搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

部分相干混合位错光束在生物组织传输中的偏振特性

冯姣姣 段美玲 单晶 王灵辉 薛婷

引用本文:
Citation:

部分相干混合位错光束在生物组织传输中的偏振特性

冯姣姣, 段美玲, 单晶, 王灵辉, 薛婷
cstr: 32037.14.aps.73.20240985

Polarization properties of partially coherent mixed dislocation beams transmitting in biological tissues

Feng Jiao-Jiao, Duan Mei-Ling, Shan Jing, Wang Ling-Hui, Xue Ting
cstr: 32037.14.aps.73.20240985
PDF
HTML
导出引用
  • 采用推导的部分相干线刃型-螺旋型混合位错光束在生物组织传输中的交叉谱密度函数与矩阵, 数值模拟了人体真皮组织传输中, 无量纲参数a和线刃型位错离轴距离b对源平面光束归一化光强和相位分布的影响; 相同两点间、不同两点间光束偏振态的变化, 及其与4个光束参数(ab、空间相关长度σxy, σyy)以及传输距离z的关系. 结果表明: 归一化光强为非轴对称分布. a绝对值越大, 主峰越圆润; b值越大, 次峰越低. 在源平面存在一个相干涡旋和一个线刃型位错; a的符号和大小会影响相位分布; b值越大, 线刃型位错离原点越远. 在源平面处, 空间相同两点的偏振度和椭圆率与光束参数选取无关, 方位角仅与bσyy有关; 空间不同两点的偏振态参量都只与σxyσyy有关. 在足够远处, 偏振态各自趋于一定值. 传输中, a的绝对值一定正负不影响偏振态的大小; 随着b增大, 偏振态曲线极值次数减小, 突变的次数增加; σxy取值不同时, 相同两点偏振态变化的差异主要集中在极值附近, 不同两点偏振态变化的差异主要集中在初值和极值附近; |σxx-σyy|大小引起了偏振态变化规律的多样性.
    Objective The optical information change of beams acting on biological tissue can get an insight into the new optical effects of tissue, and even can provide a theoretical basis for developing biphotonic medical diagnosis and therapy technologies. Polarization technology is also widely used in the field of biological detection due to its advantages of non-contact, rich information and without staining markers. In this work, the polarization behaviors of partially coherent screw-linear edge mixed dislocation beam transmitting in biological tissue are analyzed and explored. Simultaneously, in order to more clearly and more intuitively understand a mixed dislocation beam, both the normalized intensities and phase distributions at source plane for different parameters a and b are also discussed. We hope that the obtained results will provide theoretical and experimental foundation for expanding the application of singularity beams in biological tissue imaging technology. Method By combining the Schell term with the field distribution of the screw-linear edge mixed dislocation beam at the source plane, and based on the generalized Huygens-Fresnel principle, the analytical expressions of the cross-spectral density matrix elements of partially coherent screw-linear edge dislocation beam propagating in biological tissues are derived. Adopting the unified theory of coherence and polarization, the polarization behaviors of the beams can be investigated in detail. Results At the source plane, the intensity has a non axisymmetric distribution, and there exists a coherent vortex with a topological charge size of 1 and a linear edge dislocation. The sign of a is related to the rotation direction of the phase singularity. The larger the value of b, the farther the linear edge dislocation is from the origin. At the source plane, the degree of polarization and ellipticity between the two identical points are independent of the four parameters: dimensionless parameter a, off-axis distance of edge dislocation b, spatial self-correlation length σyy, and spatial mutual-correlation length σxy, the orientation angle is only independent of a and σxy; the polarization of two different points is independent of a and b, but is related to σyy and σxy. In transmission, the polarization degrees and ellipticity of two different points fluctuate greatly and the orientation angle displays less fluctuation. Finally, all the polarization state parameters tend to be their corresponding values, respectively. Conclusions The results show that when b is smaller, the linear edge dislocation is paraxial and plays an important role in the polarization state change; when b is larger, the polarization state changes of the screw-linear edge mixed dislocation beam will tend to be the pattern of spiral beams. The absolute value of the difference between σyy and σxy is also one of main factors influencing the polarization state. The sign of a does not affect the change in polarization state, but its magnitude can influe the change of speed. Due to more complex factors determining the correlation fluctuations between different points in the light field, the changes of two different points are more sensitive than those of the two identical points in shallow biological tissue. Beams with different parameters can be selected for different application requirements.
      通信作者: 段美玲, meilingduan@nuc.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12204439)、山西省基础研究计划(批准号: 202203021211192)和山西省应用基础研究项目(批准号: 201701D121011)资助的课题.
      Corresponding author: Duan Mei-Ling, meilingduan@nuc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12204439), the Fundamental Research Program of Shanxi Province, China (Grant No. 202203021211192), and the Applied Basic Research Foundation of Shanxi Province, China (Grant No. 201701D121011).
    [1]

