搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

从“强场原子物理”到“强场原子核物理”

王旭

引用本文:
Citation:

从“强场原子物理”到“强场原子核物理”

王旭
cstr: 32037.14.aps.73.20241456

From “strong-field atomic physics” to “strong-field nuclear physics”

Wang Xu
cstr: 32037.14.aps.73.20241456
PDF
HTML
导出引用
  • 20世纪80年代中期, 啁啾脉冲放大技术(2018年诺贝尔物理学奖)突破了激光强度提升的瓶颈, 激光强度跨越了原子单位的门槛(1个原子单位激光强度对应功率密度3.5×1016 W/cm2). 这样强的激光场可以在原子、分子中诱导出高阶非线性响应, 导致一系列新的物理现象, 其中尤其重要的是高次谐波辐射和阿秒光脉冲产生(2023年诺贝尔物理学奖). 随着强激光技术的进步, 当前激光强度已达到1023 W/cm2量级, 并在进一步提升中. 这样强的激光场能否在原子核中诱导出类似的高阶非线性响应、将“强场原子物理”推进至“强场原子核物理”? 最近的研究发现, 当前的强激光至少可以在一个特殊的原子核, 即钍-229原子核诱导出高阶非线性响应. 这得益于该原子核存在一个能量极低的激发态和超精细混合效应对于光核耦合的增强. 高阶非线性响应的触发可以极大地提升原子核的激发概率和调控效率. 类似原子, 被强激光驱动的原子核也会向外辐射高次谐波. “强场原子核物理”开始成为光与物质相互作用以及核物理研究的新前沿, 提供基于强激光的原子核激发和调控新方案, 以及基于原子核跃迁的相干光辐射新途径.
    In the mid-1980s, chirped pulse amplification (Nobel Prize in Physics 2018) broke through previous limits to laser intensity, allowing intensities to exceed the atomic unit threshold (1 atomic unit of laser intensity corresponds to a power density of 3.5×1016 W/cm2). These strong laser fields can cause high-order nonlinear responses in atoms and molecules, resulting in a series of novel phenomena, among which high-order harmonic generation and attosecond pulse generation (Nobel Prize in Physics 2023) are particularly important. With the development of high-power laser technology, laser intensity has now reached the order of 1023 W/cm2 and is constantly increasing. Now, a fundamental question has been raised: can such a powerful laser field induce similar high-order nonlinear responses in atomic nuclei, potentially transitioning “strong-field atomic physics” into “strong-field nuclear physics”?To explore this, we investigate a dimensionless parameter that estimates the strength of light-matter interaction: $ \eta = D{E_0}/{{\Delta }}E $, where D is the transition moment (between two representative levels of the system), E0 is the laser field amplitude, DE0 quantifies the laser-matter interaction energy, and ΔE is the transition energy. If $ \eta \ll 1 $, the interaction is within the linear, perturbative regime. However, when $ \eta \sim 1 $, highly nonlinear responses are anticipated. For laser-atom interactions, D ~ 1 a.u. and ΔE = 1 a.u., so if E0 ~ 1 a.u., then $ \eta \sim 1 $ and highly nonlinear responses are initiated, leading to the above-mentioned strong-field phenomena.In the case of light-nucleus interaction, it is typical that $ \eta \ll 1 $. When considering nuclei instead of atoms, D becomes several (~5 to 7) orders of magnitude smaller, while ΔE becomes several (~5) orders of magnitude larger. Consequently, the laser field amplitude E0 will need to be 10 orders of magnitude higher, or the laser intensity needs to be 20 orders of magnitude higher (~ 1036 W/cm2), which is beyond existing technological limit and even exceeds the Schwinger limit, where vacuum breakdown occurs.However, there exist special nuclei with exceptional properties. For instance, the 229Th nucleus has a uniquely low-lying excited state with an energy value of only 8.4 eV, or 0.3 a.u. This unusually low transition energy significantly increases η. This transition has also been proposed for building nuclear clocks, which have potential advantages over existing atomic clocks.Another key factor is nuclear hyperfine mixing (NHM). An electron, particularly the one in an inner orbital, can generate a strong electromagnetic field at the position of the nucleus, leading to the mixing of nuclear eigenstates. For 229Th, this NHM effect is especially pronounced: the lifetime of the 8.4-eV nuclear isomeric state in a bare 229Th nucleus (229Th90+) is on the order of 103 s, while in the hydrogenlike ionic state (229Th89+) it decreases by five orders of magnitude to 10–2 s. This 1s electron greatly affects the properties of the 229Th nucleus, effectively changing the nuclear transition moment from D for the bare nucleus to $ D' = D + b{\mu _{\text{e}}} $ for the hydrogenlike ion, where D ~ 10–7 a.u., $ b \approx 0.03 $ is the mixing coefficient, $ {\mu _{\text{e}}} $ is the magnetic moment of the electron, and $ D'\approx b\mu_{\text{e}}\sim10^{-4}\ \text{a}\text{.u}. $ That is to say, the existence of the 1s electron increases the light-nucleus coupling matrix element by approximately three orders of magnitude, leading to the five-orders-of-magnitude reduction in the isomeric lifetime.With the minimized transition energy ΔE and the NHM-enhanced transition moment D', it is found that $ \eta \sim 1 $ for currently achievable laser intensities. Highly nonlinear responses are expected in the 229Th nucleus. This is confirmed by our numerical results. Highly efficient nuclear isomeric excitation can be achieved: an excitation probability of over 10% is achieved per nucleus per femtosecond laser pulse at a laser intensity of 1021 W/cm2. Correspondingly, the intense laser-driven 229Th89+ system emits secondary light in the form of high harmonics, which share similarities with those from laser-driven atoms but also have different features.In conclusion, it appears feasible to extend “strong-field atomic physics” to “strong-field nuclear physics”, at least in the case of 229Th. “Strong-field nuclear physics” is emerging as a new frontier in light-matter interaction and nuclear physics, providing opportunities for precisely exciting and controlling atomic nuclei with intense lasers and new avenues for coherent light emission based on nuclear transitions.
      通信作者: 王旭, xwang@gscaep.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 12474484, U2330401, 12088101)资助的课题.
      Corresponding author: Wang Xu, xwang@gscaep.ac.cn
    • Funds: Project supported by National Natural Science Foundation of China (Grant Nos. 12474484, U2330401, 12088101).
    [1]

