-
白光LED具有广阔的应用前景与市场需求, 而红色荧光粉对改善器件性能至关重要. 本文采用高温固相法制备了一系列Li2Gd4–xSmx(MoO4)7 (x = 0.01—0.13)荧光粉, 利用X射线衍射、扫描电子显微镜、X射线光电子能谱和荧光光谱仪对样品进行了表征. 在406 nm激发下, Li2Gd4(MoO4)7:Sm3+荧光粉的发射峰分别位于563, 598, 645, 706 nm处, 这是由于Sm3+的4f-4f跃迁引起的. 当Sm3+浓度为0.07时发光最强, 浓度猝灭主要归因于电偶极-电偶极相互作用. 随着Sm3+浓度的增大, 荧光寿命逐渐缩短. 温度依赖性发射光谱研究发现, 当温度为423 K时, Li2Gd4(MoO4)7:0.07Sm3+的发射强度依然保持在298 K时的79%, 显示了样品优良的热稳定性. CIE色度图确认了该荧光粉的发射位于橙红色区域. 进一步利用最佳样品制作了白光LED, 其CIE色坐标为(0.3788, 0.3134), 位于白光圈内. 研究表明Li2Gd4(MoO4)7:Sm3+荧光粉是一种很有前途的白光LED用橙红色荧光粉.White LEDs have the broad application prospect and market demand, while the red phosphor can greatly affect the color temperature and color rendering index of the modulated white light. In this work, a series of Li2Gd4–x Smx(MoO4)7 (x = 0.01–0.13) phosphors is prepared by the high-temperature solid phase method. The successful doping of Sm3+ into Li2Gd4(MoO4)7 is confirmed by X-ray diffractometry (XRD) and does not lead to any change in crystal structure. The samples are detected by scanning electron microscope (SEM) to have irregular blocky structures with particle size less than 20 μm. The existence of Li, Gd, Mo, O and Sm elements in the phosphor is confirmed by energy dispersive X-ray spectroscopy (EDS). The observation of X-ray photoelectron spectroscopy (XPS) shows that the activators are successfully doped into materials. Under 406 nm excitation, the emission peaks of the samples are located at 563, 598, 645 and 706 nm respectively, which are caused by the 4f-4f transition of Sm3+, and the strongest emission peak comes from 4G5/2→6H9/2 transition. It is found that optimal concentration of Sm3+ is 0.07. With the increase of Sm3+ concentration, the fluorescence lifetime decreases gradually. The temperature-dependent emission of phosphor is also studied. The emission intensity at 473 K is still 79% of that at 298 K, indicating that the sample has excellent heat resistance. The CIE chromaticity diagram shows the luminescence of the prepared phosphor is located in the orange-red region and the color purity is high (99%). Moreover, a white LED is fabricated using the optical doped phosphor, which has CIE coordinates of (0.3788, 0.3134) that are located in the circle of white light. Research shows that the Li2Gd4(MoO4)7:Sm3+ phosphor is a promising orange-red phosphor for white LEDs.