    Zhou Y, Cheng K, Sun X, Zhao M R, Chen G 2022 J. Mod. Opt. 69 233Google Scholar

    [2]

    杨宁, 赵亮, 许颖, 徐勇根 2022 激光与红外 52 1167Google Scholar

    Yang N, Zhao L, Xu Y, Xu Y G 2022 Laser Infrared 52 1167Google Scholar

    [3]

    乔文龙, 周亮, 刘朝晖, 龚勇辉, 姜乐, 吕媛媛, 赵鹤童 2022 光谱学与光谱分析 42 1070Google Scholar

    Qiao W L, Zhou L, Liu Z H, Gong Y H, Jiang L, Lu Y Y, Zhao H T 2022 Spectrosc. Spect. Anal. 42 1070Google Scholar

    [4]

    Zhao C G, Yin X J, Yang C, Wang J, Li J H 2023 Microw. Opt. Techn. Let. 65 1054Google Scholar

    [5]

    王亚伟, 刘莹, 卜敏, 王立峰 2008 激光与红外 38 7Google Scholar

    Wang Y W, Liu Y, Bu M, Wang L F 2008 Laser Infrared 38 7Google Scholar

    [6]

    杜玲艳, 詹旭, 雷跃荣, 宋弘, 文宇桥 2009 红外与激光工程 38 466Google Scholar

    Du L Y, Zhan X, Lei Y R, Song H, Wen Y Q 2009 Infrared Laser Eng. 38 466Google Scholar

    [7]

    Sdobnov A, Ushenko V A, Trifonyuk L, Dubolazov O V, Ushenko Y A, Ushenko A G, Soltys I V, Gantyuk V K, Bykov A, Meglinski I 2023 Opt. Laser. Eng. 171 107806Google Scholar

    [8]

    张钰新, 樊志鹏, 翟好宇, 何宏辉, 王毅, 何超, 马辉 2023 中国激光 50 111Google Scholar

    Zhang Y X, Fan Z P, Zhai H Y, He H H, Wang Y, He C, Ma H 2023 Chin. J. Lasers 50 111Google Scholar

    [9]

    Zhang W H, Wang L, Wang W N, Zhao S M 2019 OSA Continuum 2 3281Google Scholar

    [10]

    Liang Q Y, Yang D Y, Zhang Y X, Zheng Y, Hu L F 2020 OSA Continuum 3 2429Google Scholar

    [11]

    黄慧, 寿倩, 陈志超 2020 激光与光电子学进展 57 244Google Scholar

    Huang H, Shou Q, Chen Z C 2020 Laser Optoelectron. Prog. 57 244Google Scholar

    [12]

    叶东, 李俊瑶, 李宗辰, 张颐 2024 激光技术 48 261Google Scholar

    Ye D, Li J Y, Li Z C, Zhang Y 2024 Laser Technol. 48 261Google Scholar

    [13]

    Biton N, Kupferman J, Arnon S 2021 Sci. Rep. 11 2047Google Scholar

    [14]

    段美玲, 杜娇, 赵志国, 黄小东, 高燕琴, 丁超亮 2021 光子学报 50 0929001Google Scholar

    Duan M L, Du J, Zhao Z G, Huang X D, Gao Y Q, Ding C L 2021 Acta Photonica Sin. 50 0929001Google Scholar

    [15]

    Chen K, Ma Z Y, Hu Y Y 2023 Chin. Phys. B 32 024208Google Scholar

    [16]

    Zhou Y Q, Cui Z W, Han Y P 2022 Opt. Express 30 23448Google Scholar

    [17]

    闫皙玉, 杨艳芳, 何英, 李路路, 王俊杰 2022 光学学报 42 184Google Scholar

    Yan X Y, Yang Y F, He Y, Li L L, Wang J J 2022 Acta Opt. Sin. 42 184Google Scholar

    [18]

    Gao P H, Lu M H, Li J Y 2023 Opt. Continuum 2 2374Google Scholar

    [19]

    Cao J, Tong R F, Huang K, Li Y Q, Xu Y G 2024 J. Opt. Soc. Am. A 41 371Google Scholar

    [20]

    殷子昂, 段美玲 2024 光学技术 50 99Google Scholar

    Yin Z A, Duan M L 2024 Opt. Tech. 50 99Google Scholar

    [21]

    Gao P H, Bai L, Li J L 2020 OSA Continuum 3 2997Google Scholar

    [22]

    Gao P H, Lie J H, Cheng K, Duan M L 2017 Opt. Appl. 47 471Google Scholar

    [23]

    Wang Y K, Bai L, Gao P H 2019 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference Taiyuan, China, July 18–21, 2019 pp1–3

    [24]

    Wolf E 2007 Introduction to the Theory of Coherence and Polarization of Light (Cambridge: Cambridge University Press) pp59–60

    [25]

    Wolf E, 蒲继雄 2014 光的相干与偏振理论导论 (北京: 北京大学出版社) 第210页

    Wolf E, Pu J X 2014 Introduction to the Theory of Coherence and Polarization of Light (Beijing: Peking University Press) p210

    [26]

    Kotlyar V, Kovalev A, Porfirev A 2017 Phys. Rev. A 95 053805Google Scholar

    [27]

    Ishimaru A 1977 Appl. Opt. 16 3190Google Scholar

    [28]

    Roychowdhury H, Korotkova O 2005 Opt. Commun. A 249 379Google Scholar

    [29]

    Andrews L C, Phillips R L 2005 Laser Beam Propagation Through Random Media (Washington: SPIE Press) p820

    [30]

    Shirron J J 1997 Siam. Rev. 39 803

    [31]

    Mandel L, Wolf E 1995 Optical Coherence and Quantum Optics (Cambridge: Cambridge University Press) p170

    [32]

    Freund I, Shvartsman N 1994 Phys. Rev. A 50 5164Google Scholar

    [33]

    贺改梅, 段美玲, 殷子昂, 单晶, 冯姣姣 2024 光学学报 44 0217002Google Scholar

    He G M, Duan M L, Yin Z A, Shan J, Feng J J 2024 Acta Opt. Sin. 44 0217002Google Scholar

    [34]

    Deng Y, Zeng S Q, Luo Q M, Zhang Z H, Fu L 2008 Opt. Lett. 33 77Google Scholar

  • 图 1  a不同时归一化光强分布 (a) a = –1; (b) a = 1; (c) a = 2; (d) a = 5

    Fig. 1.  Normalized light intensity distribution for different a values: (a) a = –1; (b) a = 1; (c) a = 2; (d) a = 5.

    图 2  b不同时归一化光强分布  (a) b = 0.2 μm; (b) b = 0.3 μm; (c) b = 1 μm; (d) b = 3 μm

    Fig. 2.  Normalized light intensity distribution for different b values: (a) b = 0.2 μm; (b) b = 0.3 μm; (c) b = 1 μm; (d) b = 3 μm.

    图 3  a不同时相位分布  (a) a = –1; (b) a = 1; (c) a = 2; (d) a = 5

    Fig. 3.  Phase distribution for different a values: (a) a = –1; (b) a = 1; (c) a = 2; (d) a = 5.

    图 4  b不同时相位分布 (a) b = 0.2 μm; (b) b = 0.3 μm; (c) b = 1 μm; (d) b = 3 μm

    Fig. 4.  Phase distribution for different b values: (a) b = 0.2 μm; (b) b = 0.3 μm; (c) b = 1 μm; (d) b = 3 μm.

    图 5  a不同时偏振度随z的变化  (a) P(ρ, ρ, z); (b) P(ρ, –ρ, z)

    Fig. 5.  Variation of polarization degree with z for different a: (a) P(ρ, ρ, z); (b) P(ρ, –ρ, z).

    图 6  a不同时方位角随z的变化  (a) θ(ρ, ρ, z); (b) θ(ρ, –ρ, z)

    Fig. 6.  Variation of orientation angle with z for different a: (a) θ(ρ, ρ, z); (b) θ(ρ, –ρ, z).

    图 7  a不同时椭圆率随z的变化 (a) ε(ρ, ρ, z); (b) ε(ρ, –ρ, z)

    Fig. 7.  Variation of ellipticity with z when a is different: (a) ε(ρ, ρ, z); (b) ε(ρ, –ρ, z).

    图 8  b不同时偏振度随z的变化  (a) P(ρ, ρ, z); (b) P(ρ, –ρ, z)

    Fig. 8.  Variation of polarization degree with z for different b: (a) P(ρ, ρ, z); (b) P(ρ, –ρ, z).

    图 9  b不同时方位角随z的变化  (a) θ(ρ, ρ, z); (b) θ(ρ, –ρ, z)

    Fig. 9.  Variation of orientation angle with z for different b: (a) θ(ρ, ρ, z); (b) θ(ρ, –ρ, z).

    图 10  b不同时椭圆率εz的变化  (a) ε(ρ, ρ, z); (b) ε(ρ, –ρ, z)

    Fig. 10.  Variation of ellipticity with z for different b: (a) ε(ρ, ρ, z); (b) ε(ρ, –ρ, z).

    图 11  σxy不同时偏振度随z的变化  (a) P(ρ, ρ, z); (b) P(ρ, –ρ, z)

    Fig. 11.  Polarization degree vs. z for different σxy: (a) P(ρ, ρ, z); (b) P(ρ, –ρ, z).

    图 12  σxy不同时方位角随z的变化  (a) θ(ρ, ρ, z); (b) θ(ρ, –ρ, z)

    Fig. 12.  Orientation angle vs. z for different σxy: (a) θ(ρ, ρ, z); (b) θ(ρ, –ρ, z).

    图 13  σxy不同时椭圆率随z的变化 (a) ε(ρ, ρ, z); (b) ε(ρ, –ρ, z)

    Fig. 13.  Ellipticity vs. z for different σxy: (a) ε(ρ, ρ, z); (b) ε(ρ, –ρ, z).

    图 14  σyy不同时偏振度随z的变化 (a) P(ρ, ρ, z); (b) P(ρ, –ρ, z)

    Fig. 14.  Polarization degree vs. z for different σyy: (a) P(ρ, ρ, z); (b) P(ρ, –ρ, z).

    图 16  σyy不同时椭圆率随z的变化  (a) ε(ρ, ρ, z); (b) ε(ρ, –ρ, z)

    Fig. 16.  Ellipticity vs. z for different σyy: (a) ε(ρ, ρ, z); (b) ε(ρ, –ρ, z).