    Strickland D, Mourou G 1985 Opt. Commun. 56 219Google Scholar

    [2]

    Voronov G S, Delone N B 1965 JETP Lett. 1 66

    [3]

    Agostini P, Fabre F, Mainfray G, Petite G, Rahman N K 1979 Phys. Rev. Lett. 42 1127Google Scholar

    [4]

    Fittinghoff D N, Bolton P R, Chang B, Kulander K C 1992 Phys. Rev. Lett. 69 2642Google Scholar

    [5]

    Walker B, Sheehy B, DiMauro L F, Agostini P, Schafer K J, Kulander K C 1994 Phys. Rev. Lett. 73 1227Google Scholar

    [6]

    Larochelle S, Talebpour A, Chin S L 1998 J. Phys. B 31 1201Google Scholar

    [7]

    Ferray M, L’Huillier A, Li X F, Lompre L A, Mainfray G, Manus C 1988 J. Phys. B 21 L31Google Scholar

    [8]

    Paul P M, Toma E S, Breger P, Mullot G, Auge F, Balcou Ph, Muller H G, Agostini P 2001 Science 292 1689Google Scholar

    [9]

    Hentschel M, Kienberger R, Spielmann Ch, Reider G A, Milosevic N, Brabec T, Corkum P, Heinzmann U, Drescher M, Krausz F 2001 Nature 414 509Google Scholar

    [10]

    Yoon J W, Kim Y G, Choi I W, Sung J H, Lee H W, Lee S K, Nam C H 2021 Optica 8 630Google Scholar

    [11]

    Wang X L, Liu X Y, Lu X M, Chen J C, Long Y B, Li W K, Chen H D, Chen X, Bai P L, Li Y Y, Peng Y J, Liu Y Q, Wu F X, Wang C, Li Z Y, Xu Y, Liang X Y, Leng Y X, Li R X 2022 Ultrafast Sci. 2022 9894358Google Scholar

    [12]

    Qi J T, Li T, Xu R H, Fu L B, Wang X 2019 Phys. Rev. C 99 044610Google Scholar

    [13]

    Pálffy A, Popruzhenko S V 2020 Phys. Rev. Lett. 124 212505Google Scholar

    [14]

    Qi J T, Fu L B, Wang X 2020 Phys. Rev. C 102 064629Google Scholar

    [15]

    Wang X 2020 Phys. Rev. C 102 011601(RGoogle Scholar

    [16]

    Liu S W, Duan H, Ye D F, Liu J 2021 Phys. Rev. C 104 044614Google Scholar

    [17]

    Lindsey M L, Bekx J J, Schlesinger K G, Glenzer S H 2024 Phys. Rev. C 109 044605Google Scholar

    [18]

    Lan H Y, Wu D, Liu J X, Zhang J Y, Lu H G, Lv J F, Wu X Z, Luo W, Yan X Q 2023 Nucl. Sci. Tech. 34 74Google Scholar

    [19]

    Feng J, Wang W Z, Fu C B, Chen L M, Tan J H, Li Y J, Wang J G, Li Y F, Zhang G Q, Ma Y G, Zhang J 2022 Phys. Rev. Lett. 128 052501Google Scholar

    [20]

    Qi J T, Zhang H X, Wang X 2023 Phys. Rev. Lett. 130 112501Google Scholar

    [21]

    Zhang H X, Li T, Wang X 2024 Phys. Rev. Lett. 133 152503Google Scholar

    [22]

    Kroger L, Reich C 1976 Nucl. Phys. A 259 29Google Scholar

    [23]

    Seiferle B, von der Wense L, Bilous P V, Amersdorffer I, Lemell C, Libisch F, Stellmer S, Schumm T, Düllmann C E, Pálffy A, Thirolf P G 2019 Nature 573 243Google Scholar

    [24]

    Shabaev V M, Glazov D A, Ryzhkov A M, Brandau C, Plunien G, Quint W, Volchkova A M, Zinenko D V 2022 Phys. Rev. Lett. 128 043001Google Scholar

    [25]

    Lewenstein M, Balcou Ph, Ivanov M Yu, L’Huillier A, Corkum P B 1994 Phys. Rev. A 49 2117Google Scholar

    [26]

    Walker P, Podolyák Z 2021 Phys. World 34 29Google Scholar

    [27]

    Peik E, Tamm C 2003 Europhys. Lett. 61 181Google Scholar

    [28]

    Thielking J, Okhapkin M V, Głowacki P, Meier D M, von der Wense L, Seiferle B, Düllmann C E, Thirolf P G, Peik E 2018 Nature 556 321Google Scholar

    [29]

    Masuda T, Yoshimi A, Fujieda A, Fujimoto H, Haba H, Hara H, Hiraki T, Kaino H, Kasamatsu Y, Kitao S, Konashi K, Miyamoto Y, Okai K, Okubo S, Sasao N, Seto M, Schumm T, Shigekawa Y, Suzuki K, Stellmer S, Tamasaku K, Uetake S, atanabe M, Watanabe T, Yasuda Y, Yamaguchi A, Yoda Y, Yokokita T, Yoshimura M, Yoshimura K 2019 Nature 573 238Google Scholar

    [30]

    Kraemer S, Moens J, Athanasakis-Kaklamanakis M, Bara S, Beeks K, Chhetri P, Chrysalidis K, Claessens A, Cocolios T E, Correia João G M, Witte H D, Ferrer R, Geldhof S, Heinke R, Hosseini N, Huyse M, Köster U, Kudryavtsev Y, Laatiaoui M, Lica R, Magchiels G, Manea V, Merckling C, Pereira Lino M C, Raeder S, Schumm T, Sels S, Thirolf Peter G, Tunhuma S M, Van Den Bergh P, Van Duppen P, Vantomme A, Verlinde M, Villarreal R, Wahl U 2023 Nature 617 706Google Scholar

    [31]

    Tiedau J, Okhapkin M V, Zhang K, Thielking J, Zitzer G, Peik E, Schaden F, Pronebner T, Morawetz I, De Col L Toscani, Schneider F, Leitner A, Pressler M, Kazakov G A, Beeks K, Sikorsky T, Schumm T 2024 Phys. Rev. Lett. 132 182501Google Scholar

    [32]

    Elwell R, Schneider C, Jeet J, Terhune J, Morgan H, Alexandrova A N, Tran Tan H B, Derevianko A, Hudson E R 2024 Phys. Rev. Lett. 133 013201Google Scholar

    [33]

    Zhang C, Ooi T, Higgins J S, Doyle J F, von der Wense L, Beeks K, Leitner A, Kazakov G A, Li P, Thirolf P G, Schumm T, Ye J 2024 Nature 633 63Google Scholar

    [34]

    Lyuboshitz V L, Onishchuk V A, Podgoretskij M I 1966 Sov. J. Nucl. Phys. 3 420

    [35]

    Szerypo J, Barden R, Kalinowski Ł, Kirchner R, Klepper O, Płochocki A, Roeckl E, Rykaczewski K, Schardt D, Żylicz J 1990 Nucl. Phys. A 507 357Google Scholar

    [36]

    Wang W, Wang X 2024 Phys. Rev. Lett. 133 032501Google Scholar

    [37]

    Purcell E M 1946 Phys. Rev. 69 681

    [38]

    Haroche S 2013 Rev. Mod. Phys. 85 1083Google Scholar

    [39]

    Wineland D J, 2013 Rev. Mod. Phys. 85 1103Google Scholar

    [40]

    Baldwin G C, Solem J C 1997 Rev. Mod. Phys. 69 1085Google Scholar

    [41]

    Izquierdo M 2022 Technical Design Report: Scientific Instrument Soft X-Ray Port (SXP): Part A-Science Cases (Schenefeld, European X-Ray Free-Electron Laser Facility GmbH) Report Number: XFEL. EU TR-2022-001A

    [42]

    Liu T, Huang N S, Yang H X, Qi Z, Zhang K Q, Gao Z F, Chen S, Feng C, Zhang W, Luo H, Fu X X, Liu H, Faatz B, Deng H X, Liu B, Wang D, Zhao Z T 2023 Front. Phys. 11 1172368Google Scholar

  • 图 1  (a)两能级原子示意图. $ {{\Delta }}E $是两能级之间能量差, $ \hbar \omega $是激光光子能量; (b)计算中所用激光脉冲示意图; (c)脉冲结束时刻原子激发概率随着激光场强的依赖关系, 黑色圆点是TDSE数值结果, 红色虚线是一阶含时微扰理论计算结果, $ \eta = $$ D{E_0}/{{\Delta }}E $是相互作用能量与跃迁能量的比值

    Fig. 1.  (a) Illustration of a two-level atom. $ {{\Delta }}E $ is the energy difference between the two levels and $ \hbar \omega $ is the energy of the laser photon; (b) illustration of the laser pulse used in the calculation; (c) end-of-pulse excitation probability versus laser intensity. Black dots are numerical results from TDSE, and the red dashed line is the result from first-order time-dependent perturbation theory, $ \eta = D{E_0}/{{\Delta }}E $ is the ratio between the interaction energy and the transition energy.