-
Keywords:
- phosphors /
- luminescent property /
- LED /
- Sm3+
[1] Li X H, Ding J N, Tang Z, Lin X Y, Dong H, Wu A H, Jiang L W 2024 Ceram. Int. 50 20Google Scholar
[2] Wang L, Zhang Y, Gao D, Sha X, Chen X, Zhang Y, Zhang J, Zhang X, Cao Y, Wang Y, Li X, Xu S, Yu H, Chen B J 2024 Results Phys. 56 107238Google Scholar
[3] 王国静 2021 硕士学位论文 (保定: 河北大学)
Wang G J 2021 M. S. Thesis (Baoding: Hebei University
[4] 王新瑞 2020 硕士学位论文(哈尔滨: 哈尔滨工业大学)
Wang X R 2020 M. S. Thesis (Harbin: Harbin Institute of technology
[5] 王贵民 2021 硕士学位论文(南京: 南京邮电大学)
Wang G M 2021 M. S. Thesis (Nanjing: Nanjing university of posts and telecommunications
[6] Cao R P, Tu Y F, Chen T, Li L, Lan B, Liu R, Luo Z Y, Yi X H 2023 J. Optics-UK. 52 1278Google Scholar
[7] Dalal H, Kumar M, Kaushik S, Sehrawat P, Sheoran M, Sehrawat N, Malik R K 2023 J. Electron. Mater. 52 2780Google Scholar
[8] Xiao Z L, Ye J T, Wu B K, Wang F Z, Li J H, Zhang B H, Liu W Z, Han L, You W X 2022 Appl. Phys. A 128 1Google Scholar
[9] Chauhan V, Dixit P, Pandey P C 2021 J. Rare Earth 39 1336Google Scholar
[10] 陆逸, 许英朝, 孟宪国, 鹿晨东, 杨伟斌, 吴盼盼, 刘月 2024 中国稀土学报 42 216
Lu Y, Xu Y C, Meng X G, Lu C D, Yang W B, Wu P P, Liu Y 2024 J. Rare Earth 42 216
[11] Wang C W, Peng L X, Qin F, Kou M, Wang Y D, Xu L L, Zhang Z G 2024 Opt. Mater. 154 115741
[12] Zhao J X, Zhang Y, Wang T A, Guan L, Dong G Y, Liu Z Y, Fu N, Wang F H, Li X, 2023 Ceram. Int. 49 29505Google Scholar
[13] 杨伟斌, 熊飞兵, 杨寅, 周琼, 谢岚驰, 凌爽, 罗新 2022 发光学报 43 879Google Scholar
Yang W B, Xiong F B, Yang Y, Zhou Q, Xie L C, Ling S, Luo X 2022 Chin. J. Lumin. 43 879Google Scholar
[14] 任艳东, 吕树臣 2011 物理学报 60 087804Google Scholar
Ren Y D, Lv S C, 2011 Acta Phys. Sin. 60 087804Google Scholar
[15] 赵聪, 孟庆裕, 孙文军 2015 物理学报 64 107803Google Scholar
Zhao C, Meng Q Y, Sun W J 2015 Acta Phys. Sin. 64 107803Google Scholar
[16] Ju Z H, Wei R P, Ma J X, Pang C R, Liu W S 2010 J. Alloys Compds. 507 133Google Scholar
[17] Yang R Q, Li J, Xie X J, Lian J J, Wang C Y, Li C L, Su H R, Zou Z Q, Xie S A, Yu R J 2024 J. Lumin. 267 120366Google Scholar
[18] 关丽, 魏伟, 刘超, 郭树青, 李旭, 杨志平 2013 硅酸盐学报 41 62Google Scholar
Guan L, Wei W, Liu Chao, Guo S Q, Li X, Yang Z P 2013 J. Chin. Ceram. Soc. 41 62Google Scholar
[19] 韩建伟, 林林, 童玉清, 羊富强, 曹林, 刘行仁 2012 稀土 33 50
Han J W, Lin L, Tong Y Q, Yang F Q, Cao L, Liu X R 2012 Chin. Rare Earths 33 50
[20] Yu Z M, Luo Z Y, Liu X R, Pun E Y B, Lin H 2019 Opt. Mater. 93 76Google Scholar
[21] 骆志杨 2020 硕士学位论文(大连: 大连工业大学)
Luo Z Y 2020 M. S. Thesis (Dalian: Dalian Polytechnic University
[22] Chen J Q, Chen J Y, Zhang W N, Xu S J, Chen L P, Guo H 2023 Ceram. Int. 49 16252Google Scholar
[23] Jiang K Z, Zhou C, Li W H, Su H R, He D M, Chen X Y, Zhang D, Xie S A, Yu R J 2024 J. Alloys Compds. 980 173518Google Scholar
[24] Fan M H, Liu S, Yang K, Guo J, Wang J X, Wang X H, Liu Q, Wei B 2020 Ceram. Int. 46 6926Google Scholar
[25] Cao R P, Wang X T, Jiao Y M, Ouyang X, Guo S L, Liu P, Ao H, Cao C Y 2019 J. Lumin. 212 23Google Scholar
[26] Ogugua S N, Shaat S K K, Swart H C, Kroon R E, Ntwaeaborwa O M 2019 J. Alloys Compds. 775 950Google Scholar
[27] 樊霞霞, 高志翔, 屈文山, 田翠锋, 李建刚, 李伟, 董丽娟, 石云龙 2022 无机化学学报 38 1016Google Scholar
Fan X X, Gao Z X, Qu W S, Tian C F, Li J G, Li W, Dong L J, Shi Y L 2022 Inorg. Chim. 38 1016Google Scholar
[28] Kumar I, Gathania A K 2022 J. Mater. Sci. Mater. El. 33 328Google Scholar
[29] Sun G H, Chen Q L 2023 J. Alloys Compds. 936 168263Google Scholar
[30] Zhao C C, Yin X, Huang F Q, Hang Y 2011 J. Solid State Chem. 184 3190Google Scholar
[31] Li H, Li L, Zhao W, Zhou X, Hua Y 2023 Mater. Today Chem. 32 101661Google Scholar
[32] Ji C Y, Huang Z, Tian X Y 2020 J. Alloys Compds. 825 154176Google Scholar
[33] Liu H K, Nie K, Zhang Y Y, Mei L F, Deyneko D V, Ma X X 2023 J. Rare Earth 41 1288Google Scholar
[34] 阿依努热木·吐尔逊, 王磊, 苏比伊努尔·吉力力, 艾尔肯·斯地克 2022 激光与光电子学进展 59 329
Ayinuremu T, Wang L, Subiyinuer J, Aierken S 2022 Prog. Laser Optoelectron. 59 329
[35] Yang Y, Pan H, Guan L, Wang D W, Zhao J X, Yang J F, Yang Z P, Li X 2020 J. Mater. Res. Technol. 9 3847Google Scholar
[36] Liu Y Y, Shi W, Liao D L, Yang X Y, Gao J, Ma Z J, Guo J, Gong N, Liu L, Chang M X, Deng B, Yu R J 2021 J. Am. Ceram. Soc. 104 5966Google Scholar
[37] Tang Z, Sun Z G, Zheng Y Q, Chen G J, Li X H, Jiang L W 2023 Ceram. Int. 49 10064Google Scholar
[38] 张恒, 陈伟, 姜锋, 朱德生 2023 稀土 44 28
Zhang H, Chen W, Jiang F, Zhu D S 2023 Chin. Rare Earths. 44 28
[39] Wang J X, Guo J, Lv Q Y, Ma Z J, Feng X Y, Lu Y H, Gao J, Chen W S, Deng B, Yu R J 2022 J. Lumin. 241 118459Google Scholar
[40] Mu Y X, Yao J H, Wan X M, Mao X J, Luo L H 2022 J. Alloys Compd. 909 164801Google Scholar
[41] Xue J P, Song M J, Noh H M, Park S H, Lee B R, Kim J H, Jeong J H 2020 J. Alloys Compds. 817 152705Google Scholar
[42] Han B J, Ren J, Teng P P, Zhu J B, Shen Y, Li Z A, Zhu X L, Yang X H 2022 Ceram. Int. 48 971Google Scholar
[43] Zhang Z C, Ran W G, Wang F K, Jiang H X, Yan T J 2024 Ceram. Int. 50 5614Google Scholar
[44] Huo X X, Wang Z J, Tao C J, Zhang N, Wang D W, Zhao J X, Yang Z P, Li P L 2022 J. Alloys Compds. 902 163823Google Scholar
[45] Du H Y, Zhu G, Li Z W, Li S S, He M, Bi Z H, Xin S Y 2023 Spectrochim. Acta A 302 123134Google Scholar
[46] Chen J X, He D M, Wang W X, Li S L, Zou Z Q, Liu J H, Wang Y, Chen X Y, Zheng L L, Xie S A, Yu R J 2024 J. Lumin. 265 120252Google Scholar
[47] Cui R R, Guo X, Deng C Y 2020 J. Lumin. 224 117233Google Scholar
[48] Wu G D, Xue J Q, Li X Y, Bi Q, Sheng M J, Leng Z H 2023 Ceram. Int. 49 10615Google Scholar
-
图 5 (a) Li2Gd4(MoO4)7:x Sm3+ (x = 0.01—0.13)的发射光谱; (b) 发射强度与Sm3+掺杂浓度的关系图; (c) lg(I/x)与lg(x)的关系曲线; (d) Sm3+的掺杂浓度与598, 645 nm处发射峰积分面积关系图
Fig. 5. (a) Emission spectra of Li2Gd4(MoO4)7:x Sm3+ (x = 0.01–0.13); (b) the relationship between emission intensity and Sm3+ doping concentration; (c) lg(I/x)-lg(x); (d) the relationship between the concentration of Sm3+ and the emission integral intensity at 598 nm and 645 nm.
图 6 荧光衰减曲线和发光机理 (a) Li2Gd4(MoO4)7:x Sm3+ (x = 0.01—0.13)系列样品在645 nm处的寿命衰减曲线(λex = 406 nm); (b) Sm3+的能级跃迁图
Fig. 6. Fluorescence attenuation curves and luminescence mechanism: (a) Lifetime decay curves of Li2Gd4(MoO4)7:x Sm3+ (x = 0.01–0.13) at 645 nm (λex = 406 nm); (b) energy level transition diagram of Sm3+.
图 7 (a) Li2Gd4(MoO4)7:0.07Sm3+荧光粉在不同温度下的发光光谱; (b) 样品在298—448 K范围内的热行为映射图; (c) 归一化发光强度随温度的变化; (d) $\ln[(I_0/I) - 1]$与10000/T关系
Fig. 7. (a) Luminescence spectra of Li2Gd4(MoO4)7:0.07Sm3+ phosphor at different temperatures; (b) the thermal behavior mapping diagram of sample in the range of 298–448 K; (c) the normalized luminescence intensity varies with temperature; (d) the relationship between $\ln[(I_0/I) -1] $ of phosphor and 10000/T.
表 1 Li2Gd4(MoO4)7:x Sm3+ (x = 0.01—0.13)的CIE色度坐标及色纯度
Table 1. The CIE coordinates and color purity of Li2Gd4(MoO4)7:x Sm3+ (x = 0.01—0.13).
Concentration of Sm3+ CIE coordinates
(x, y)Color purity/% x = 0.01 (0.6311, 0.3682) 99.77 x = 0.03 (0.6314, 0.3679) 99.86 x = 0.05 (0.6315, 0.3678) 99.89 x = 0.07 (0.6315, 0.3679) 99.89 x = 0.09 (0.6318, 0.3676) 99.98 x = 0.11 (0.6313, 0.3680) 99.83 x = 0.01 (0.6312, 0.3681) 99.80 -
[1] Li X H, Ding J N, Tang Z, Lin X Y, Dong H, Wu A H, Jiang L W 2024 Ceram. Int. 50 20Google Scholar
[2] Wang L, Zhang Y, Gao D, Sha X, Chen X, Zhang Y, Zhang J, Zhang X, Cao Y, Wang Y, Li X, Xu S, Yu H, Chen B J 2024 Results Phys. 56 107238Google Scholar
[3] 王国静 2021 硕士学位论文 (保定: 河北大学)
Wang G J 2021 M. S. Thesis (Baoding: Hebei University
[4] 王新瑞 2020 硕士学位论文(哈尔滨: 哈尔滨工业大学)
Wang X R 2020 M. S. Thesis (Harbin: Harbin Institute of technology
[5] 王贵民 2021 硕士学位论文(南京: 南京邮电大学)
Wang G M 2021 M. S. Thesis (Nanjing: Nanjing university of posts and telecommunications
[6] Cao R P, Tu Y F, Chen T, Li L, Lan B, Liu R, Luo Z Y, Yi X H 2023 J. Optics-UK. 52 1278Google Scholar
[7] Dalal H, Kumar M, Kaushik S, Sehrawat P, Sheoran M, Sehrawat N, Malik R K 2023 J. Electron. Mater. 52 2780Google Scholar
[8] Xiao Z L, Ye J T, Wu B K, Wang F Z, Li J H, Zhang B H, Liu W Z, Han L, You W X 2022 Appl. Phys. A 128 1Google Scholar
[9] Chauhan V, Dixit P, Pandey P C 2021 J. Rare Earth 39 1336Google Scholar
[10] 陆逸, 许英朝, 孟宪国, 鹿晨东, 杨伟斌, 吴盼盼, 刘月 2024 中国稀土学报 42 216
Lu Y, Xu Y C, Meng X G, Lu C D, Yang W B, Wu P P, Liu Y 2024 J. Rare Earth 42 216
[11] Wang C W, Peng L X, Qin F, Kou M, Wang Y D, Xu L L, Zhang Z G 2024 Opt. Mater. 154 115741
[12] Zhao J X, Zhang Y, Wang T A, Guan L, Dong G Y, Liu Z Y, Fu N, Wang F H, Li X, 2023 Ceram. Int. 49 29505Google Scholar
[13] 杨伟斌, 熊飞兵, 杨寅, 周琼, 谢岚驰, 凌爽, 罗新 2022 发光学报 43 879Google Scholar
Yang W B, Xiong F B, Yang Y, Zhou Q, Xie L C, Ling S, Luo X 2022 Chin. J. Lumin. 43 879Google Scholar
[14] 任艳东, 吕树臣 2011 物理学报 60 087804Google Scholar
Ren Y D, Lv S C, 2011 Acta Phys. Sin. 60 087804Google Scholar
[15] 赵聪, 孟庆裕, 孙文军 2015 物理学报 64 107803Google Scholar
Zhao C, Meng Q Y, Sun W J 2015 Acta Phys. Sin. 64 107803Google Scholar
[16] Ju Z H, Wei R P, Ma J X, Pang C R, Liu W S 2010 J. Alloys Compds. 507 133Google Scholar
[17] Yang R Q, Li J, Xie X J, Lian J J, Wang C Y, Li C L, Su H R, Zou Z Q, Xie S A, Yu R J 2024 J. Lumin. 267 120366Google Scholar
[18] 关丽, 魏伟, 刘超, 郭树青, 李旭, 杨志平 2013 硅酸盐学报 41 62Google Scholar
Guan L, Wei W, Liu Chao, Guo S Q, Li X, Yang Z P 2013 J. Chin. Ceram. Soc. 41 62Google Scholar
[19] 韩建伟, 林林, 童玉清, 羊富强, 曹林, 刘行仁 2012 稀土 33 50
Han J W, Lin L, Tong Y Q, Yang F Q, Cao L, Liu X R 2012 Chin. Rare Earths 33 50
[20] Yu Z M, Luo Z Y, Liu X R, Pun E Y B, Lin H 2019 Opt. Mater. 93 76Google Scholar
[21] 骆志杨 2020 硕士学位论文(大连: 大连工业大学)
Luo Z Y 2020 M. S. Thesis (Dalian: Dalian Polytechnic University
[22] Chen J Q, Chen J Y, Zhang W N, Xu S J, Chen L P, Guo H 2023 Ceram. Int. 49 16252Google Scholar
[23] Jiang K Z, Zhou C, Li W H, Su H R, He D M, Chen X Y, Zhang D, Xie S A, Yu R J 2024 J. Alloys Compds. 980 173518Google Scholar
[24] Fan M H, Liu S, Yang K, Guo J, Wang J X, Wang X H, Liu Q, Wei B 2020 Ceram. Int. 46 6926Google Scholar
[25] Cao R P, Wang X T, Jiao Y M, Ouyang X, Guo S L, Liu P, Ao H, Cao C Y 2019 J. Lumin. 212 23Google Scholar
[26] Ogugua S N, Shaat S K K, Swart H C, Kroon R E, Ntwaeaborwa O M 2019 J. Alloys Compds. 775 950Google Scholar
[27] 樊霞霞, 高志翔, 屈文山, 田翠锋, 李建刚, 李伟, 董丽娟, 石云龙 2022 无机化学学报 38 1016Google Scholar
Fan X X, Gao Z X, Qu W S, Tian C F, Li J G, Li W, Dong L J, Shi Y L 2022 Inorg. Chim. 38 1016Google Scholar
[28] Kumar I, Gathania A K 2022 J. Mater. Sci. Mater. El. 33 328Google Scholar
[29] Sun G H, Chen Q L 2023 J. Alloys Compds. 936 168263Google Scholar
[30] Zhao C C, Yin X, Huang F Q, Hang Y 2011 J. Solid State Chem. 184 3190Google Scholar
[31] Li H, Li L, Zhao W, Zhou X, Hua Y 2023 Mater. Today Chem. 32 101661Google Scholar
[32] Ji C Y, Huang Z, Tian X Y 2020 J. Alloys Compds. 825 154176Google Scholar
[33] Liu H K, Nie K, Zhang Y Y, Mei L F, Deyneko D V, Ma X X 2023 J. Rare Earth 41 1288Google Scholar
[34] 阿依努热木·吐尔逊, 王磊, 苏比伊努尔·吉力力, 艾尔肯·斯地克 2022 激光与光电子学进展 59 329
Ayinuremu T, Wang L, Subiyinuer J, Aierken S 2022 Prog. Laser Optoelectron. 59 329
[35] Yang Y, Pan H, Guan L, Wang D W, Zhao J X, Yang J F, Yang Z P, Li X 2020 J. Mater. Res. Technol. 9 3847Google Scholar
[36] Liu Y Y, Shi W, Liao D L, Yang X Y, Gao J, Ma Z J, Guo J, Gong N, Liu L, Chang M X, Deng B, Yu R J 2021 J. Am. Ceram. Soc. 104 5966Google Scholar
[37] Tang Z, Sun Z G, Zheng Y Q, Chen G J, Li X H, Jiang L W 2023 Ceram. Int. 49 10064Google Scholar
[38] 张恒, 陈伟, 姜锋, 朱德生 2023 稀土 44 28
Zhang H, Chen W, Jiang F, Zhu D S 2023 Chin. Rare Earths. 44 28
[39] Wang J X, Guo J, Lv Q Y, Ma Z J, Feng X Y, Lu Y H, Gao J, Chen W S, Deng B, Yu R J 2022 J. Lumin. 241 118459Google Scholar
[40] Mu Y X, Yao J H, Wan X M, Mao X J, Luo L H 2022 J. Alloys Compd. 909 164801Google Scholar
[41] Xue J P, Song M J, Noh H M, Park S H, Lee B R, Kim J H, Jeong J H 2020 J. Alloys Compds. 817 152705Google Scholar
[42] Han B J, Ren J, Teng P P, Zhu J B, Shen Y, Li Z A, Zhu X L, Yang X H 2022 Ceram. Int. 48 971Google Scholar
[43] Zhang Z C, Ran W G, Wang F K, Jiang H X, Yan T J 2024 Ceram. Int. 50 5614Google Scholar
[44] Huo X X, Wang Z J, Tao C J, Zhang N, Wang D W, Zhao J X, Yang Z P, Li P L 2022 J. Alloys Compds. 902 163823Google Scholar
[45] Du H Y, Zhu G, Li Z W, Li S S, He M, Bi Z H, Xin S Y 2023 Spectrochim. Acta A 302 123134Google Scholar
[46] Chen J X, He D M, Wang W X, Li S L, Zou Z Q, Liu J H, Wang Y, Chen X Y, Zheng L L, Xie S A, Yu R J 2024 J. Lumin. 265 120252Google Scholar
[47] Cui R R, Guo X, Deng C Y 2020 J. Lumin. 224 117233Google Scholar
[48] Wu G D, Xue J Q, Li X Y, Bi Q, Sheng M J, Leng Z H 2023 Ceram. Int. 49 10615Google Scholar
计量
- 文章访问数: 507
- PDF下载量: 20
- 被引次数: 0