    图 15  σyy不同时方位角随z的变化  (a) θ(ρ, ρ, z); (b) θ(ρ, –ρ, z)

    Fig. 15.  Orientation angle vs. z for different σyy: (a) θ(ρ, ρ, z); (b) θ(ρ, –ρ, z).

  • [1]

    Zhou Y, Cheng K, Sun X, Zhao M R, Chen G 2022 J. Mod. Opt. 69 233Google Scholar

    [2]

    杨宁, 赵亮, 许颖, 徐勇根 2022 激光与红外 52 1167Google Scholar

    Yang N, Zhao L, Xu Y, Xu Y G 2022 Laser Infrared 52 1167Google Scholar

    [3]

    乔文龙, 周亮, 刘朝晖, 龚勇辉, 姜乐, 吕媛媛, 赵鹤童 2022 光谱学与光谱分析 42 1070Google Scholar

    Qiao W L, Zhou L, Liu Z H, Gong Y H, Jiang L, Lu Y Y, Zhao H T 2022 Spectrosc. Spect. Anal. 42 1070Google Scholar

    [4]

    Zhao C G, Yin X J, Yang C, Wang J, Li J H 2023 Microw. Opt. Techn. Let. 65 1054Google Scholar

    [5]

    王亚伟, 刘莹, 卜敏, 王立峰 2008 激光与红外 38 7Google Scholar

    Wang Y W, Liu Y, Bu M, Wang L F 2008 Laser Infrared 38 7Google Scholar

    [6]

    杜玲艳, 詹旭, 雷跃荣, 宋弘, 文宇桥 2009 红外与激光工程 38 466Google Scholar

    Du L Y, Zhan X, Lei Y R, Song H, Wen Y Q 2009 Infrared Laser Eng. 38 466Google Scholar

    [7]

    Sdobnov A, Ushenko V A, Trifonyuk L, Dubolazov O V, Ushenko Y A, Ushenko A G, Soltys I V, Gantyuk V K, Bykov A, Meglinski I 2023 Opt. Laser. Eng. 171 107806Google Scholar

    [8]

    张钰新, 樊志鹏, 翟好宇, 何宏辉, 王毅, 何超, 马辉 2023 中国激光 50 111Google Scholar

    Zhang Y X, Fan Z P, Zhai H Y, He H H, Wang Y, He C, Ma H 2023 Chin. J. Lasers 50 111Google Scholar

    [9]

    Zhang W H, Wang L, Wang W N, Zhao S M 2019 OSA Continuum 2 3281Google Scholar

    [10]

    Liang Q Y, Yang D Y, Zhang Y X, Zheng Y, Hu L F 2020 OSA Continuum 3 2429Google Scholar

    [11]

    黄慧, 寿倩, 陈志超 2020 激光与光电子学进展 57 244Google Scholar

    Huang H, Shou Q, Chen Z C 2020 Laser Optoelectron. Prog. 57 244Google Scholar

    [12]

    叶东, 李俊瑶, 李宗辰, 张颐 2024 激光技术 48 261Google Scholar

    Ye D, Li J Y, Li Z C, Zhang Y 2024 Laser Technol. 48 261Google Scholar

    [13]

    Biton N, Kupferman J, Arnon S 2021 Sci. Rep. 11 2047Google Scholar

    [14]

    段美玲, 杜娇, 赵志国, 黄小东, 高燕琴, 丁超亮 2021 光子学报 50 0929001Google Scholar

    Duan M L, Du J, Zhao Z G, Huang X D, Gao Y Q, Ding C L 2021 Acta Photonica Sin. 50 0929001Google Scholar

    [15]

    Chen K, Ma Z Y, Hu Y Y 2023 Chin. Phys. B 32 024208Google Scholar

    [16]

    Zhou Y Q, Cui Z W, Han Y P 2022 Opt. Express 30 23448Google Scholar

    [17]

