搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于谷间光学声子驱动的锗锡谷间电子转移效应

黄诗浩 李佳鹏 李海林 卢旭星 孙钦钦 谢灯

引用本文:
Citation:

基于谷间光学声子驱动的锗锡谷间电子转移效应

黄诗浩, 李佳鹏, 李海林, 卢旭星, 孙钦钦, 谢灯
cstr: 32037.14.aps.74.20240980

Electron transmission dynamics of Ge1–x Snx alloys based on inter-valley electrons transferring effect

HUANG Shihao, LI Jiapeng, LI Hailin, LU Xuxing, SUN Qinqin, XIE Deng
cstr: 32037.14.aps.74.20240980
PDF
HTML
导出引用
  • 谷间电子散射机制对锗锡材料的电子输运及光电性能的影响至关重要. 本文构建了锗锡材料ΓL能谷之间的谷间光学声子散射模型, 研究其谷间电子转移效应. 结果表明: 散射率RΓL高于R约一个数量级, 同时RΓL随Sn组分的增加而减小, 并在Sn组分大于0.1时趋于饱和; 而R几乎与Sn组分无关. 谷间电子转移模型表明, Γ能谷电子填充率随Sn组分的增大呈现先增大后趋于饱和的规律, 且与注入电子浓度关系不大. 不考虑散射模型时, 间接带Ge1–x Snx材料Γ能谷电子填充率与注入电子浓度关系不大; 直接带Ge1–x Snx材料Γ能谷电子填充率与注入电子浓度相关, 且电子浓度越低, Γ能谷电子填充率越大. 研究成果有助于理解锗锡材料的电子迁移率、电输运和光电转换等微观机制, 可为锗锡材料在微电子和光电子等领域提供理论参考价值.
    Ge1–x Snx alloys have aroused great interest in silicon photonics because of their compatiblity with complementary metal-oxide-semiconductor (CMOS) technology. As a result, they are considered potential candidate materials. Owing to the significant differences in effective mass within the valleys, the unique dual-valley structure of Γ valley and L valley in energy can improve the optoelectronic properties of Ge1–x Snx alloys. Therefore, inter-valley scattering mechanisms between the Γ and L valley in Ge1–x Snx alloys are crucial for understanding the electronic transports and optical properties of Ge1–x Snx materials. This work focuses on the theoretical analysis of inter-valley scattering mechanisms between Γ and L valley, and hence on the electron transmission dynamics in Ge1–x Snx alloys based on the phenomenological theory model.Firstly, the 30th-order k ·p perturbation theory is introduced to reproduce the band structure of Ge1–x Snx. The results show that the effective mass of L valley is always about an order of magnitude higher than that of Γ valley, which will significantly influence the electron distributions between Γ and L valley.Secondly, the scattering mechanism is modeled in Ge1–x Snx alloys. The results indicate that scattering rate RΓL is about an order of magnitude higher than R, while RΓL decreases with the increase of Sn composition and tends to saturate when Sn component is greater than 0.1. And R is almost independent of the Sn component.Thirdly, kinetic processes of carriers between Γ and L valley are proposed to analyze the electron transmission dynamics in Ge1–x Snx alloys. Numerical results indicate that the electron population ratio for Γ-valley increases and then tends to saturation with the increase of Sn composition, and is independent of the injected electron concentration. The model without the scattering mechanism indicates that the electron population ratio for Γ-valley in indirect-Ge1–x Snx alloys is independent of the injected electron concentration, while the electron population ratio for Γ-valley in direct-Ge1–x Snx alloys is dependent on the injected electron concentration, and the lower the electron concentration, the greater the electron population ratio for Γ-valley is.The results open a new way of understanding the mechanisms of electron mobility, electrical transport, and photoelectric conversion in Ge1–x Snx alloys, and can provide theoretical value for designing Ge1–x Snx alloys in the fields of microelectronics and optoelectronics.
      通信作者: 黄诗浩, haoshihuang@fjut.edu.cn
    • 基金项目: 福建省自然科学基金(批准号: 2022J01950)资助的课题.
      Corresponding author: HUANG Shihao, haoshihuang@fjut.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Fujian Province, China (Grant No. 2022J01950).
    [1]

    Miao Y H, Wang G L, Kong Z Z, Xu B Q, Zhao X W, Luo X, Lin H X, Dong Y, Lu B, Dong L P, Zhou J R, Liu J B, Radamson H H 2021 Nanomaterials 11 2556Google Scholar

    [2]

    Oka H, Mizubayashi W, Ishikawa Y, Uchida N, Mori T, Endo K 2021 Appl. Phys. Express 14 096501Google Scholar

    [3]

    Zhang D, Song J J, Xue X X, Zhang S Q 2022 Chin. Phys. B 31 068401Google Scholar

    [4]

    Wang H J, Han G Q, Jiang X W, Liu Y, Zhang J C, Hao Y 2019 IEEE Trans. Electron Devices 66 1985Google Scholar

    [5]

    Wang P C, Huang P R, Ghosh S, Bansal R, Jheng Y T, