H, Tanaka K, Testaud J P, Meevasana W, Moore R G, Lu D, Yao H, Yoshida Y, Eisaki H, Devereaux T P, Hussain Z, Shen Z X 2010 Nat. Phys. 6 414

    [7]

    Vishik I M, Hashimoto M, He R H, Lee W S, Schmitt F, Lu D, Moore R G, Zhang C, Meevasana W, Sasagawa T, Uchida S, Fujita K, Ishida S, Ishikado M, Yoshida Y, Eisaki H, Hussain Z, Devereaux T P, Shen Z X 2012 Proc. Natl. Acad. Sci. 109 18332

    [8]

    Ideta S, Johnston S, Yoshida T, Tanaka K, Mori M, Anzai H, Ino A, Arita M, Namatame H, Taniguchi M, Ishida S, Takashima K, Kojima K, Devereaux T, Uchida S, Fujimori A 2021 Phys. Rev. Lett. 127 217004

    [9]

    Gauvin-Ndiaye C, Setrakian M, Tremblay A M 2022 Phys. Rev. Lett. 128 087001

    [10]

    Maletz J, Zabolotnyy V B, Evtushinsky D V, Thirupathaiah S, Wolter A U B, Harnagea L, Yaresko A N, Vasiliev A N, Chareev D A, Böhmer A E, Hardy F, Wolf T, Meingast C, Rienks E D L, Büchner B, Borisenko S V 2014 Phys. Rev. B 89 220506

    [11]

    Yi M, Zhang Y, Shen Z X, Lu D 2017 npj Quantum Mater. 2 57

    [12]

    Cattelan M, Fox N A 2018 Nanomaterials 8 284

    [13]

    Sugawara K, Kusaka H, Kawakami T, Yanagizawa K, Honma A, Souma S, Nakayama K, Miyakawa M, Taniguchi T, Kitamura M, Horiba K, Kumigashira H, Takahashi T, Orimo S i, Toyoda M, Saito S, Kondo T, Sato T 2023 Nano Lett. 23 1673

    [14]

    Liu Z K, Zhou B, Zhang Y, Wang Z J, Weng H M, Prabhakaran D, Mo S K, Shen Z X, Fang Z, Dai X, Hussain Z, Chen Y L 2014 Science 343 864

    [15]

    Lv B, Qian T, Ding H 2019 Nat. Rev. Phys. 1 609

    [16]

    Zhong J, Yang M, Shi Z, Li Y, Mu D, Liu Y, Cheng N, Zhao W, Hao W, Wang J, Yang L, Zhuang J, Du Y 2023 Nat. Commun. 14 4964

    [17]

    Danzenbächer S, Vyalikh D V, Kummer K, Krellner C, Holder M, Höppner M, Kucherenko Y, Geibel C, Shi M, Patthey L, Molodtsov S L, Laubschat C 2011 Phys. Rev. Lett. 107 267601

    [18]

    Chang P Y, Erten O, Coleman P 2017 Nat. Phys. 13 794

    [19]

    Chen Q, Xu D, Niu X, Peng R, Xu H, Wen C, Liu X, Shu L, Tan S, Lai X, Zhang Y, Lee H, Strocov V, Bisti F, Dudin P, Zhu J X, Yuan H, Kirchner S, Feng D 2018 Phys. Rev. Lett. 120 066403

    [20]

    Zhang Y, Luo X, Feng W, Tan S, Hao Q, Zhang Q, Yuan D, Wang B, Liu Y, Liu Q, Wang X, Luo L, Zhu X, Chen Q, Lai X 2022 Phys. Rev. B 106 045133

    [21]

    Sobota J A, He Y, Shen Z X 2021 Rev. Mod. Phys. 93 025006

    [22]

    Xu S Y, Alidoust N, Belopolski I, Yuan Z, Bian G, Chang T R, Zheng H, Strocov V N, Sanchez D S, Chang G, Zhang C, Mou D, Wu Y, Huang L, Lee C C, Huang S M, Wang B, Bansil A, Jeng H T, Neupert T, Kaminski A, Lin H, Jia S, Zahid Hasan M 2015 Nat. Phys. 11 748

    [23]

    Liu Z K, Yang L X, Sun Y, Zhang T, Peng H, Yang H F, Chen C, Zhang Y, Guo Y, Prabhakaran D, Schmidt M, Hussain Z, Mo S K, Felser C, Yan B, Chen Y L 2016 Nat. Mater. 15 27

