-
在植物中, 光合作用的高效光电转化效率归因于色素蛋白复合体中所建立的强大捕光网络与灵活的能量转移机制. 对色素蛋白复合体结构与功能的解析是光合作用研究中的重要方向, 对人工光合作用研究和能源可持续发展战略具有指导意义. 随着冷冻电子显微镜的快速发展, 大量复合体的精密结构得以解析. 冷冻光学(光谱)显微镜是冷冻电子显微镜的重要互补技术, 发展至今已有约35年的历史. 该方法通过光谱特征可精确识别多种色素蛋白复合体, 而低温成像不仅有效地抑制了单个复合体或细胞样品的光损伤, 还限制了复合体中色素间的uphill能量转移, 从而提高荧光量子收率. 冷冻光学显微镜不仅成为表征单个蛋白质的结构动态与捕光功能的有力工具; 还为可视化和定量复杂的光合成分在细胞体内的空间分布提供了可能性. 因此, 该技术的应用极大地发展了在微观尺度下分析色素蛋白结构与功能的研究领域, 这对于光合作用研究体系的推进具有重大意义. 本文从单分子光谱与单细胞光谱技术两方面总结了冷冻光谱显微镜技术在自然光合作用中的主要应用与取得的成果, 其中包括探究色素蛋白复合体的捕光功能与蛋白质动态的关联, 复合体中能量异质性的表征, 在细胞体内可视化光合蛋白的能量调控机制等.Efficient photosynthesis reaction is attributed to the flexible energy regulation of two important pigment-protein complexes, i.e. photosystem II (PSII) and photosystem I (PSI). Cryogenic spectral microscopy provides information about the spatial distribution and physiological functional states of photosynthetic components in photosynthetic organisms. Under low temperatures, the uphill energy transfer between pigments is efficiently suppressed so that the temperature-dependent PSI can be well analyzed. Therefore, a cryogenic spectral microscope allows us to discuss the physiological events surrounding PSII and PSI in the independent microscopic zones. This technique can be used to complement the insufficiencies of cryogenic electron microscopy and atomic force microscopy in analyzing the photophysics and photochemistry of photosynthetic species. Historically, cryogenic optical microscopes originated from the desire for single-molecule spectroscopy detection. So far, the combination of optical microscopies and various spectroscopic techniques has expanded the possibility of studying photosynthesis from multiple perspectives. In this paper, the important and recent progress of cryogenic spectral microscopy in the field of natural photosynthesis research is reviewed from two aspects: single-molecule spectroscopy and single-cell spectroscopy, and the advantages of this technique in clarifying the correlation between structure variability and function of pigment-protein complexes, as well as the physiological responses of photosynthetic organisms to variable environments, are also illustrated.
-
Keywords:
- photosynthesis /
- light-harvesting /
- energy regulation /
- cryogenic optical microscope /
- single-molecule spectroscopy
[1] Butler W, Kitajima M 1975 Biochim. Biophys. Acta 396 72Google Scholar
[2] Wendler J, Holzwarth A R 1987 Biophys. J. 52 717Google Scholar
[3] Delosme R, Olive J, Wollman F A 1996 Biochim. Biophys. Acta 1273 150Google Scholar
[4] Koblížek M, Komenda J, Masojídek J 1998 Photosynthesis: Mechanisms and Effects (Springer) pp213–216
[5] Iwai M, Yokono M, Inada N, Minagawa J 2010 Proc. Natl. Acad. Sci. U. S. A. 107 2337Google Scholar
[6] Minagawa J 2011 Biochim. Biophys. Acta 1807 897Google Scholar
[7] Tian L J, Dinc E, Croce R 2015 J. Phys. Chem. Lett. 6 2339Google Scholar
[8] Bressan M, Dall'Osto L, Bargigia I, Alcocer M J, Viola D, Cerullo G, D'Andrea C, Bassi R, Ballottari M 2016 Nat. Plants 2 16131Google Scholar
[9] Dinc E, Tian L, Roy L M, Roth R, Goodenough U, Croce R 2016 Proc. Natl. Acad. Sci. U. S. A. 113 7673Google Scholar
[10] Dickson R M, Cubitt A B, Tsien R Y, Moerner W E 1997 Nature 388 355Google Scholar
[11] Jelezko F, Tietz C, Gerken U, Wrachtrup J, Bittl R 2000 J. Phys. Chem. B 104 8093Google Scholar
[12] Brecht M, Studier H, Radics V, Nieder J B, Bittl R 2008 J. Am. Chem. Soc. 130 17487Google Scholar
[13] Kunz R, Timpmann K, Southall J, Cogdell R J, Kohler J, Freiberg A 2013 J. Phys. Chem. B 117 12020Google Scholar
[14] Schorner M, Beyer S R, Southall J, Cogdell R J, Kohler J 2015 J. Phys. Chem. B 119 13964Google Scholar
[15] Kondo T, Gordon J B, Pinnola A, Dall’Osto L, Bassi R, Schlau-Cohen G S 2019 Proc. Natl. Acad. Sci. U. S. A. 116 11247Google Scholar
[16] Kondo T, Mutoh R, Arai S, Kurisu G, Oh-Oka H, Fujiyoshi S, Matsushita M 2022 J. Chem. Phys. 156 105102Google Scholar
[17] Kondo T, Shibata Y 2022 Biophys. Physicobiol. 19 e190013Google Scholar
[18] Li H, Wang Y G, Ye M P, Li S S, Li D Y, Ren H S, Wang M H, Du L C, Li H, Veglia G, G J L, Weng Y X 2020 Sci. China Chem. 63 1121Google Scholar
[19] Ruan M X, Li H, Zhang Y, Zhao R Q, Zhang J, Wang Y J, Gao J L, Wang Z, Wang Y X, Sun D P, Ding W, Weng Y X 2023 Nat. Plants 9 1547Google Scholar
[20] Elber R, Karplus M 1987 Science 235 318Google Scholar
[21] Frauenfelder H, Sligar S G, Wolynes P G 1991 Science 254 1598Google Scholar
[22] Hofmann C, Aartsma T J, Michel H, Köhler J 2003 Proc. Natl. Acad. Sci. U. S. A. 100 15534Google Scholar
[23] Bopp M A, Jia Y W, Li L Q, Cogdell R J, Hochstrasser R M 1997 Proc. Natl. Acad. Sci. U. S. A. 94 10630Google Scholar
[24] Rutkauskas D, Novoderezkhin V, Cogdell R J, van Grondelle R 2004 Biochemistry 43 4431Google Scholar
[25] Elli A F, Jelezko F, Tietz C, Studier H, Brecht M, Bittl R, Wrachtrup J 2006 Biochemistry 45 1454Google Scholar
[26] Brecht M, Studier H, Elli A F, Jelezko F, Bittl R 2007 Biochemistry 46 799Google Scholar
[27] Matsushita M 2008 Seibutsu Butsuri 48 035Google Scholar
[28] Brotosudarmo T H, Kunz R, Bohm P, Gardiner A T, Moulisova V, Cogdell R J, Kohler J 2009 Biophys. J. 97 1491Google Scholar
[29] Kondo T, Chen W J, Schlau-Cohen G S 2017 Chem. Rev. 117 860Google Scholar
[30] Squires A H, Wang Q, Moerner W 2017 Biophys. J. 112 471a
[31] Hatazaki S, Sharma D K, Hirata S, Nose K, Iyoda T, Kölsch A, Lokstein H, Vacha M 2018 J. Phys. Chem. Lett. 9 6669Google Scholar
[32] Jana S, Du T, Nagao R, Noguchi T, Shibata Y 2019 Biochim. Biophys. Acta 1860 30Google Scholar
[33] Otomo K, Dewa T, Matsushita M, Fujiyoshi S 2023 J. Phys. Chem. B 127 4959Google Scholar
[34] Zhang X J, Taniguchi R, Nagao R, Tomo T, Noguchi T, Ye S, Shibata Y 2024 J. Phys. Chem. B 128 2664Google Scholar
[35] Müller P, Li X P, Niyogi K K 2001 Plant Physiol. 125 1558Google Scholar
[36] Wollman F A 2001 EMBO J 20 3623Google Scholar
[37] Kanazawa A, Kramer D M 2002 Proc. Natl. Acad. Sci. U. S. A. 99 12789Google Scholar
[38] Rozak P, Seiser R, Wacholtz W, Wise R 2002 Plant Cell Environ. 25 421Google Scholar