    图 2  (a)—(c)诱导电偶极矩Dind(t)及其(d)—(f)傅里叶变换得到的频谱; 激光强度分别为1011 W/cm2 (a), (d); 1014 W/cm2 (b), (e); 1016 W/cm2 (c), (f)

    Fig. 2.  (a)–(c) Induced dipole moment Dind(t) and (d)–(f) the harmonic spectra from Fourier transform; the laser intensity is 1011 W/cm2 (a), (d); 1014 W/cm2 (b), (e); 1016 W/cm2 (c), (f).

    图 3  (a)钍-229裸核(229Th90+)最低两个核能级相关参数; (b)类氢离子(229Th89+)的超精细劈裂与混合效应. 裸核的激发态寿命在103 s量级, 而类氢离子由于超精细混合效应, 激发态寿命大幅缩短为10–2 s量级

    Fig. 3.  (a) The lowest two energy levels of the bare thorium-229 nucleus (229Th90+); (b) hyperfine splitting and state mixing in the hydrogen-like ionic state (229Th89+). Note that the lifetime of the nuclear excited state in the bare nucleus is on the order of 103 s, while the lifetime reduces dramatically to the order of 10–2 s due to hyperfine mixing effect.

    图 4  (a) 光学谐振腔中的原子, 其中原子态可以与谐振腔中的光场态之间耦合形成缀饰态; (b)离子中的原子核, 其中原子核态可以与电子态之间耦合形成类似的耦合态

    Fig. 4.  (a) Atom in a light cavity, where atomic states can couple with the light states, forming dressed states; (b) nucleus in an ion, where nuclear states can couple with the electronic states, forming coupled states.

    图 5  (a)脉冲结束时刻钍-229核激发概率(Th89+与Th90+两种情况)与激光场强的依赖关系, 该图源自文献[21](已授权); (b) 4个不同激光场强下的Th89+高次谐波频谱, 该图源自文献[21](已授权)

    Fig. 5.  (a) Nuclear isomeric excitation probability at the end of the laser pulse (for both Th89+ and Th90+) as a function of laser intensity, from Ref. [21] with permission; (b) harmonic spectra of Th89+ under four different laser intensities, from Ref. [21] with permission.

  • [1]

    Strickland D, Mourou G 1985 Opt. Commun. 56 219Google Scholar

    [2]

    Voronov G S, Delone N B 1965 JETP Lett. 1 66

    [3]

    Agostini P, Fabre F, Mainfray G, Petite G, Rahman N K 1979 Phys. Rev. Lett. 42 1127Google Scholar

    [4]

    Fittinghoff D N, Bolton P R, Chang B, Kulander K C 1992 Phys. Rev. Lett. 69 2642Google Scholar

    [5]

    Walker B, Sheehy B, DiMauro L F, Agostini P, Schafer K J, Kulander K C 1994 Phys. Rev. Lett. 73 1227Google Scholar

    [6]

    Larochelle S, Talebpour A, Chin S L 1998 J. Phys. B 31 1201Google Scholar

    [7]

    Ferray M, L’Huillier A, Li X F, Lompre L A, Mainfray G, Manus C 1988 J. Phys. B 21 L31Google Scholar

    [8]

    Paul P M, Toma E S, Breger P, Mullot G, Auge F, Balcou Ph, Muller H G, Agostini P 2001 Science 292 1689Google Scholar

    [9]

    Hentschel M, Kienberger R, Spielmann Ch, Reider G A, Milosevic N, Brabec T, Corkum P, Heinzmann U, Drescher M, Krausz F 2001 Nature 414 509Google Scholar

    [10]

    Yoon J W, Kim Y G, Choi I W, Sung J H, Lee H W, Lee S K, Nam C H 2021 Optica 8 630Google Scholar

    [11]

    Wang X L, Liu X Y, Lu X M, Chen J C, Long Y B, Li W K, Chen H D, Chen X, Bai P L, Li Y Y, Peng Y J, Liu Y Q, Wu F X, Wang C, Li Z Y, Xu Y, Liang X Y, Leng Y X, Li R X 2022 Ultrafast Sci. 2022 9894358Google Scholar

    [12]

    Qi J T, Li T, Xu R H, Fu L B, Wang X 2019 Phys. Rev. C 99 044610Google Scholar

    [13]

    Pálffy A, Popruzhenko S V 2020 Phys. Rev. Lett. 124 212505Google Scholar

    [14]

    Qi J T, Fu L B, Wang X 2020 Phys. Rev. C 102 064629Google Scholar

    [15]

    Wang X 2020 Phys. Rev. C 102 011601(RGoogle Scholar

    [16]

    Liu S W, Duan H, Ye D F, Liu J 2021 Phys. Rev. C 104 044614Google Scholar

    [17]

    Lindsey M L, Bekx J J, Schlesinger K G, Glenzer S H 2024 Phys. Rev. C 109 044605Google Scholar

    [18]

    Lan H Y, Wu D, Liu J X, Zhang J Y, Lu H G, Lv J F, Wu X Z, Luo W, Yan X Q 2023 Nucl. Sci. Tech. 34 74Google Scholar

    [19]

    Feng J, Wang W Z, Fu C B, Chen L M, Tan J H, Li Y J, Wang J G, Li Y F, Zhang G Q, Ma Y G, Zhang J 2022 Phys. Rev. Lett. 128 052501Google Scholar

    [20]

    Qi J T, Zhang H X, Wang X 2023 Phys. Rev. Lett. 130 112501Google Scholar

    [21]

    Zhang H X, Li T, Wang X 2024 Phys. Rev. Lett. 133 152503Google Scholar

    [22]

    Kroger L, Reich C 1976 Nucl. Phys. A 259 29Google Scholar

    [23]

    Seiferle B, von der Wense L, Bilous P V, Amersdorffer I, Lemell C, Libisch F, Stellmer S, Schumm T, Düllmann C E, Pálffy A, Thirolf P G 2019 Nature 573 243Google Scholar

    [24]

    Shabaev V M, Glazov D A, Ryzhkov A M, Brandau C, Plunien G, Quint W, Volchkova A M, Zinenko D V 2022 Phys. Rev. Lett. 128 043001Google Scholar

    [25]

    Lewenstein M, Balcou Ph, Ivanov M Yu, L’Huillier A, Corkum P B 1994 Phys. Rev. A 49 2117Google Scholar

    [26]

    Walker P, Podolyák Z 2021 Phys. World 34 29Google Scholar

    [27]

    Peik E, Tamm C 2003 Europhys. Lett. 61 181Google Scholar

    [28]

    Thielking J, Okhapkin M V, Głowacki P, Meier D M, von der Wense L, Seiferle B, Düllmann C E, Thirolf P G, Peik E 2018 Nature 556 321Google Scholar

    [29]

    Masuda T, Yoshimi A, Fujieda A, Fujimoto H, Haba H, Hara H, Hiraki T, Kaino H, Kasamatsu Y, Kitao S, Konashi K, Miyamoto Y, Okai K, Okubo S, Sasao N, Seto M, Schumm T, Shigekawa Y, Suzuki K, Stellmer S, Tamasaku K, Uetake S, atanabe M, Watanabe T, Yasuda Y, Yamaguchi A, Yoda Y, Yokokita T, Yoshimura M, Yoshimura K 2019 Nature 573 238Google Scholar

    [30]

    Kraemer S, Moens J, Athanasakis-Kaklamanakis M, Bara S, Beeks K, Chhetri P, Chrysalidis K, Claessens A, Cocolios T E, Correia João G M, Witte H D, Ferrer R, Geldhof S, Heinke R, Hosseini N, Huyse M, Köster U, Kudryavtsev Y, Laatiaoui M, Lica R, Magchiels G, Manea V, Merckling C, Pereira Lino M C, Raeder S, Schumm T, Sels S, Thirolf Peter G, Tunhuma S M, Van Den Bergh P, Van Duppen P, Vantomme A, Verlinde M, Villarreal R, Wahl U 2023 Nature 617 706Google Scholar

    [31]

    Tiedau J, Okhapkin M V, Zhang K, Thielking J, Zitzer G, Peik E, Schaden F, Pronebner T, Morawetz I, De Col L Toscani, Schneider F, Leitner A, Pressler M, Kazakov G A, Beeks K, Sikorsky T, Schumm T 2024 Phys. Rev. Lett. 132 182501Google Scholar

    [32]

    Elwell R, Schneider C, Jeet J, Terhune J, Morgan H, Alexandrova A N, Tran Tan H B, Derevianko A, Hudson E R 2024 Phys. Rev. Lett. 133 013201Google Scholar

    [33]

    Zhang C, Ooi T, Higgins J S, Doyle J F, von der Wense L, Beeks K, Leitner A, Kazakov G A, Li P, Thirolf P G, Schumm T, Ye J 2024 Nature 633 63Google Scholar

    [34]

    Lyuboshitz V L, Onishchuk V A, Podgoretskij M I 1966 Sov. J. Nucl. Phys. 3 420

    [35]

    Szerypo J, Barden R, Kalinowski Ł, Kirchner R, Klepper O, Płochocki A, Roeckl E, Rykaczewski K, Schardt D, Żylicz J 1990 Nucl. Phys. A 507 357Google Scholar

    [36]

    Wang W, Wang X 2024 Phys. Rev. Lett. 133 032501Google Scholar

    [37]

    Purcell E M 1946 Phys. Rev. 69 681

    [38]

    Haroche S 2013 Rev. Mod. Phys. 85 1083Google Scholar

    [39]

    Wineland D J, 2013 Rev. Mod. Phys. 85 1103Google Scholar

    [40]

    Baldwin G C, Solem J C 1997 Rev. Mod. Phys. 69 1085Google Scholar

    [41]

    Izquierdo M 2022 Technical Design Report: Scientific Instrument Soft X-Ray Port (SXP): Part A-Science Cases (Schenefeld, European X-Ray Free-Electron Laser Facility GmbH) Report Number: XFEL. EU TR-2022-001A

    [42]

    Liu T, Huang N S, Yang H X, Qi Z, Zhang K Q, Gao Z F, Chen S, Feng C, Zhang W, Luo H, Fu X X, Liu H, Faatz B, Deng H X, Liu B, Wang D, Zhao Z T 2023 Front. Phys. 11 1172368Google Scholar