    闫皙玉, 杨艳芳, 何英, 李路路, 王俊杰 2022 光学学报 42 184Google Scholar

    Yan X Y, Yang Y F, He Y, Li L L, Wang J J 2022 Acta Opt. Sin. 42 184Google Scholar

    [18]

    Gao P H, Lu M H, Li J Y 2023 Opt. Continuum 2 2374Google Scholar

    [19]

    Cao J, Tong R F, Huang K, Li Y Q, Xu Y G 2024 J. Opt. Soc. Am. A 41 371Google Scholar

    [20]

    殷子昂, 段美玲 2024 光学技术 50 99Google Scholar

    Yin Z A, Duan M L 2024 Opt. Tech. 50 99Google Scholar

    [21]

    Gao P H, Bai L, Li J L 2020 OSA Continuum 3 2997Google Scholar

    [22]

    Gao P H, Lie J H, Cheng K, Duan M L 2017 Opt. Appl. 47 471Google Scholar

    [23]

    Wang Y K, Bai L, Gao P H 2019 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference Taiyuan, China, July 18–21, 2019 pp1–3

    [24]

    Wolf E 2007 Introduction to the Theory of Coherence and Polarization of Light (Cambridge: Cambridge University Press) pp59–60

    [25]

    Wolf E, 蒲继雄 2014 光的相干与偏振理论导论 (北京: 北京大学出版社) 第210页

    Wolf E, Pu J X 2014 Introduction to the Theory of Coherence and Polarization of Light (Beijing: Peking University Press) p210

    [26]

    Kotlyar V, Kovalev A, Porfirev A 2017 Phys. Rev. A 95 053805Google Scholar

    [27]

    Ishimaru A 1977 Appl. Opt. 16 3190Google Scholar

    [28]

    Roychowdhury H, Korotkova O 2005 Opt. Commun. A 249 379Google Scholar

    [29]

    Andrews L C, Phillips R L 2005 Laser Beam Propagation Through Random Media (Washington: SPIE Press) p820

    [30]

    Shirron J J 1997 Siam. Rev. 39 803

    [31]

    Mandel L, Wolf E 1995 Optical Coherence and Quantum Optics (Cambridge: Cambridge University Press) p170

    [32]

    Freund I, Shvartsman N 1994 Phys. Rev. A 50 5164Google Scholar

    [33]

    贺改梅, 段美玲, 殷子昂, 单晶, 冯姣姣 2024 光学学报 44 0217002Google Scholar

    He G M, Duan M L, Yin Z A, Shan J, Feng J J 2024 Acta Opt. Sin. 44 0217002Google Scholar

    [34]