    [24]

    Belopolski I, Xu S Y, Sanchez D S, Chang G, Guo C, Neupane M, Zheng H, Lee C C, Huang S M, Bian G, Alidoust N, Chang T R, Wang B, Zhang X, Bansil A, Jeng H T, Lin H, Jia S, Hasan M Z 2016 Phys. Rev. Lett. 116 066802

    [25]

    Tanaka H, Telegin A V, Sukhorukov Y P, Golyashov V A, Tereshchenko O E, Lavrov A N, Matsuda T, Matsunaga R, Akashi R, Lippmaa M, Arai Y, Ideta S, Tanaka K, Kondo T, Kuroda K 2023 Phys. Rev. Lett. 130 186402

    [26]

    Tang S, Zhang C, Wong D, Pedramrazi Z, Tsai H Z, Jia C, Moritz B, Claassen M, Ryu H, Kahn S, Jiang J, Yan H, Hashimoto M, Lu D, Moore R G, Hwang C C, Hwang C, Hussain Z, Chen Y, Ugeda M M, Liu Z, Xie X, Devereaux T P, Crommie M F, Mo S K, Shen Z X 2017 Nat. Phys. 13 683

    [27]

    Schmitt F, Kirchmann P S, Bovensiepen U, Moore R G, Rettig L, Krenz M, Chu J H, Ru N, Perfetti L, Lu D H, Wolf M, Fisher I R, Shen Z X 2008 Science 321 1649

    [28]

    Rohwer T, Hellmann S, Wiesenmayer M, Sohrt C, Stange A, Slomski B, Carr A, Liu Y, Avila L M, Kalläne M, Mathias S, Kipp L, Rossnagel K, Bauer M 2011 Nature 471 490

    [29]

    Wang Y, Hsieh D, Sie E, Steinberg H, Gardner D, Lee Y, Jarillo-Herrero P, Gedik N 2012 Phys. Rev. Lett. 109 127401

    [30]

    Seah M P, Dench W 1979 Surf. Interface Anal. 1 2

    [31]

    Ossiander M, Riemensberger J, Neppl S, Mittermair M, Schäffer M, Duensing A, Wagner M S, Heider R, Wurzer M, Gerl M, Schnitzenbaumer M, Barth J V, Libisch F, Lemell C, Burgdörfer J, Feulner P, Kienberger R 2018 Nature 561 374

    [32]

    Fan H 1945 Phys. Rev. 68 43

    [33]

    Berglund C N, Spicer W E 1964 Phys. Rev. 136 A1030

    [34]

    Damascelli A 2004 Phys. Scr. 2004 61

    [35]

    Strocov V 2003 J. Electron Spectrosc. Relat. Phenom. 130 65

    [36]

    Strocov V, Starnberg H, Nilsson P, Brauer H, Holleboom L 1997 Phys. Rev. Lett. 79 467

    [37]

    Strocov V N, Shi M, Kobayashi M, Monney C, Wang X, Krempasky J, Schmitt T, Patthey L, Berger H, Blaha P 2012 Phys. Rev. Lett. 109 086401

    [38]

    Leemann S, Liu S, Hexemer A, Marcus M, Melton C, Nishimura H, Sun C 2019 Phys. Rev. Lett. 123 194801

    [39]

    Goodman J, King M, Dolier E, Wilson R, Gray R, McKenna P 2023 High Power Laser Sci. Eng. 11 e34

    [40]

    Pan D, Fan J, Nie Z, Sun Z, Zhang J, Tong Y, He B, Song C, Kohmura Y, Yabashi M, Ishikawa T, Shen Y, Jiang H 2022 IUCrJ 9 223

    [41]

    Zhou Z, Li C, Bi X, Zhang C, Huang Y, Zhuang J, Hua W, Dong Z, Zhao L, Zhang Y, Dong Y 2023 npj Comput. Mater. 9 58

    [42]

    Asahara A, Morita H, Ono K, Mitsumata C, Yano M, Shoji T 2019 In Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence and Thirty-First Innovative Applications of Artificial Intelligence Conference and Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, vol. 33 of AAAI’19/IAAI’19/EAAI’19 (Honolulu, Hawaii, USA: AAAI), p 9410

    [43]

    Chang M C, Wei Y, Chen W R, Do C 2020 MRS Commun. 10 11

    [44]

    Belič I, Poniku B, Jenko M 2012 Surf. Interface Anal. 44 1141

    [45]

    Yoon T, Kim S W, Byun H, Kim Y, Carter C D, Do H 2023 Combust. Flame 248 112583

    [46]

    Planckaert N, Demeulemeester J, Laenens B, Smeets D, Meersschaut J, L’abbé C, Temst K, Vantomme A 2010 J. Synchrot. Radiat. 17 86

    [47]

    Martini A, Guda S, Guda A, Smolentsev G, Algasov A, Usoltsev O, Soldatov M, Bugaev A, Rusalev Y, Lamberti C, Soldatov A 2020 Comput. Phys. Commun. 250 107064

    [48]

    Roch L M, Saikin S K, Hase F, Friederich P, Goldsmith R H, León S, Aspuru-Guzik A 2020 ACS Nano 14 6589

    [49]

    Scarborough N M, Godaliyadda G M D P, Ye D H, Kissick D J, Zhang S, Newman J A, Sheedlo M J, Chowdhury A U, Fischetti R F, Das C, Buzzard G T, Bouman C A, Simpson G J 2017 J. Synchrot. Radiat. 24 188

    [50]

    Ke T W, Brewster A S, Yu S X, Ushizima D, Yang C, Sauter N K 2018 J. Synchrot. Radiat. 25 655

    [51]

    Sullivan B, Archibald R, Azadmanesh J, Vandavasi V G, Langan P S, Coates L, Lynch V, Langan P 2019 J. Appl. Crystallogr. 52 854

    [52]

    Lolla S, Liang H, Kusne A G, Takeuchi I, Ratcliff W 2022 J. Appl. Crystallogr. 55 882

    [53]

    Boulle A, Debelle A 2023 Mach. Learn.: Sci. Technol. 4 015002

    [54]

    Zhao C, Yu W, Li L 2023 Mater. Des. 228 111828

    [55]

    Kopp R, Joseph J, Ni X, Roy N, Wardle B L 2022 Adv. Mater. 34 2107817

    [56]

    Hendriksen A A, Bührer M, Leone L, Merlini M, Vigano N, Pelt D M, Marone F, Di Michiel M, Batenburg K J 2021 Sci Rep 11 11895

    [57]

    Huang D, Liu J, Qian T, Yang Y F 2023 Sci. China Phys. Mech. Astron. 66 267011

    [58]

    Pelzer K, Schwarz N, Harder R 2021 J. Appl. Crystallogr. 54 523

    [59]

    Thakur R S, Chatterjee S, Yadav R N, Gupta L 2021 IEEE Access 9 93338

    [60]

    Kim Y, Oh D, Huh S, Song D, Jeong S, Kwon J, Kim M, Kim D, Ryu H, Jung J, Kyung W, Sohn B, Lee S, Hyun J, Lee Y, Kim Y, Kim C 2021 Rev. Sci. Instrum. 92 073901

    [61]

    Restrepo F, Zhao J, Chatterjee U 2022 Rev. Sci. Instrum. 93 065106

    [62]

    Liu J, Huang D, Yang Y f, Qian T 2023 Phys. Rev. B 107 165106

    [63]

    Sun E 2022 In 2022 IEEE MIT Undergraduate Research Technology Conference (URTC), vol. 96 (Cambridge, MA, USA: IEEE), p 1

    [64]

    Iwasawa H, Ueno T, Masui T, Tajima S 2022 npj Quantum Mater. 7 24

    [65]

    Melton C N, Noack M M, Ohta T, Beechem T E, Robinson J, Zhang X, Bostwick A, Jozwiak C, Koch R J, Zwart P H, Hexemer A, Rotenberg E 2020 Mach. Learn.: Sci. Technol. 1 045015

    [66]

    Ekahana S A, Winata G I, Soh Y, Tamai A, Milan R, Aeppli G, Shi M 2023 Mach. Learn.: Sci. Technol. 4 035021

    [67]

    Park S H, Park H, Lee H, Kim H S 2021 J. Korean Phys. Soc. 79 1199

    [68]

    Pielsticker L, Nicholls R L, DeBeer S, Greiner M 2023 Anal. Chim. Acta 1271 341433

    [69]

    Xian R P, Stimper V, Zacharias M, Dendzik M, Dong S, Beaulieu S, Schölkopf B, Wolf M, Rettig L, Carbogno C, Bauer S, Ernstorfer R 2023 Nat. Comput. Sci. 3 101

    [70]

    Norman M, Eschrig M, Kaminski A, Campuzano J 2001 Phys. Rev. B 64 184508

    [71]

    Zhang H, Pincelli T, Jozwiak C, Kondo T, Ernstorfer R, Sato T, Zhou S 2022 Nat. Rev. Method. Prim. 2 54

    [72]

    Iwasawa H, Yoshida Y, Hase I, Shimada K, Namatame H, Taniguchi M, Aiura Y 2013 Sci Rep 3 1930

    [73]

    Yamaji Y, Yoshida T, Fujimori A, Imada M 2021 Phys. Rev. Res. 3 043099

    [74]

    Hohenberg P, Kohn W 1964 Phys. Rev. 136 B864

    [75]

    Kohn W, Sham L J 1965 Phys. Rev. 140 A1133

    [76]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [77]

    Heyd J, Scuseria G E, Ernzerhof M 2003 J. Chem. Phys. 118 8207

    [78]

    Zhu X, Louie S G 1991 Phys. Rev. B 43 14142

    [79]

    Zanolli Z, Fuchs F, Furthmüller J, von Barth U, Bechstedt F 2007 Phys. Rev. B 75 245121

    [80]

    Aryasetiawan F, Gunnarsson O 1998 Rep. Prog. Phys. 61 237

    [81]

    Reining L 2018 Wiley Interdiscip. Rev.-Comput. Mol. Sci. 8 e1344

    [82]

    Golze D, Dvorak M, Rinke P 2019 Front. Chem. 7 377

    [83]

    Anisimov V I, Zaanen J, Andersen O K 1991 Phys. Rev. B 44 943

    [84]

    Dudarev S L, Botton G A, Savrasov S Y, Humphreys C, Sutton A P 1998 Phys. Rev. B 57 1505

    [85]

    Yu M, Yang S, Wu C, Marom N 2020 npj Comput. Mater. 6 180

    [86]

    Harun K, Salleh N A, Deghfel B, Yaakob M K, Mohamad A A 2020 Results Phys. 16 102829

    [87]

    Cococcioni M, De Gironcoli S 2005 Phys. Rev. B 71 035105

    [88]

    Kulik H J, Cococcioni M, Scherlis D A, Marzari N 2006 Phys. Rev. Lett. 97 103001

    [89]

    Mosey N J, Carter E A 2007 Phys. Rev. B 76 155123

    [90]

    Mosey N J, Liao P, Carter E A 2008 J. Chem. Phys. 129 014103

    [91]

    Aryasetiawan F, Karlsson K, Jepsen O, Schönberger U 2006 Phys. Rev. B 74 125106

    [92]

    Miyake T, Aryasetiawan F 2008 Phys. Rev. B 77 085122

    [93]

    Şaşıoğlu E, Friedrich C, Blügel S 2011 Phys. Rev. B 83 121101

    [94]

    Setvin M, Franchini C, Hao X, Schmid M, Janotti A, Kaltak M, Van de Walle C G, Kresse G, Diebold U 2014 Phys. Rev. Lett. 113 086402

    [95]

    Falletta S, Pasquarello A 2022 npj Comput. Mater. 8 263

    [96]

    Tavadze P, Boucher R, Avendaño-Franco G, Kocan K X, Singh S, Dovale-Farelo V, Ibarra-Hernández W, Johnson M B, Mebane D S, Romero A H 2021 npj Comput. Mater. 7 182

    [97]

    Golze D, Hirvensalo M, Hernández-León P, Aarva A, Etula J, Susi T, Rinke P, Laurila T, Caro M A 2022 Chem. Mat. 34 6240

    [98]

    Sun Q, Xiang Y, Liu Y, Xu L, Leng T, Ye Y, Fortunelli A, Goddard III W A, Cheng T 2022 J. Phys. Chem. Lett. 13 8047

    [99]

    Yang S, Schröter N B M, Strocov V N, Schuwalow S, Rajpalk M, Ohtani K, Krogstrup P, Winkler G W, Gukelberger J, Gresch D, Aeppli G, Lutchyn R M, Marom N 2022 Adv. Quantum Technol. 5 2100033

    [100]

    Jardine M J A, Dardzinski D, Yu M, Purkayastha A, Chen A H, Chang Y H, Engel A, Strocov V N, Hocevar M, Palmstroffm C, Frolov S M, Marom N 2023 ACS Appl. Mater. Interfaces 15 16288

    [101]

    Bubert H, Hillig H 2000 Microchim. Acta 133 95

    [102]

    Kim B, Kim W S 2007 Microelectron. Eng. 84 584

    [103]

    Kim B, Kim G T, Lee H J 2008 Mater. Manuf. Process. 23 528

    [104]

    Kim B, Kim J, Choi S 2009 Expert Syst. Appl. 36 11347

    [105]

    Englert T, Gruber F, Stiedl J, Green S, Jacob T, Rebner K, Grählert W 2021 Sensors 21 5595

    [106]

    Drera G, Kropf C M, Sangaletti L 2020 Mach. Learn.: Sci. Technol. 1 015008

    [107]

    Baker N, Alexander F, Bremer T, Hagberg A, Kevrekidis Y, Najm H, Parashar M, Patra A, Sethian J, Wild S, Willcox K, Lee S 2019 Workshop report on basic research needs for scientific machine learning: Core technologies for artificial intelligence. Report, USDOE Offce of Science (SC), Washington, DC (United States)

    [108]

    Choudhary K, DeCost B, Chen C, Jain A, Tavazza F, Cohn R, Park C W, Choudhary A, Agrawal A, Billinge S J L, Holm E, Ong S P, Wolverton C 2022 npj Comput. Mater. 8 59

    [109]

    Cranmer M, Sanchez-Gonzalez A, Battaglia P, Xu R, Cranmer K, Spergel D, Ho S 2020 In Proceedings of the 34th International Conference on Neural Information Processing Systems, NIPS ’20 (Vancouver, BC, Canada: Curran Associates Inc.), p 17429

    [110]

    Cranmer M, Greydanus S, Hoyer S, Battaglia P, Spergel D, Ho S 2020 arXiv:2003.04630 [physics.comp-ph]

    [111]

    Samarakoon A M, Laurell P, Balz C, Banerjee A, Lampen-Kelley P, Mandrus D, Nagler S E, Okamoto S, Tennant D A 2022 Phys. Rev. Res. 4 L022061

    [112]

    Schütt K T, Sauceda H E, Kindermans P J, Tkatchenko A, Müller K R 2018 J. Chem. Phys. 148 241722

    [113]

    Sobral J A, Obernauer S, Turkel S, Pasupathy A N, Scheurer M S 2023 Nat. Commun. 14 5012

    [114]

    Chen Z, Andrejevic N, Drucker N C, Nguyen T, Xian R P, Smidt T, Wang Y, Ernstorfer R, Tennant D A, Chan M, Li M 2021 Chem. Phys. Rev. 2 031301

    [115]

    Doucet M, Samarakoon A M, Do C, Heller W T, Archibald R, Tennant D A, Proffen T, Granroth G E 2020 Mach. Learn.: Sci. Technol. 2 023001

    [116]

    Chitturi S R, Ratner D, Walroth R C, Thampy V, Reed E J, Dunne M, Tassone C J, Stone K H 2021 J. Appl. Crystallogr. 54 1799

    [117]

    Matsumura T, Nagamura N, Akaho S, Nagata K, Ando Y 2019 Sci. Technol. Adv. Mater. 20 733

    [118]

    Xi B, Tse K F, Kok T F, Chan H M, Chan M K, Chan H Y, Clinton Wong K Y, Robin Yuen S H, Zhu J 2022 J. Phys. Chem. C 126 12264

    [119]

    Bergstra J, Bengio Y 2012 J. Mach. Learn. Res. 13 281

    [120]

    Bergstra J, Bardenet R, Bengio Y, Kégl B 2011 In Proceedings of the 24th International Conference on Neural Information Processing Systems, vol. 24 of NIPS’11 (Granada, Spain: Curran Associates, Inc.), p 2546

    [121]

    Gardner J R, Kusner M J, Xu Z E, Weinberger K Q, Cunningham J P 2014 In Proceedings of the 31st International Conference on International Conference on Machine Learning, vol. 32 of ICML’14 (Beijing, China: JMLR.org), p II–937

    [122]

    Bergstra J, Yamins D, Cox D 2013 In Proceedings of the 30th International Conference on Machine Learning, vol. 28 of ICML’13 (Atlanta, GA, USA: JMLR.org), p I–115

    [123]

    Akiba T, Sano S, Yanase T, Ohta T, Koyama M 2019 In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, vol. 18 of KDD ’ 19 (Anchorage, AK, USA: ACM), p 2623

    [124]

    Kvasnicka V, Sklenak S, Pospichal J 1992 J. Chem. Inf. Comput. Sci. 32 742

    [125]

    Simine L, Allen T C, Rossky P J 2020 Proc. Natl. Acad. Sci. 117 13945

    [126]

    Urbina F, Batra K, Luebke K J, White J D, Matsiev D, Olson L L, Malerich J P, Hupcey M A, Madrid P B, Ekins S 2021 Anal. Chem. 93 16076

    [127]

    Wu X, Zhao Z, Tian R, Niu Y, Gao S, Liu H 2021 Spectroc. Acta Pt. A: Molec. Biomolec. Spectr. 244 118841

    [128]

    Scarselli F, Gori M, Tsoi A C, Hagenbuchner M, Monfardini G 2009 IEEE Trans. Neural Netw. 20 61

    [129]

    Coley C W, Jin W, Rogers L, Jamison T F, Jaakkola T S, Green W H, Barzilay R, Jensen K F 2019 Chem. Sci. 10 370

    [130]

    Stärk H, Beaini D, Corso G, Tossou P, Dallago C, Günnemann S, Lió P 2022 In Proceedings of the 39th International Conference on Machine Learning, vol. 162 of Proceedings of Machine Learning Research. PMLR (Baltimore, MD, USA: PMLR), p 20479

    [131]

    Xie T, Grossman J C 2018 Phys. Rev. Lett. 120 145301

    [132]

    Gao W, Mahajan S P, Sulam J, Gray J J 2020 Patterns 1 100142

    [133]

    Choudhary K, DeCost B 2021 npj Comput. Mater. 7 185

    [134]

    Bang K, Yeo B C, Kim D, Han S S, Lee H M 2021 Sci Rep 11 11604

    [135]

    Kong S, Ricci F, Guevarra D, Neaton J B, Gomes C P, Gregoire J M 2022 Nat. Commun. 13 949

    [136]

    Fung V, Ganesh P, Sumpter B G 2022 Chem. Mat. 34 4848

    [137]

    Kaundinya P R, Choudhary K, Kalidindi S R 2022 JOM 74 1395

    [138]

    Masood H, Sirojan T, Toe C Y, Kumar P V, Haghshenas Y, Sit P H, Amal R, Sethu V, Teoh W Y 2023 Cell Rep. Phys. Sci. 4 101555

    [139]

    Lee J, Asahi R 2021 Comput. Mater. Sci. 190 110314

    [140]

    Li B, Rangarajan S 2022 Comput. Chem. Eng. 157 107599

    [141]

    Tian S I P, Ren Z, Venkataraj S, Cheng Y, Bash D, Oviedo F, Senthilnath J, Chellappan V, Lim Y F, Aberle A G, MacLeod B P, Parlane F G L, Berlinguette C P, Li Q, Buonassisi T, Liu Z 2023 Digit. Discov. 2 1334

    [142]

    Zuo H, Zhang G, Pedrycz W, Behbood V, Lu J 2016 IEEE Trans. Fuzzy Syst. 25 1795

    [143]

    Wang L, Zhang C, Bai R, Li J, Duan H 2020 Chem. Commun. 56 9368

    [144]

    Yamada H, Liu C, Wu S, Koyama Y, Ju S, Shiomi J, Morikawa J, Yoshida R 2019 ACS Central Sci. 5 1717

    [145]

    Pan S J, Yang Q 2009 IEEE Trans. Knowl. Data Eng. 22 1345

    [146]