[39] Bellafiore S, Barneche F, Peltier G, Rochaix J D 2005 Nature 433 892Google Scholar
[40] Wientjes E, van Amerongen H, Croce R 2013 Biochim. Biophys. Acta 1827 420Google Scholar
[41] Ünlü C, Drop B, Croce R, van Amerongen H 2014 Proc. Natl. Acad. Sci. U. S. A. 111 3460Google Scholar
[42] Kim E, Ahn T K, Kumazaki S 2015 Plant Cell Physiol. 56 759Google Scholar
[43] Nawrocki W J, Santabarbara S, Mosebach L, Wollman F A, Rappaport F 2016 Nat. Plants 2 16031Google Scholar
[44] de la Cruz Valbuena G, VA Camargo F, Borrego-Varillas R, Perozeni F, D’Andrea C, Ballottari M, Cerullo G 2019 J. Phys. Chem. Lett. 10 2500Google Scholar
[45] Calzadilla P I, Kirilovsky D 2020 Photochem. Photobiol. Sci. 19 585Google Scholar
[46] Huang Z H, Shen L L, Wang W D, Mao Z Y, Yi X H, Kuang T Y, Shen J R, Zhang X, Han G Y 2021 Nat. Commun. 12 1100Google Scholar
[47] Huokko T, Ni T, Dykes G F, Simpson D M, Brownridge P, Conradi F D, Beynon R J, Nixon P J, Mullineaux C W, Zhang P 2021 Nat. Commun. 12 3475Google Scholar
[48] Zhang X J, Fujita Y, Tokutsu R, Minagawa J, Ye S, Shibata Y 2021 Plant Cell Physiol. 62 872Google Scholar
[49] Zhang X J, Fujita Y, Kaneda N, Tokutsu R, Ye S, Minagawa J, Shibata Y 2022 Proc. Natl. Acad. Sci. U. S. A. 119 e2122032119Google Scholar
[50] Hamel P, Olive J, Pierre Y, Wollman F A, de Vitry C 2000 J. Biol. Chem. 275 17072Google Scholar
[51] Finazzi G, Rappaport F, Furia A, Fleischmann M, Rochaix J D, Zito F, Forti G 2002 EMBO Rep. 3 280Google Scholar
[52] Munekage Y, Hojo M, Meurer J, Endo T, Tasaka M, Shikanai T 2002 Cell 110 361Google Scholar
[53] DalCorso G, Pesaresi P, Masiero S, Aseeva E, Schünemann D, Finazzi G, Joliot P, Barbato R, Leister D 2008 Cell 132 273Google Scholar
[54] Krause G, Briantais J M, Vernotte C 1983 Biochim. Biophys. Acta 723 169Google Scholar
[55] Fujita Y, Ito W, Washiyama K, Shibata Y 2018 J. Photochem. Photobiol. B: Biol. 185 111Google Scholar
[56] Fujita Y, Zhang X J, Mohamed A, Ye S, Shibata Y 2022 J. Photochem. Photobiol. B: Biol. 236 112584Google Scholar
[57] Uniacke J, Zerges W 2007 Plant Cell 19 3640Google Scholar
[58] Nixon P J, Michoux F, Yu J, Boehm M, Komenda J 2010 Ann. Bot. 106 1Google Scholar
[59] Nickelsen J, Rengstl B 2013 Annu. Rev. Plant Biol. 64 609Google Scholar
[60] Nellaepalli S, Ozawa S I, Kuroda H, Takahashi Y 2018 Nat. Commun. 9 2439Google Scholar
[61] Chiba T, Shibata Y 2019 Biochim. Biophys. Acta 1860 148090Google Scholar
[62] Croce R, Van Amerongen H 2014 Nat. Chem. Biol. 10 492Google Scholar
[63] Suvorov N, Pogorilyy V, Diachkova E, Vasil’ev Y, Mironov A, Grin M 2021 Int. J. Mol. Sci. 22 6392Google Scholar
[64] Oviedo M B, Sánchez C G 2011 J. Phys. Chem. A 115 12280Google Scholar
[65] Fuchs B M, Spring S, Teeling H, Quast C, Wulf J, Schattenhofer M, Yan S, Ferriera S, Johnson J, Glöckner F O 2007 Proc. Natl. Acad. Sci. U. S. A. 104 2891Google Scholar
[66] Wasielewski M R, Kispert L D 1986 Chem. Phys. Lett. 128 238Google Scholar
[67] Son M, Hart S M, Schlau-Cohen G S 2021 Trends Chem. 3 733Google Scholar
[68] Zhang X J, Shibata Y, Kumazaki S 2023 J. Photochem. Photobiol. C. 56 100616Google Scholar
[69] Suga M, Ozawa S I, Yoshida-Motomura K, Akita F, Miyazaki N, Takahashi Y 2019 Nat. Plants 5 626Google Scholar
[70] Jordan P, Fromme P, Witt H T, Klukas O, Saenger W, Krauß N 2001 Nature 411 909Google Scholar
[71] Brecht M 2009 Mol. Phys. 107 1955Google Scholar
[72] Hussels M, Brecht M 2011 Biochemistry 50 3628Google Scholar
[73] Köhler J, Cogdell R J 2019 Metabolism, Structure and Function of Plant Tetrapyrroles: Control Mechanisms of Chlorophyll Biosynthesis and Analysis of Chlorophyll-Binding Proteins pp1–31
[74] Hayes J, Matsuzaki S, Rätsep M, Small G 2000 J. Phys. Chem. B 104 5625Google Scholar
[75] Rätsep M, Johnson T, Chitnis P, Small G 2000 J. Phys. Chem. B 104 836Google Scholar
[76] Zazubovich V, Matsuzaki S, Johnson T, Hayes J, Chitnis P, Small G 2002 Chem. Phys. 275 47Google Scholar
[77] Riley K J, Reinot T, Jankowiak R, Fromme P, Zazubovich V 2007 J. Phys. Chem. B 111 286Google Scholar
[78] Skandary S, Konrad A, Hussels M, Meixner A J, Brecht M 2015 J. Phys. Chem. B 119 13888Google Scholar
[79] Kato K, Shinoda T, Nagao R, Akimoto S, Suzuki T, Dohmae N, Chen M, Allakhverdiev S I, Shen J R, Akita F 2020 Nat. Commun. 11 238Google Scholar
[80] Toporik H, Khmelnitskiy A, Dobson Z, Riddle R, Williams D, Lin S, Jankowiak R, Mazor Y 2020 Nat. Commun. 11 5279Google Scholar
[81] Çoruh O, Frank A, Tanaka H, Kawamoto A, El-Mohsnawy E, Kato T, Namba K, Gerle C, Nowaczyk M M, Kurisu G 2021 Commun. Biol. 4 304Google Scholar
[82] Kato K, Hamaguchi T, Nagao R, Kawakami K, Ueno Y, Suzuki T, Uchida H, Murakami A, Nakajima Y, Yokono M 2022 Elife 11 e73990Google Scholar
[83] Akita F, Nagao R, Kato K, Nakajima Y, Yokono M, Ueno Y, Suzuki T, Dohmae N, Shen J R, Akimoto S 2020 Commu. Biol. 3 232Google Scholar
[84] Klar T A, Jakobs S, Dyba M, Egner A, Hell S W 2000 Proc. Natl. Acad. Sci. U. S. A. 97 8206Google Scholar
[85] Giske A 2007 Ph. D. Dissertation (Heidelberg: Heidelberg University
[86] Ambrose W P, Basche T, Moerner W E 1991 J. Chem. Phys. 95 7150Google Scholar
[87] Vacha M, Yokoyama H, Tokizaki T, Furuki M, Tani T 1999 Rev. Sci. Instrum. 70 2041Google Scholar
[88] Jasny J, Sepiol J, Irngartinger T, Traber M, Renn A, Wild U P 1996 Rev. Sci. Instrum. 67 1425Google Scholar
[89] Fujiyoshi S, Fujiwara M, Kim C, Matsushita M, van Oijen A M, Schmidt J 2007 Appl. Phys. Lett. 91 051125Google Scholar
[90] Vàcha F, Vacha M, Bumba L, Hashizume K, Tani T 2000 Photosynthetica 38 493Google Scholar
[91] Vácha F, Sarafis V, Benediktyová Z, Bumba L, Valenta J, Vácha M, Sheue C R, Nedbal L 2007 Micron 38 170Google Scholar
[92] Sugiura K, Itoh S 2012 Plant Cell Physiol. 53 1492Google Scholar
[93] Breunig H G, Tumer F, Konig K 2013 J. Biophotonics 6 622Google Scholar
[94] Shibata Y, Katoh W, Tahara Y 2013 Biochim. Biophys. Acta 1827 520Google Scholar
[95] Steinbach G, Schubert F, Kana R 2015 J. Photochem. Photobiol. B: Biol. 152 395Google Scholar
[96] Fujiwara M, Ishii T, Ishida K, Toratani Y, Furubayashi T, Matsushita M, Fujiyoshi S 2019 Appl. Phys. Lett. 115 033701Google Scholar
[97] Yoshimoto M 2000 Jpn. J. Appl. Phys. 39 6105Google Scholar
[98] Shibata Y, Katoh W, Chiba T, Namie K, Ohnishi N, Minagawa J, Nakanishi H, Noguchi T, Fukumura H 2014 Biochim. Biophys. Acta 1837 880Google Scholar
[99] Metzger M, Konrad A, Skandary S, Ashraf I, Meixner A J, Brecht M 2016 Opt. Express 24 13023Google Scholar
[100] Wang L, Bateman B, Zanetti-Domingues L C, Moores A N, Astbury S, Spindloe C, Darrow M C, Romano M, Needham S R, Beis K, Rolfe D J, Clarke D T, Martin-Fernandez M L 2019 Commun. Biol. 2 74Google Scholar
[101] Huebinger J, Grecco H, Masip M E, Christmann J, Fuhr G R, Bastiaens P I H 2021 Sci. Adv. 7 eabk0882Google Scholar
[102] Yamanaka M, Tsuji K, Kumamoto Y, Tamura S, Miyamura W, Kubo T, Mizushima K, Kono K, Hirano H, Sugiura K 2023 bioRxiv 2023.08. 01.551103
[103] Hasegawa M, Yoshida T, Yabuta M, Terazima M, Kumazaki S 2011 J. Phys. Chem. B 115 4184Google Scholar
[104] van Oijen A M, Ketelaars M, Kohler J, Aartsma T J, Schmidt J 1999 Science 285 400Google Scholar
[105] Jana S, Shibata Y 2020 Biophys. J. 118 36Google Scholar
[106] Girolomoni L, Cazzaniga S, Pinnola A, Perozeni F, Ballottari M, Bassi R 2019 Proc. Natl. Acad. Sci. U. S. A. 116 4212Google Scholar
[107] Kondo T, Pinnola A, Chen W J, Dall'Osto L, Bassi R, Schlau-Cohen G S 2017 Nat. Chem. 9 772Google Scholar
[108] Barzda V, de Grauw C J, Vroom J, Kleima F J, van Grondelle R, van Amerongen H, Gerritsen H C 2001 Biophys. J. 81 538Google Scholar
[109] Barzda V, Gulbinas V, Kananavicius R, Cervinskas V, Van Amerongen H, Van Grondelle R, Valkunas L 2001 Biophys. J. 80 2409Google Scholar
[110] Robert B 2009 Photosynth. Res. 101 147Google Scholar
[111] Tamamizu K, Kumazaki S 2019 Biochim. Biophys. Acta 1860 78Google Scholar
[112] Tamamizu K, Sakamoto T, Kurashige Y, Nozue S, Kumazaki S 2023 Spectrochimica Acta. Part A 290 122258Google Scholar
[113] Wu H W, Volponi J V, Oliver A E, Parikh A N, Simmons B A, Singh S 2011 Proc. Natl. Acad. Sci. U. S. A. 108 3809Google Scholar
[114] Gall A, Pascal A A, Robert B 2015 Biochim. Biophys. Acta 1847 12Google Scholar
[115] Mizushima K, Kumamoto Y, Tamura S, Yamanaka M, Mochizuki K, Li M, Egoshi S, Dodo K, Harada Y, Smith N I 2023 bioRxiv 2023.11. 15.567077
[116] Jiang S, Zhang Y, Zhang R, Hu C R, Liao M H, Luo Y, Yang J L, Dong Z C, Hou J G 2015 Nat. Nanotechnol. 10 865Google Scholar
[117] Hasegawa M, Shiina T, Terazima M, Kumazaki S 2010 Plant Cell Physiol. 51 225Google Scholar
[118] Gitelson A A, Buschmann C, Lichtenthaler H K 1998 J. Plant Physiol. 152 283Google Scholar
[119] Watkins L P, Yang H 2005 J. Phys. Chem. B 109 617Google Scholar
[120] Schlau-Cohen G S, Wang Q, Southall J, Cogdell R J, Moerner W 2013 Proc. Natl. Acad. Sci. U. S. A. 110 10899Google Scholar
[121] Schlau-Cohen G S, Yang H-Y, Krüger T P, Xu P, Gwizdala M, Van Grondelle R, Croce R, Moerner W 2015 J. Phys. Chem. Lett. 6 860Google Scholar
[122] Goldsmith R H, Moerner W 2010 Nat. Chem. 2 179Google Scholar
[123] Allorent G, Lefebvre-Legendre L, Chappuis R, Kuntz M, Truong T B, Niyogi K K, Ulm R, Goldschmidt-Clermont M 2016 Proc. Natl. Acad. Sci. U. S. A. 113 14864Google Scholar
[124] Tokutsu R, Fujimura-Kamada K, Yamasaki T, Okajima K, Minagawa J 2021 Plant Physiol. 185 1894Google Scholar
[125] Horton P, Wentworth M, Ruban A 2005 FEBS Lett. 579 4201Google Scholar
[126] Liguori N, Roy L M, Opacic M, Durand G, Croce R 2013 J. Am. Chem. Soc. 135 18339Google Scholar
[127] Holub O, Seufferheld M J, Gohlke C, Govindjee, Clegg R M 2000 Photosynthetica 38 581Google Scholar
[128] Holub O, Seufferheld M, Gohlke C, Govindjee, Heiss G, Clegg R 2007 J. Microsc. 226 90Google Scholar
[129] Kumazaki S, Akari M, Hasegawa M 2013 Plant Physiology 161 1321Google Scholar
[130] Nozue S, Mukuno A, Tsuda Y, Shiina T, Terazima M, Kumazaki S 2016 Biochim. Biophys. Acta 1857 46Google Scholar
[131] Tamarat P, Maali A, Lounis B, Orrit M 2000 J. Phys. Chem. A 104 1Google Scholar
[132] Kaufmann R, Hagen C, Grunewald K 2014 Curr. Opin. Chem. Biol. 20 86Google Scholar
[133] Nabhan M A, Silvera Batista C A, Cliffel D E, Jennings G K 2023 ACS Appl. Polym. Mater. 5 3278Google Scholar
[134] Gust A, Zander A, Gietl A, Holzmeister P, Schulz S, Lalkens B, Tinnefeld P, Grohmann D 2014 Molecules 19 15824Google Scholar
[135] Paul T, Myong S 2022 STAR Protocols 3 101152Google Scholar
[136] Cohen A E, Moerner W 2005 Appl. Phys. Lett. 86 093109Google Scholar
[137] Brotosudarmo T H P, Wittmann B, Seki S, Fujii R, Köhler J r 2022 J. Phys. Chem. Lett. 13 5226Google Scholar
[138] Basché T, Moerner W, Orrit M, Talon H 1992 Phys. Rev. Lett. 69 1516Google Scholar
[139] Hussels M, Brecht M 2011 FEBS Lett. 585 2445Google Scholar
[140] Zhang X J, Fujita Y, Kaneda N, Tokutsu R, Ye S, Minagawa J, Shibata Y 2021 bioRxiv 2021.10. 27.465227
[141] Moerner W, Fromm D P 2003 Rev. Sci. Instrum. 74 3597Google Scholar
[142] Brecht M, Radics V, Nieder J B, Bittl R 2009 Proc. Natl. Acad. Sci. U. S. A. 106 11857Google Scholar
[143] Ishii K, Tahara T 2013 J. Phys. Chem. B 117 11423Google Scholar
[144] Ishii K, Tahara T 2013 J. Phys. Chem. B 117 11414Google Scholar
[145] Sarkar B, Ishii K, Tahara T 2024 J. Phys. Chem. B 128 4685Google Scholar
[146] Wang D H, Fiebig O C, Harris D, Toporik H, Ji Y, Chuang C, Nairat M, Tong A L, Ogren J I, Hart S M 2023 Proc. Natl. Acad. Sci. U. S. A. 120 e2220477120Google Scholar
[147] Kunz R, Timpmann K, Southall J, Cogdell R J, Freiberg A, Kohler J 2014 Biophys. J. 106 2008Google Scholar
[148] 翁羽翔 2007 物理 36 816Google Scholar
Weng Y X 2007 Physics 36 816Google Scholar
[149] Kunz R, Timpmann K, Southall J, Cogdell R J, Freiberg A, Köhler J r 2012 J. Phys. Chem. B 116 11017Google Scholar
[150] Kunz R, Timpmann K, Southall J, Cogdell R J, Freiberg A, Köhler J 2013 Angew. Chem. 52 8726Google Scholar
[151] 冷轩, 王专, 翁羽翔 2016 植物生理学报 52 1681
Leng X, Wang Z, Weng Y X 2016 Plant Physiol. J. 52 1681
[152] Hildner R, Brinks D, Nieder J B, Cogdell R J, Van Hulst N F 2013 Science 340 1448Google Scholar
[153] Pålsson L-O, Dekker J P, Schlodder E, Monshouwer R, van Grondelle R 1996 Photosynth. Res. 48 239Google Scholar
[154] Beekman L M, Frese R N, Fowler G J, Picorel R, Cogdell R J, van Stokkum I H, Hunter C N, van Grondelle R 1997 J. Phys. Chem. B 101 7293Google Scholar
[155] Schlodder E, Hussels M, Çetin M, Karapetyan N V, Brecht M 2011 Biochim. Biophys. Acta 1807 1423Google Scholar
[156] Liu Z F, Yan C H, Wang K B, Kuang T Y, Zhang J P, Gui L L, An X M, Chang W R 2004 Nature 428 287Google Scholar
[157] Snellenburg J J, Wlodarczyk L M, Dekker J P, van Grondelle R, van Stokkum I H 2017 Biochim. Biophys. Acta 1858 64Google Scholar
[158] Nellaepalli S, Ozawal S I, Kuroda H, Takahashi Y 2018 Nat. Commun. 9 1Google Scholar
[159] Ozawa S I, Onishi T, Takahashi Y 2010 J. Biol. Chem. 285 20072Google Scholar
[160] Shao S X 2017 Ph. D. Dissertation (London: Imperial College London
[161] Shibata K 1957 J. Biochem. 44 147Google Scholar
[162] Schuster G, Ohad I, Martineau B, Taylor W C 1985 J. Biol. Chem. 260 11866Google Scholar
[163] Franck F, Eullaffroy P, Popovic R 1997 Photosynth. Res. 51 107Google Scholar
[164] Sundqvist C, Dahlin C 1997 Physiol. Plant. 100 748Google Scholar
[165] Marchand M, Dewez D, Franck F, Popovic R 2004 J. Photochem. Photobiol. B: Biol. 75 73Google Scholar
[166] Amirjani M, Sundqvist C 2006 Photosynthetica 44 83Google Scholar
[167] Peng L W, Ma J F, Chi W, Guo J K, Zhu S Y, Lu Q T, Lu C M, Zhang L X 2006 Plant Cell 18 955Google Scholar
[168] Kovacevic D, Dewez D, Popovic R 2007 Photosynthetica 45 105Google Scholar
[169] Hell S W, Wichmann J 1994 Opt. Lett. 19 780Google Scholar
[170] Blom H, Widengren J 2017 Chem. Rev. 117 7377Google Scholar
[171] Kozawa Y, Nakamura T, Uesugi Y, Sato S 2022 Biomed. Opt. Express 13 1702Google Scholar
[172] Komura M, Itoh S 2009 Photosynth. Res. 101 119Google Scholar
[173] Kusumi A, Tsuji A, Murata M, Sako Y, Yoshizawa A C, Kagiwada S, Hayakawa T, Ohnishi S 1991 Biochemistry 30 6517Google Scholar
[174] Biskup C, Zimmer T, Benndorf K 2004 Nat. Biotechnol. 22 220Google Scholar
[175] Liu L X, Li Y H, Sun L G, Li H, Peng X, Qu J L Multiphoton Microscopy in the Biomedical Sciences XIV pp307-311
[176] Yoneda T, Tanimoto Y, Takagi D, Morigaki K 2020 Langmuir 36 5863Google Scholar
[177] Meredith S A, Yoneda T, Hancock A M, Connell S D, Evans S D, Morigaki K, Adams P G 2021 Small 17 2006608Google Scholar
[178] Harris D, Toporik H, Schlau-Cohen G S, Mazor Y 2023 Nat. Commun. 14 4650Google Scholar
[179] Onoa B, Fukuda S, Iwai M, Bustamante C, Niyogi K K 2020 Biophys. J. 118 1876Google Scholar
[180] Yang K S, Chan F Y, Watanabe H, Yoshioka S, Inouye Y, Uchihashi T, Ishitobi H, Verma P, Umakoshi T 2024 Nano Lett. 24 2805Google Scholar
-
图 2 (a) 光合作用中电子转移的示意图[68], LHC表示捕光蛋白, PQ (plastoquinone)和PC (plastocyanin)分别代表两个主要的电子载体. (b), (c) 表示豌豆中PSII-LHCII (PDB code: 6 YP7)和PSI-LHCI (PDB code: 4 XK8)复合体的结构, Chl-a和Chl-b色素分子分别用绿色和紫色表示, 红色箭头表示假设的能量转移路径. (d), (e) PSII和PSI各自的反应中心结构. (f) 绿藻细胞Chlamydomonas中两个主要的光系统冷冻电镜结构, PSII-LHCII (PDB code: 6 KAF)和PSI-LHCI (PDB code: 6 JO6), 在PSII-LHCII中, 蓝绿色代表LHCII三聚体, 而深蓝色和紫色分别代表两个较小的LHCs (称为CP26和CP29), PSI-LHCI-LHCII (PDB code: 7DZ7)超级复合体除了连接少许的LHCI以外, 还额外结合了两个LHCII三聚体
Fig. 2. (a) Electron flow of photosynthesis[68], LHC (light-harvesting complex), PQ (plastoquinone), PC (plastocyanin). (b), (c) Structures of PSII-LHCII (PDB code: 6 YP7) and PSI-LHCI (PDB code: 4 XK8) in the high plant. Core protein and light-harvesting protein were shown as yellow and blue-green, respectively. Chl-as and Chl-bs were indicated as green and purple, respectively. The red lines with arrows were the imaginary energy transfer pathway. (d), (e) Molecular structure of the reaction center of two PSs. (f) The Cryo-EM structures of PSII-LHCII (PDB code: 6 KAF) and PSI-LHCI (PDB code: 6 JO6) of Chlamydomonas cell. The PSI-LHCI-LHCII (PDB code: 7DZ7) supercomplex was easily formed upon state transition.
图 3 (a) T. elongatus中PSI三聚体晶体结构[70], 绿色表示Chl-a分子, 紫色表示反应中心P700, 红色分子代表着被预测的Red Chls; (b) PSI三聚体中的单体模型, Low2和Low1是Kato等[82]预测的Red Chls
Fig. 3. (a) An X-ray crystal structure (PDB code: 1 JB0) of trimetric PSI isolated from a T. elongatus, the Chl-a was indicated in green, the reaction center was indicated in purple, the initial predicted red Chls candidates were depicted in red and marked by ellipses, they were renamed as Red Chls_1-3; (b) Low1 and Low2 were the possible Red Chls which were predicted by Kato et al.[82].
图 4 (a) 共聚焦荧光显微镜的简易示意图; (b) 自制冷冻光学方案[68], 绿色背景表示冷冻剂, 被斜线填充的空间表示真空环境; (c) 商业化冷冻光学方案, 在商业化的低温恒温器中, 样品被固定在真空环境里, 流动的冷冻剂(带箭头的线)通过一个导热性好的材料与样品架相连接
Fig. 4. (a) Schematic of the confocal fluorescence microscope; (b) some home-built optical systems of cryogenic microscopes[68], the green background represents the refrigerant, and the space filled with diagonal lines represents the vacuum environment; (c) a cryogenic microscope equipped with a commercial cryostat, the sample is fixed in a vacuum environment, and a flowing cryogen (arrowed line) is connected to the sample holder through a material with good thermal conductivity.
图 5 变换点分析的模拟[119] (a)—(c) 使用不同时间间隔展示的单参数时程测量; (d) 使用变换点函数展示的数据; (e) 模拟的单参数时程测量数据, 该数据具有5个明确的状态, 可用于图(a)—(d)的模拟
Fig. 5. Change-point analysis of single-parameter[119]: (a)–(c) Time-course single parameter trace with different intervals; (d) time-course single parameter trace used change-point analysis; (e) the simulated time-course single parameter trace with five states, this data was used for the simulations of panels (a)–(d).
图 6 (a) 奇异值矩阵分解的示意图, M是一个放置了大量光谱的数据集, U是放置SVD谱的正交矩阵, W和$ {\boldsymbol{\varSigma}} $分别是放置奇异值SVλ的对角矩阵和一个转置矩阵; 在实际分析中, 一般选择前面较大的数值即可; (b)—(d) 一个通过奇异值矩阵分解分析的单细胞光谱显微测量例子[130]
Fig. 6. (a) Schematic form of SVD analysis of many spectra, M is a dataset with a large number of spectra, U is the orthogonal matrix with SVD spectra, W and $ {\boldsymbol{\varSigma}} $ are the diagonal matrix with singular value SVλ and an transpose matrix, respectively; in practical analysis, the larger value in front is generally selected; (b)–(d) an example of SVD analysis in single-cell spectroscopy[130].
图 7 (a) 旋涂制备法的流程图, 通过该方法制备的薄膜的厚度小于1 μm; (b) 涂层法的流程图, 其中常使用的表面钝化剂有PLL (Poly-L-lysine), BSA (bovine serum albumin)和PEG (polyethylene glycol)
Fig. 7. (a) Processes of the spin-coat method preparation, by which the thickness of the film prepared is less than 1 μm; (b) the coating treatment method. The commonly used surface passivants include PLL (Poly-L-lysine), BSA (bovine serum albumin), and PEG (polyethylene glycol).
图 8 (a) 常规的激发光谱显微镜, 该系统通过单波长的激光扫描来获取激发光谱; (b) 基于线激光搭建的高速激发光谱显微镜[105], 在测量激发光谱时候, 该系统无需进行波长扫描; (c) 表示记录的激光光谱, 该光谱被用于激发光谱的校正
Fig. 8. (a) Traditional excitation spectral microscope, acquisition of excitation spectra is completed by performing a wavelength scan; (b) a high-speed excitation spectral microscope[105], this system enables the rapid acquisition of excitation spectra without wavelength-scan; (c) the recorded spectrum of the line laser, this spectrum is necessary for the calibration of the excitation spectrum.
图 9 (a) LH2复合体中BChla分子的空间结构[27]; (b) LH2溶液的激发光谱和一个1.5 K的单分子激发光谱[27]; (c) B850的部分激子能级示意图. 其中, 左侧和右侧分别表示B850环上C9旋转对称存在或缺失的能级分布, 灰色和黑色双箭头线表示两个偏振正交的激子态; (d) 单个LH2的低温激发光谱; 灰色和黑色分别对应图(c)中的两个激子态[27]
Fig. 9. (a) Arrangement of pigments of LH2 complex[27]; (b) the fluorescence excitation spectrum of LH2 bulk sample and a 1.5 K single-molecule excitation spectrum[27]; (c) the schematic of the B850 excitons with lower energy levels, the left and right sides represent the energy distribution of the part B850 excitons in the presence and absence of ninefold rotation symmetry; (d) the single-molecule spectra of the LH2 complex are taken at 1.5 K, the grey and black spectra may correspond to two orthogonal polarized excitations shown in panel (c)[27].
图 10 (a) 1.4 K 温度下对PSI单分子的发射光谱进行的时程观察, 顶部表示一个平均光谱; (b)两个波长区间的强度的时程变化; (c) 基于图(a)计算的二维自相关光谱图[142]
Fig. 10. (a) A time-course observation of single PSI (T. elongatus) emission spectra, the top panel indicated an average emission spectrum; (b) the intensity changes in the two specific wavelength regions; (c) a 2-dimensional synchronous correlation spectroscopy calculated from panel (a)[142].
图 11 (a) 随机波动能量传递模型; (b) 分支能量传递模型; (c) 表示一个PSI三聚体的二维激发发射矩阵, 黑色和蓝色的实线是被计算的特征向量, 黑色的特征向量被用于计算倾斜角度α, ρ是激发-发射波长的相关性系数; (d) 表示两个从图(c)中重建的激发光谱, 蓝色和红色谱线分别代表发射波长覆盖在700—725 nm (Low1)和725—752 nm (Low2)区间的激发光谱[34]
Fig. 11. (a) Model of random excitation energy transfer (EET) pathway of PSI; (b) the model of branched EET pathway of PSI; (c) a two-dimensional excitation-emission matrix of a selected PSI trimer 80 K, the black and blue solid lines respectively show the eigenvectors in which the black vector is used to calculate the inclination angle α, ρ indicates the correlation coefficient of excitation-emission wavelengths; (d) the two excitation spectra were reconstructed by integration over the red (700–725 nm, blue) and far-red (725–752 nm, red) emission wavelength regions[34].
图 12 叶绿体的冷冻显微镜观察, 在该叶绿体内的局部区域, 该观察获取了能很好甄别PSII和PSI特征的低温发射光谱[91]
Fig. 12. Low-temperature observation of a chloroplast with a larger size, this study completed the spectral imaging of fluorescence emission and in some local regions obtained the spectra that can well identify PSII and PSI features[91].
图 13 (a) Shibata等[98]开发的冷冻光谱显微镜的示意图, 插图表示冷冻恒温仓的实拍图(由Yuki Fujita博士提供). (b) 该显微镜的最新版本的示意图, 该系统实现了单个像素上荧光光谱和寿命的同时获取[56]. (c) Chlamydomonas细胞图像上单像素中的低温发射光谱, 发射光谱能被5个高斯函数很好地拟合, 根据高斯峰位归属了LHCII, PSII和PSI的成分. 绿色点线表示680 nm滤波片的透射光谱[56]. (d) 各个光合成分在细胞内的分布图[56]. (e) PSII和PSI的比值图[56]. (f) 平均寿命图[56], 右侧为该细胞中一个像素上的荧光衰减曲线
Fig. 13. (a) A cryogenic spectral microscope developed by Yutaka Shibata et al.[98], the illustration shows a photograph of the home-built cryostat that was provided by Dr. Yuki Fujita. (b) The latest version of this optical system, the present system enables the simultaneous acquisition of emission spectrum and lifetime on the same pixel[56]. (c) An emission spectrum selected from a pixel on a Chlamydomonas cell, the emission spectrum can be well fitted to the sum of five Gaussian functions. Based on the peak position of individual Gaussian curves, they assigned these Gaussian curves to LHCII, PSII, and PSI, respectively. The green dotted line indicates the transmission spectrum of a 680 nm bandpass filter[56]. (d) They visualized these photosynthetic components within a cell in terms of a method[56]. (e) The relative intensity ratio map of PSII and PSI[56]. (f) The average lifetime map of this cell, the right side shows a fluorescence curve selected from this cell[56].
图 14 (a) C4植物叶片横截面的示意图, 围绕着维管束(vascular bundle, VB)的细胞(bundle sheath, BS)中PSII的含量很低, 在远离VB的叶肉细胞(mesophyll, MS) 中, PSII的含量增大; (b) PSI的比值图; (c) 从PSI比值图中选出的两个代表性发射光谱, BS细胞中的光谱1展示了PSI的主要贡献, 相对于光谱1, MS细胞的光谱2中PSII的贡献显著性增大[61]
Fig. 14. (a) Schematic of a leaf cross-section from a C4 plant, the bundle sheath (BS) cells with small PSII/PSI ratios are near the vascular bundle (VB), the mesophyll (MS) cells with large PSII/PSI ratios are far away from VB; (b) ratio map of PSI component; (c) low-temperature emission spectra were selected from two intracellular regions[61].
表 1 光谱信号的种类及其功能, 圆环和叉符号分别代表已实现和未实现的项目; 三角符号代表已实现但尚未使用在光合作用研究中的项目
Table 1. Type of spectral source used in the optical microscope, the circular and cross symbols represent completed and uncompleted projects, respectively; the triangle symbol represents projects that have been realized but have not yet been used in photosynthesis research.
信号源 主要功能 单细胞检测 单分子探测 低温 吸收光谱 叶绿素分子的电子基态, 绝对分子浓度的评估 ◎ × × 荧光激发光谱 捕光天线蛋白的探测, 能量传递路径的定性分析 ◎ ◎ ◎ 荧光发射光谱 两个光系统的表征, 荧光淬灭的表征 ◎ ◎ ◎ 荧光寿命 发射分子的激发态动力学表征, 量子收率的测量 ◎ ◎ ◎ 自发拉曼光谱 检测弱荧光或非荧光分子, 例如胡萝卜素等 ◎ Δ Δ -
[1] Butler W, Kitajima M 1975 Biochim. Biophys. Acta 396 72Google Scholar
[2] Wendler J, Holzwarth A R 1987 Biophys. J. 52 717Google Scholar
[3] Delosme R, Olive J, Wollman F A 1996 Biochim. Biophys. Acta 1273 150Google Scholar
[4] Koblížek M, Komenda J, Masojídek J 1998 Photosynthesis: Mechanisms and Effects (Springer) pp213–216
[5] Iwai M, Yokono M, Inada N, Minagawa J 2010 Proc. Natl. Acad. Sci. U. S. A. 107 2337Google Scholar
[6] Minagawa J 2011 Biochim. Biophys. Acta 1807 897Google Scholar
[7] Tian L J, Dinc E, Croce R 2015 J. Phys. Chem. Lett. 6 2339Google Scholar
[8] Bressan M, Dall'Osto L, Bargigia I, Alcocer M J, Viola D, Cerullo G, D'Andrea C, Bassi R, Ballottari M 2016 Nat. Plants 2 16131Google Scholar
[9] Dinc E, Tian L, Roy L M, Roth R, Goodenough U, Croce R 2016 Proc. Natl. Acad. Sci. U. S. A. 113 7673Google Scholar
[10] Dickson R M, Cubitt A B, Tsien R Y, Moerner W E 1997 Nature 388 355Google Scholar
[11] Jelezko F, Tietz C, Gerken U, Wrachtrup J, Bittl R 2000 J. Phys. Chem. B 104 8093Google Scholar
[12] Brecht M, Studier H, Radics V, Nieder J B, Bittl R 2008 J. Am. Chem. Soc. 130 17487Google Scholar
[13] Kunz R, Timpmann K, Southall J, Cogdell R J, Kohler J, Freiberg A 2013 J. Phys. Chem. B 117 12020Google Scholar
[14] Schorner M, Beyer S R, Southall J, Cogdell R J, Kohler J 2015 J. Phys. Chem. B 119 13964Google Scholar
[15] Kondo T, Gordon J B, Pinnola A, Dall’Osto L, Bassi R, Schlau-Cohen G S 2019 Proc. Natl. Acad. Sci. U. S. A. 116 11247Google Scholar
[16] Kondo T, Mutoh R, Arai S, Kurisu G, Oh-Oka H, Fujiyoshi S, Matsushita M 2022 J. Chem. Phys. 156 105102Google Scholar
[17] Kondo T, Shibata Y 2022 Biophys. Physicobiol. 19 e190013Google Scholar
[18] Li H, Wang Y G, Ye M P, Li S S, Li D Y, Ren H S, Wang M H, Du L C, Li H, Veglia G, G J L, Weng Y X 2020 Sci. China Chem. 63 1121Google Scholar
[19] Ruan M X, Li H, Zhang Y, Zhao R Q, Zhang J, Wang Y J, Gao J L, Wang Z, Wang Y X, Sun D P, Ding W, Weng Y X 2023 Nat. Plants 9 1547Google Scholar
[20] Elber R, Karplus M 1987 Science 235 318Google Scholar
[21] Frauenfelder H, Sligar S G, Wolynes P G 1991 Science 254 1598Google Scholar
[22] Hofmann C, Aartsma T J, Michel H, Köhler J 2003 Proc. Natl. Acad. Sci. U. S. A. 100 15534Google Scholar
[23] Bopp M A, Jia Y W, Li L Q, Cogdell R J, Hochstrasser R M 1997 Proc. Natl. Acad. Sci. U. S. A. 94 10630Google Scholar
[24] Rutkauskas D, Novoderezkhin V, Cogdell R J, van Grondelle R 2004 Biochemistry 43 4431Google Scholar
[25] Elli A F, Jelezko F, Tietz C, Studier H, Brecht M, Bittl R, Wrachtrup J 2006 Biochemistry 45 1454Google Scholar
[26] Brecht M, Studier H, Elli A F, Jelezko F, Bittl R 2007 Biochemistry 46 799Google Scholar
[27] Matsushita M 2008 Seibutsu Butsuri 48 035Google Scholar
[28] Brotosudarmo T H, Kunz R, Bohm P, Gardiner A T, Moulisova V, Cogdell R J, Kohler J 2009 Biophys. J. 97 1491Google Scholar
[29] Kondo T, Chen W J, Schlau-Cohen G S 2017 Chem. Rev. 117 860Google Scholar
[30] Squires A H, Wang Q, Moerner W 2017 Biophys. J. 112 471a
[31] Hatazaki S, Sharma D K, Hirata S, Nose K, Iyoda T, Kölsch A, Lokstein H, Vacha M 2018 J. Phys. Chem. Lett. 9 6669Google Scholar
[32] Jana S, Du T, Nagao R, Noguchi T, Shibata Y 2019 Biochim. Biophys. Acta 1860 30Google Scholar
[33] Otomo K, Dewa T, Matsushita M, Fujiyoshi S 2023 J. Phys. Chem. B 127 4959Google Scholar
[34] Zhang X J, Taniguchi R, Nagao R, Tomo T, Noguchi T, Ye S, Shibata Y 2024 J. Phys. Chem. B 128 2664Google Scholar
[35] Müller P, Li X P, Niyogi K K 2001 Plant Physiol. 125 1558Google Scholar
[36] Wollman F A 2001 EMBO J 20 3623Google Scholar
[37] Kanazawa A, Kramer D M 2002 Proc. Natl. Acad. Sci. U. S. A. 99 12789Google Scholar
[38] Rozak P, Seiser R, Wacholtz W, Wise R 2002 Plant Cell Environ. 25 421Google Scholar
[39] Bellafiore S, Barneche F, Peltier G, Rochaix J D 2005 Nature 433 892Google Scholar
[40] Wientjes E, van Amerongen H, Croce R 2013 Biochim. Biophys. Acta 1827 420Google Scholar
[41] Ünlü C, Drop B, Croce R, van Amerongen H 2014 Proc. Natl. Acad. Sci. U. S. A. 111 3460Google Scholar
[42] Kim E, Ahn T K, Kumazaki S 2015 Plant Cell Physiol. 56 759Google Scholar
[43] Nawrocki W J, Santabarbara S, Mosebach L, Wollman F A, Rappaport F 2016 Nat. Plants 2 16031Google Scholar
[44] de la Cruz Valbuena G, VA Camargo F, Borrego-Varillas R, Perozeni F, D’Andrea C, Ballottari M, Cerullo G 2019 J. Phys. Chem. Lett. 10 2500Google Scholar
[45] Calzadilla P I, Kirilovsky D 2020 Photochem. Photobiol. Sci. 19 585Google Scholar
[46] Huang Z H, Shen L L, Wang W D, Mao Z Y, Yi X H, Kuang T Y, Shen J R, Zhang X, Han G Y 2021 Nat. Commun. 12 1100Google Scholar
[47] Huokko T, Ni T, Dykes G F, Simpson D M, Brownridge P, Conradi F D, Beynon R J, Nixon P J, Mullineaux C W, Zhang P 2021 Nat. Commun. 12 3475Google Scholar
[48] Zhang X J, Fujita Y, Tokutsu R, Minagawa J, Ye S, Shibata Y 2021 Plant Cell Physiol. 62 872Google Scholar
[49] Zhang X J, Fujita Y, Kaneda N, Tokutsu R, Ye S, Minagawa J, Shibata Y 2022 Proc. Natl. Acad. Sci. U. S. A. 119 e2122032119Google Scholar
[50] Hamel P, Olive J, Pierre Y, Wollman F A, de Vitry C 2000 J. Biol. Chem. 275 17072Google Scholar
[51] Finazzi G, Rappaport F, Furia A, Fleischmann M, Rochaix J D, Zito F, Forti G 2002 EMBO Rep. 3 280Google Scholar
[52] Munekage Y, Hojo M, Meurer J, Endo T, Tasaka M, Shikanai T 2002 Cell 110 361Google Scholar
[53] DalCorso G, Pesaresi P, Masiero S, Aseeva E, Schünemann D, Finazzi G, Joliot P, Barbato R, Leister D 2008 Cell 132 273Google Scholar
[54] Krause G, Briantais J M, Vernotte C 1983 Biochim. Biophys. Acta 723 169Google Scholar
[55] Fujita Y, Ito W, Washiyama K, Shibata Y 2018 J. Photochem. Photobiol. B: Biol. 185 111Google Scholar
[56] Fujita Y, Zhang X J, Mohamed A, Ye S, Shibata Y 2022 J. Photochem. Photobiol. B: Biol. 236 112584Google Scholar
[57] Uniacke J, Zerges W 2007 Plant Cell 19 3640Google Scholar
[58] Nixon P J, Michoux F, Yu J, Boehm M, Komenda J 2010 Ann. Bot. 106 1Google Scholar
[59] Nickelsen J, Rengstl B 2013 Annu. Rev. Plant Biol. 64 609Google Scholar
[60] Nellaepalli S, Ozawa S I, Kuroda H, Takahashi Y 2018 Nat. Commun. 9 2439Google Scholar
[61] Chiba T, Shibata Y 2019 Biochim. Biophys. Acta 1860 148090Google Scholar
[62] Croce R, Van Amerongen H 2014 Nat. Chem. Biol. 10 492Google Scholar
[63] Suvorov N, Pogorilyy V, Diachkova E, Vasil’ev Y, Mironov A, Grin M 2021 Int. J. Mol. Sci. 22 6392Google Scholar
[64] Oviedo M B, Sánchez C G 2011 J. Phys. Chem. A 115 12280Google Scholar
[65] Fuchs B M, Spring S, Teeling H, Quast C, Wulf J, Schattenhofer M, Yan S, Ferriera S, Johnson J, Glöckner F O 2007 Proc. Natl. Acad. Sci. U. S. A. 104 2891Google Scholar
[66] Wasielewski M R, Kispert L D 1986 Chem. Phys. Lett. 128 238Google Scholar
[67] Son M, Hart S M, Schlau-Cohen G S 2021 Trends Chem. 3 733Google Scholar
[68] Zhang X J, Shibata Y, Kumazaki S 2023 J. Photochem. Photobiol. C. 56 100616Google Scholar
[69] Suga M, Ozawa S I, Yoshida-Motomura K, Akita F, Miyazaki N, Takahashi Y 2019 Nat. Plants 5 626Google Scholar
[70] Jordan P, Fromme P, Witt H T, Klukas O, Saenger W, Krauß N 2001 Nature 411 909Google Scholar
[71] Brecht M 2009 Mol. Phys. 107 1955Google Scholar
[72] Hussels M, Brecht M 2011 Biochemistry 50 3628Google Scholar
[73] Köhler J, Cogdell R J 2019 Metabolism, Structure and Function of Plant Tetrapyrroles: Control Mechanisms of Chlorophyll Biosynthesis and Analysis of Chlorophyll-Binding Proteins pp1–31
[74] Hayes J, Matsuzaki S, Rätsep M, Small G 2000 J. Phys. Chem. B 104 5625Google Scholar
[75] Rätsep M, Johnson T, Chitnis P, Small G 2000 J. Phys. Chem. B 104 836Google Scholar
[76] Zazubovich V, Matsuzaki S, Johnson T, Hayes J, Chitnis P, Small G 2002 Chem. Phys. 275 47Google Scholar
[77] Riley K J, Reinot T, Jankowiak R, Fromme P, Zazubovich V 2007 J. Phys. Chem. B 111 286Google Scholar
[78] Skandary S, Konrad A, Hussels M, Meixner A J, Brecht M 2015 J. Phys. Chem. B 119 13888Google Scholar
[79] Kato K, Shinoda T, Nagao R, Akimoto S, Suzuki T, Dohmae N, Chen M, Allakhverdiev S I, Shen J R, Akita F 2020 Nat. Commun. 11 238Google Scholar
[80] Toporik H, Khmelnitskiy A, Dobson Z, Riddle R, Williams D, Lin S, Jankowiak R, Mazor Y 2020 Nat. Commun. 11 5279Google Scholar
[81] Çoruh O, Frank A, Tanaka H, Kawamoto A, El-Mohsnawy E, Kato T, Namba K, Gerle C, Nowaczyk M M, Kurisu G 2021 Commun. Biol. 4 304Google Scholar
[82] Kato K, Hamaguchi T, Nagao R, Kawakami K, Ueno Y, Suzuki T, Uchida H, Murakami A, Nakajima Y, Yokono M 2022 Elife 11 e73990Google Scholar
[83] Akita F, Nagao R, Kato K, Nakajima Y, Yokono M, Ueno Y, Suzuki T, Dohmae N, Shen J R, Akimoto S 2020 Commu. Biol. 3 232Google Scholar
[84] Klar T A, Jakobs S, Dyba M, Egner A, Hell S W 2000 Proc. Natl. Acad. Sci. U. S. A. 97 8206Google Scholar
[85] Giske A 2007 Ph. D. Dissertation (Heidelberg: Heidelberg University
[86] Ambrose W P, Basche T, Moerner W E 1991 J. Chem. Phys. 95 7150Google Scholar
[87] Vacha M, Yokoyama H, Tokizaki T, Furuki M, Tani T 1999 Rev. Sci. Instrum. 70 2041Google Scholar
[88] Jasny J, Sepiol J, Irngartinger T, Traber M, Renn A, Wild U P 1996 Rev. Sci. Instrum. 67 1425Google Scholar
[89] Fujiyoshi S, Fujiwara M, Kim C, Matsushita M, van Oijen A M, Schmidt J 2007 Appl. Phys. Lett. 91 051125Google Scholar
[90] Vàcha F, Vacha M, Bumba L, Hashizume K, Tani T 2000 Photosynthetica 38 493Google Scholar
[91] Vácha F, Sarafis V, Benediktyová Z, Bumba L, Valenta J, Vácha M, Sheue C R, Nedbal L 2007 Micron 38 170Google Scholar
[92] Sugiura K, Itoh S 2012 Plant Cell Physiol. 53 1492Google Scholar
[93] Breunig H G, Tumer F, Konig K 2013 J. Biophotonics 6 622Google Scholar
[94] Shibata Y, Katoh W, Tahara Y 2013 Biochim. Biophys. Acta 1827 520Google Scholar
[95] Steinbach G, Schubert F, Kana R 2015 J. Photochem. Photobiol. B: Biol. 152 395Google Scholar
[96] Fujiwara M, Ishii T, Ishida K, Toratani Y, Furubayashi T, Matsushita M, Fujiyoshi S 2019 Appl. Phys. Lett. 115 033701Google Scholar
[97] Yoshimoto M 2000 Jpn. J. Appl. Phys. 39 6105Google Scholar
[98] Shibata Y, Katoh W, Chiba T, Namie K, Ohnishi N, Minagawa J, Nakanishi H, Noguchi T, Fukumura H 2014 Biochim. Biophys. Acta 1837 880Google Scholar
[99] Metzger M, Konrad A, Skandary S, Ashraf I, Meixner A J, Brecht M 2016 Opt. Express 24 13023Google Scholar
[100] Wang L, Bateman B, Zanetti-Domingues L C, Moores A N, Astbury S, Spindloe C, Darrow M C, Romano M, Needham S R, Beis K, Rolfe D J, Clarke D T, Martin-Fernandez M L 2019 Commun. Biol. 2 74Google Scholar
[101] Huebinger J, Grecco H, Masip M E, Christmann J, Fuhr G R, Bastiaens P I H 2021 Sci. Adv. 7 eabk0882Google Scholar
[102] Yamanaka M, Tsuji K, Kumamoto Y, Tamura S, Miyamura W, Kubo T, Mizushima K, Kono K, Hirano H, Sugiura K 2023 bioRxiv 2023.08. 01.551103
[103] Hasegawa M, Yoshida T, Yabuta M, Terazima M, Kumazaki S 2011 J. Phys. Chem. B 115 4184Google Scholar
[104] van Oijen A M, Ketelaars M, Kohler J, Aartsma T J, Schmidt J 1999 Science 285 400Google Scholar
[105] Jana S, Shibata Y 2020 Biophys. J. 118 36Google Scholar
[106] Girolomoni L, Cazzaniga S, Pinnola A, Perozeni F, Ballottari M, Bassi R 2019 Proc. Natl. Acad. Sci. U. S. A. 116 4212Google Scholar
[107] Kondo T, Pinnola A, Chen W J, Dall'Osto L, Bassi R, Schlau-Cohen G S 2017 Nat. Chem. 9 772Google Scholar
[108] Barzda V, de Grauw C J, Vroom J, Kleima F J, van Grondelle R, van Amerongen H, Gerritsen H C 2001 Biophys. J. 81 538Google Scholar
[109] Barzda V, Gulbinas V, Kananavicius R, Cervinskas V, Van Amerongen H, Van Grondelle R, Valkunas L 2001 Biophys. J. 80 2409Google Scholar
[110] Robert B 2009 Photosynth. Res. 101 147Google Scholar
[111] Tamamizu K, Kumazaki S 2019 Biochim. Biophys. Acta 1860 78Google Scholar
[112] Tamamizu K, Sakamoto T, Kurashige Y, Nozue S, Kumazaki S 2023 Spectrochimica Acta. Part A 290 122258Google Scholar
[113] Wu H W, Volponi J V, Oliver A E, Parikh A N, Simmons B A, Singh S 2011 Proc. Natl. Acad. Sci. U. S. A. 108 3809Google Scholar
[114] Gall A, Pascal A A, Robert B 2015 Biochim. Biophys. Acta 1847 12Google Scholar
[115] Mizushima K, Kumamoto Y, Tamura S, Yamanaka M, Mochizuki K, Li M, Egoshi S, Dodo K, Harada Y, Smith N I 2023 bioRxiv 2023.11. 15.567077
[116] Jiang S, Zhang Y, Zhang R, Hu C R, Liao M H, Luo Y, Yang J L, Dong Z C, Hou J G 2015 Nat. Nanotechnol. 10 865Google Scholar
[117] Hasegawa M, Shiina T, Terazima M, Kumazaki S 2010 Plant Cell Physiol. 51 225Google Scholar
[118] Gitelson A A, Buschmann C, Lichtenthaler H K 1998 J. Plant Physiol. 152 283Google Scholar
[119] Watkins L P, Yang H 2005 J. Phys. Chem. B 109 617Google Scholar
[120] Schlau-Cohen G S, Wang Q, Southall J, Cogdell R J, Moerner W 2013 Proc. Natl. Acad. Sci. U. S. A. 110 10899Google Scholar
[121] Schlau-Cohen G S, Yang H-Y, Krüger T P, Xu P, Gwizdala M, Van Grondelle R, Croce R, Moerner W 2015 J. Phys. Chem. Lett. 6 860Google Scholar
[122] Goldsmith R H, Moerner W 2010 Nat. Chem. 2 179Google Scholar
[123] Allorent G, Lefebvre-Legendre L, Chappuis R, Kuntz M, Truong T B, Niyogi K K, Ulm R, Goldschmidt-Clermont M 2016 Proc. Natl. Acad. Sci. U. S. A. 113 14864Google Scholar
[124] Tokutsu R, Fujimura-Kamada K, Yamasaki T, Okajima K, Minagawa J 2021 Plant Physiol. 185 1894Google Scholar
[125] Horton P, Wentworth M, Ruban A 2005 FEBS Lett. 579 4201Google Scholar
[126] Liguori N, Roy L M, Opacic M, Durand G, Croce R 2013 J. Am. Chem. Soc. 135 18339Google Scholar
[127] Holub O, Seufferheld M J, Gohlke C, Govindjee, Clegg R M 2000 Photosynthetica 38 581Google Scholar
[128] Holub O, Seufferheld M, Gohlke C, Govindjee, Heiss G, Clegg R 2007 J. Microsc. 226 90Google Scholar
[129] Kumazaki S, Akari M, Hasegawa M 2013 Plant Physiology 161 1321Google Scholar
[130] Nozue S, Mukuno A, Tsuda Y, Shiina T, Terazima M, Kumazaki S 2016 Biochim. Biophys. Acta 1857 46Google Scholar
[131] Tamarat P, Maali A, Lounis B, Orrit M 2000 J. Phys. Chem. A 104 1Google Scholar
[132] Kaufmann R, Hagen C, Grunewald K 2014 Curr. Opin. Chem. Biol. 20 86Google Scholar
[133] Nabhan M A, Silvera Batista C A, Cliffel D E, Jennings G K 2023 ACS Appl. Polym. Mater. 5 3278Google Scholar
[134] Gust A, Zander A, Gietl A, Holzmeister P, Schulz S, Lalkens B, Tinnefeld P, Grohmann D 2014 Molecules 19 15824Google Scholar
[135] Paul T, Myong S 2022 STAR Protocols 3 101152Google Scholar
[136] Cohen A E, Moerner W 2005 Appl. Phys. Lett. 86 093109Google Scholar
[137] Brotosudarmo T H P, Wittmann B, Seki S, Fujii R, Köhler J r 2022 J. Phys. Chem. Lett. 13 5226Google Scholar
[138] Basché T, Moerner W, Orrit M, Talon H 1992 Phys. Rev. Lett. 69 1516Google Scholar
[139] Hussels M, Brecht M 2011 FEBS Lett. 585 2445Google Scholar
[140] Zhang X J, Fujita Y, Kaneda N, Tokutsu R, Ye S, Minagawa J, Shibata Y 2021 bioRxiv 2021.10. 27.465227
[141] Moerner W, Fromm D P 2003 Rev. Sci. Instrum. 74 3597Google Scholar
[142] Brecht M, Radics V, Nieder J B, Bittl R 2009 Proc. Natl. Acad. Sci. U. S. A. 106 11857Google Scholar
[143] Ishii K, Tahara T 2013 J. Phys. Chem. B 117 11423Google Scholar
[144] Ishii K, Tahara T 2013 J. Phys. Chem. B 117 11414Google Scholar
[145] Sarkar B, Ishii K, Tahara T 2024 J. Phys. Chem. B 128 4685Google Scholar
[146] Wang D H, Fiebig O C, Harris D, Toporik H, Ji Y, Chuang C, Nairat M, Tong A L, Ogren J I, Hart S M 2023 Proc. Natl. Acad. Sci. U. S. A. 120 e2220477120Google Scholar
[147] Kunz R, Timpmann K, Southall J, Cogdell R J, Freiberg A, Kohler J 2014 Biophys. J. 106 2008Google Scholar
[148] 翁羽翔 2007 物理 36 816Google Scholar
Weng Y X 2007 Physics 36 816Google Scholar
[149] Kunz R, Timpmann K, Southall J, Cogdell R J, Freiberg A, Köhler J r 2012 J. Phys. Chem. B 116 11017Google Scholar
[150] Kunz R, Timpmann K, Southall J, Cogdell R J, Freiberg A, Köhler J 2013 Angew. Chem. 52 8726Google Scholar
[151] 冷轩, 王专, 翁羽翔 2016 植物生理学报 52 1681
Leng X, Wang Z, Weng Y X 2016 Plant Physiol. J. 52 1681
[152] Hildner R, Brinks D, Nieder J B, Cogdell R J, Van Hulst N F 2013 Science 340 1448Google Scholar
[153] Pålsson L-O, Dekker J P, Schlodder E, Monshouwer R, van Grondelle R 1996 Photosynth. Res. 48 239Google Scholar
[154] Beekman L M, Frese R N, Fowler G J, Picorel R, Cogdell R J, van Stokkum I H, Hunter C N, van Grondelle R 1997 J. Phys. Chem. B 101 7293Google Scholar
[155] Schlodder E, Hussels M, Çetin M, Karapetyan N V, Brecht M 2011 Biochim. Biophys. Acta 1807 1423Google Scholar
[156] Liu Z F, Yan C H, Wang K B, Kuang T Y, Zhang J P, Gui L L, An X M, Chang W R 2004 Nature 428 287Google Scholar
[157] Snellenburg J J, Wlodarczyk L M, Dekker J P, van Grondelle R, van Stokkum I H 2017 Biochim. Biophys. Acta 1858 64Google Scholar
[158] Nellaepalli S, Ozawal S I, Kuroda H, Takahashi Y 2018 Nat. Commun. 9 1Google Scholar
[159] Ozawa S I, Onishi T, Takahashi Y 2010 J. Biol. Chem. 285 20072Google Scholar
[160] Shao S X 2017 Ph. D. Dissertation (London: Imperial College London
[161] Shibata K 1957 J. Biochem. 44 147Google Scholar
[162] Schuster G, Ohad I, Martineau B, Taylor W C 1985 J. Biol. Chem. 260 11866Google Scholar
[163] Franck F, Eullaffroy P, Popovic R 1997 Photosynth. Res. 51 107Google Scholar
[164] Sundqvist C, Dahlin C 1997 Physiol. Plant. 100 748Google Scholar
[165] Marchand M, Dewez D, Franck F, Popovic R 2004 J. Photochem. Photobiol. B: Biol. 75 73Google Scholar
[166] Amirjani M, Sundqvist C 2006 Photosynthetica 44 83Google Scholar
[167] Peng L W, Ma J F, Chi W, Guo J K, Zhu S Y, Lu Q T, Lu C M, Zhang L X 2006 Plant Cell 18 955Google Scholar
[168] Kovacevic D, Dewez D, Popovic R 2007 Photosynthetica 45 105Google Scholar
[169] Hell S W, Wichmann J 1994 Opt. Lett. 19 780Google Scholar
[170] Blom H, Widengren J 2017 Chem. Rev. 117 7377Google Scholar
[171] Kozawa Y, Nakamura T, Uesugi Y, Sato S 2022 Biomed. Opt. Express 13 1702Google Scholar
[172] Komura M, Itoh S 2009 Photosynth. Res. 101 119Google Scholar
[173] Kusumi A, Tsuji A, Murata M, Sako Y, Yoshizawa A C, Kagiwada S, Hayakawa T, Ohnishi S 1991 Biochemistry 30 6517Google Scholar
[174] Biskup C, Zimmer T, Benndorf K 2004 Nat. Biotechnol. 22 220Google Scholar
[175] Liu L X, Li Y H, Sun L G, Li H, Peng X, Qu J L Multiphoton Microscopy in the Biomedical Sciences XIV pp307-311
[176] Yoneda T, Tanimoto Y, Takagi D, Morigaki K 2020 Langmuir 36 5863Google Scholar
[177] Meredith S A, Yoneda T, Hancock A M, Connell S D, Evans S D, Morigaki K, Adams P G 2021 Small 17 2006608Google Scholar
[178] Harris D, Toporik H, Schlau-Cohen G S, Mazor Y 2023 Nat. Commun. 14 4650Google Scholar
[179] Onoa B, Fukuda S, Iwai M, Bustamante C, Niyogi K K 2020 Biophys. J. 118 1876Google Scholar
[180] Yang K S, Chan F Y, Watanabe H, Yoshioka S, Inouye Y, Uchihashi T, Ishitobi H, Verma P, Umakoshi T 2024 Nano Lett. 24 2805Google Scholar
计量
- 文章访问数: 293
- PDF下载量: 12
- 被引次数: 0