  • [1] 于术娟, 刘竹琴, 李雁鹏. 对称分子${\text{H}}_{\text{2}}^{\text{ + }}$在强短波激光场中高次谐波椭偏率性质的研究. 物理学报, 2023, 72(4): 043101. doi: 10.7498/aps.72.20221946
    [2] 杜进旭, 王国利, 李小勇, 周效信. 优化双色近红外激光及其二次谐波场驱动原子产生孤立阿秒脉冲. 物理学报, 2022, 71(23): 233207. doi: 10.7498/aps.71.20221375
    [3] 汉琳, 苗淑莉, 李鹏程. 优化组合激光场驱动原子产生高次谐波及单个超短阿秒脉冲理论研究. 物理学报, 2022, 71(23): 233204. doi: 10.7498/aps.71.20221298
    [4] 魏博宁, 焦志宏, 周效信. 非对称波形激光驱动的氢原子高次谐波频移及控制. 物理学报, 2022, 71(7): 073201. doi: 10.7498/aps.71.20212146
    [5] 姚惠东, 崔波, 马思琦, 余超, 陆瑞锋. 原子错位堆栈增强双层MoS2高次谐波产率. 物理学报, 2021, 70(13): 134207. doi: 10.7498/aps.70.20210731
    [6] 徐新荣, 仲丛林, 张铱, 刘峰, 王少义, 谭放, 张玉雪, 周维民, 乔宾. 强激光等离子体相互作用驱动高次谐波与阿秒辐射研究进展. 物理学报, 2021, 70(8): 084206. doi: 10.7498/aps.70.20210339
    [7] 蔡怀鹏, 高健, 李博原, 刘峰, 陈黎明, 远晓辉, 陈民, 盛政明, 张杰. 相对论圆偏振激光与固体靶作用产生高次谐波. 物理学报, 2018, 67(21): 214205. doi: 10.7498/aps.67.20181574
    [8] 管仲, 李伟, 王国利, 周效信. 激光驱动晶体发射高次谐波的特性研究. 物理学报, 2016, 65(6): 063201. doi: 10.7498/aps.65.063201
    [9] 李贵花, 谢红强, 姚金平, 储蔚, 程亚, 柳晓军, 陈京, 谢新华. 中红外飞秒激光场中氮分子高次谐波的多轨道干涉特性研究. 物理学报, 2016, 65(22): 224208. doi: 10.7498/aps.65.224208
    [10] 罗香怡, 刘海凤, 贲帅, 刘学深. 非均匀激光场中氢分子离子高次谐波的增强. 物理学报, 2016, 65(12): 123201. doi: 10.7498/aps.65.123201
    [11] 卢发铭, 夏元钦, 张盛, 陈德应. 飞秒强激光脉冲驱动Ne高次谐波蓝移产生相干可调谐极紫外光实验研究. 物理学报, 2013, 62(2): 024212. doi: 10.7498/aps.62.024212
    [12] 张春丽, 冯志波, 祁月盈, 车继馨. 任意偏振激光作用下二维模型H原子的谐波发射. 物理学报, 2011, 60(8): 083201. doi: 10.7498/aps.60.083201
    [13] 成春芝, 周效信, 李鹏程. 原子在红外激光场中产生高次谐波及阿秒脉冲随波长的变化规律. 物理学报, 2011, 60(3): 033203. doi: 10.7498/aps.60.033203
    [14] 曹卫军, 成春芝, 周效信. 原子在双色组合场中产生高次谐波的转换效率与激光波长的关系. 物理学报, 2011, 60(5): 054210. doi: 10.7498/aps.60.054210
    [15] 李会山, 李鹏程, 周效信. 强激光场中模型氢原子的势函数对产生高次谐波强度的影响. 物理学报, 2009, 58(11): 7633-7639. doi: 10.7498/aps.58.7633
    [16] 张春丽, 祁月盈, 刘学深, 丁培柱. 双色激光场中高次谐波转化效率的提高. 物理学报, 2007, 56(2): 774-780. doi: 10.7498/aps.56.774
    [17] 赵松峰, 周效信, 金 成. 强激光场中模型氢原子和真实氢原子的高次谐波与电离特性研究. 物理学报, 2006, 55(8): 4078-4085. doi: 10.7498/aps.55.4078
    [18] 李鹏程, 周效信, 董晨钟, 赵松峰. 强激光场中长程势与短程势原子产生高次谐波与电离特性研究. 物理学报, 2004, 53(3): 750-755. doi: 10.7498/aps.53.750
    [19] 张秋菊, 盛政明, 张 杰. 超短脉冲强激光与固体靶作用产生的高次谐波红移. 物理学报, 2004, 53(7): 2180-2183. doi: 10.7498/aps.53.2180
    [20] 喻 胜, 李宏福, 谢仲怜, 罗 勇. 渐变复合腔回旋管高次谐波注-波互作用非线性模拟. 物理学报, 2000, 49(12): 2455-2459. doi: 10.7498/aps.49.2455
计量
  • 文章访问数:  221
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-18
  • 修回日期:  2024-11-11
  • 上网日期:  2024-11-29
  • 刊出日期:  2024-12-20

/

返回文章
返回