    Deng Y, Zeng S Q, Luo Q M, Zhang Z H, Fu L 2008 Opt. Lett. 33 77Google Scholar

  • [1] 王志全, 施卫. 太赫兹时域光谱中脉冲太赫兹波全息探测. 物理学报, 2022, 71(18): 188704. doi: 10.7498/aps.71.20220983
    [2] 洪昕, 王晓强, 李冬雪, 商云晶. 不依赖激发光偏振方向的芯帽异构二聚体. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211381
    [3] 赵顾颢, 毛少杰, 赵尚弘, 蒙文, 祝捷, 张小强, 王国栋, 谷文苑. 双旋光双反射结构的温度-辐射自稳定性原理和实验研究. 物理学报, 2019, 68(16): 164202. doi: 10.7498/aps.68.20190429
    [4] 洪昕, 王晨晨, 刘江涛, 王晓强, 尹雪洁. 芯帽纳米颗粒的光热性质. 物理学报, 2018, 67(19): 195202. doi: 10.7498/aps.67.20180909
    [5] 王美洁, 贾维国, 张思远, 门克内木乐, 杨军, 张俊萍. 低双折射光纤中拉曼增益对光偏振态的影响. 物理学报, 2015, 64(3): 034212. doi: 10.7498/aps.64.034212
    [6] 刘绩林, 陈子阳, 张磊, 蒲继雄. 角向偏振无衍射光束的传输特性及其偏振态研究. 物理学报, 2015, 64(6): 064201. doi: 10.7498/aps.64.064201
    [7] 王美洁, 贾维国, 张思远, 乔海龙, 杨军, 张俊萍, 门克内木乐. 拉曼效应对低双折射光纤偏振特性的影响. 物理学报, 2014, 63(10): 104204. doi: 10.7498/aps.63.104204
    [8] 王强, 关宝璐, 刘克, 史国柱, 刘欣, 崔碧峰, 韩军, 李建军, 徐晨. 表面液晶-垂直腔面发射激光器温度特性的研究. 物理学报, 2013, 62(23): 234206. doi: 10.7498/aps.62.234206
    [9] 赵顾颢, 赵尚弘, 幺周石, 郝晨露, 蒙文, 王翔, 朱子行, 刘丰. 偏振无关的旋光双反射结构的实验研究. 物理学报, 2013, 62(13): 134201. doi: 10.7498/aps.62.134201
    [10] 马骏, 袁操今, 冯少彤, 聂守平. 基于数字全息及复用技术的全场偏振态测试方法. 物理学报, 2013, 62(22): 224204. doi: 10.7498/aps.62.224204
    [11] 陈园园, 邹仁华, 宋钢, 张恺, 于丽, 赵玉芳, 肖井华. 纳米银线波导中表面等离极化波激发和辐射的偏振特性研究. 物理学报, 2012, 61(24): 247301. doi: 10.7498/aps.61.247301
    [12] 张宣妮, 张淳民. 静态偏振风成像干涉仪光传输特性和光通量改善. 物理学报, 2012, 61(10): 104210. doi: 10.7498/aps.61.104210
    [13] 刘均海, 韩文娟, 张怀金, 王继扬, Xavier Mateos, Valentin Petrov. 不同组分的钒酸盐混晶Ybt:YxGd1-t-xVO4光谱与激光性质的比较研究. 物理学报, 2011, 60(1): 014211. doi: 10.7498/aps.60.014211
    [14] 刘虹遥, 吕强, 罗海陆, 文双春. 各向异性超常材料平板透镜的聚焦特性分析. 物理学报, 2010, 59(1): 256-263. doi: 10.7498/aps.59.256
    [15] 王清华, 张颖颖, 来建成, 李振华, 贺安之. Mie理论在生物组织散射特性分析中的应用. 物理学报, 2007, 56(2): 1203-1207. doi: 10.7498/aps.56.1203
    [16] 张 航. 基于δ声波场的生物组织光学断层成像研究. 物理学报, 2004, 53(8): 2515-2519. doi: 10.7498/aps.53.2515
    [17] 王 琛, 袁景和, 王桂英, 徐至展. 入射光的偏振特性对全内反射荧光显微术中荧光激发的影响. 物理学报, 2003, 52(12): 3014-3019. doi: 10.7498/aps.52.3014
    [18] 郭红莲, 程丙英, 张道中. 用聚苯乙烯小球模拟生物组织中的光强分布. 物理学报, 2003, 52(2): 324-327. doi: 10.7498/aps.52.324
    [19] 苏慧敏, 郑锡光, 王霞, 许剑锋, 汪河洲. 计算机模拟偏振对激光全息的影响. 物理学报, 2002, 51(5): 1044-1048. doi: 10.7498/aps.51.1044
    [20] 钱盛友, 王鸿樟. 聚焦超声源对生物媒质加热的理论研究. 物理学报, 2001, 50(3): 501-506. doi: 10.7498/aps.50.501
计量
  • 文章访问数:  1158
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-15
  • 修回日期:  2024-08-13
  • 上网日期:  2024-08-19
  • 刊出日期:  2024-09-20

/

返回文章
返回