    Xu P, Ji X, Li M, Lu W 2023 npj Comput. Mater. 9 42

  • [1] 张嘉晖. 蛋白质计算中的机器学习. 物理学报, doi: 10.7498/aps.73.20231618
    [2] 杨章章, 刘丽, 万致涛, 付佳, 樊群超, 谢锋, 张燚, 马杰. 结合机器学习算法提高从头算方法对HF/HBr/H35Cl/Na35Cl振动能谱的预测性能. 物理学报, doi: 10.7498/aps.72.20221953
    [3] 黎威, 龙连春, 刘静毅, 杨洋. 基于机器学习的无机磁性材料磁性基态分类与磁矩预测. 物理学报, doi: 10.7498/aps.71.20211625
    [4] 王恩, 董文翰, 周辉, 刘猛, 纪洪艳, 孟胜, 孙家涛. 周期场驱动下量子材料的非平衡物态. 物理学报, doi: 10.7498/aps.70.20201808
    [5] 林键, 叶梦, 朱家纬, 李晓鹏. 机器学习辅助绝热量子算法设计. 物理学报, doi: 10.7498/aps.70.20210831
    [6] 邓韬, 杨海峰, 张敬, 李一苇, 杨乐仙, 柳仲楷, 陈宇林. 拓扑半金属材料角分辨光电子能谱研究进展. 物理学报, doi: 10.7498/aps.68.20191544
    [7] 冯小静, 郭玮, 路兴强, 姚洪斌, 李月华. 三态K2分子飞秒含时光电子能谱的理论研究. 物理学报, doi: 10.7498/aps.64.143303
    [8] 张敏, 唐田田, 张朝民. NaLi分子飞秒含时光电子能谱的理论研究. 物理学报, doi: 10.7498/aps.63.023302
    [9] 李一丁, 张鹏飞, 张辉, 徐宏亮. 电子磁矩对同步辐射频谱的修正. 物理学报, doi: 10.7498/aps.62.094103
    [10] 张强, 户田裕之. 同步辐射K边减影成像及其在多孔金属材料中的应用. 物理学报, doi: 10.7498/aps.60.114103
    [11] 吴海飞, 张寒洁, 廖清, 陆赟豪, 斯剑霄, 李海洋, 鲍世宁, 吴惠祯, 何丕模. Mn/PbTe(111)界面行为的光电子能谱研究. 物理学报, doi: 10.7498/aps.58.1310
    [12] 张文华, 莫 雄, 王国栋, 王立武, 徐法强, 潘海斌, 施敏敏, 陈红征, 汪 茫. 苯并咪唑苝与金属Ag的界面电子结构研究. 物理学报, doi: 10.7498/aps.56.4936
    [13] 易荣清, 杨国洪, 崔延莉, 杜华冰, 韦敏习, 董建军, 赵屹东, 崔明启, 郑 雷. 北京同步辐射3B3中能束线X射线探测系统性能研究. 物理学报, doi: 10.7498/aps.55.6287
    [14] 袁勇波, 刘玉真, 邓开明, 杨金龙. SiN团簇光电子能谱的指认. 物理学报, doi: 10.7498/aps.55.4496
    [15] 黄超群, 卫立夏, 杨 斌, 杨 锐, 王思胜, 单晓斌, 齐 飞, 张允武, 盛六四, 郝立庆, 周士康, 王振亚. HFC-152a的同步辐射真空紫外光电离和光解离研究. 物理学报, doi: 10.7498/aps.55.1083
    [16] 王思胜, 孔蕊弘, 田振玉, 单晓斌, 张允武, 盛六四, 王振亚, 郝立庆, 周士康. Ar?NO团簇的同步辐射光电离研究. 物理学报, doi: 10.7498/aps.55.3433
    [17] 葛愉成. 用光电子能谱相位确定法同时测量阿秒超紫外线XUV脉冲的频率和强度时间分布. 物理学报, doi: 10.7498/aps.54.2653
    [18] 邹崇文, 孙 柏, 王国栋, 张文华, 徐彭寿, 潘海斌, 徐法强, 尹志军, 邱 凯. 低覆盖度的Au/GaN(0001)界面的同步辐射研究. 物理学报, doi: 10.7498/aps.54.3793
    [19] 崔大复, 王焕华, 戴守愚, 周岳亮, 陈正豪, 杨国桢, 刘凤琴, 奎热西, 钱海杰. Sb掺杂SrTio3透明导电薄膜的光电子能谱研究. 物理学报, doi: 10.7498/aps.51.187
    [20] 吕斌, 吕萍, 施申蕾, 张建华, 唐建新, 楼辉, 何丕模, 鲍世宁. OPCOT在Ru(0001)表面上的紫外光电子能谱研究. 物理学报, doi: 10.7498/aps.51.2644
计量
  • 文章访问数:  52
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2024-09-26

/

返回文章
返回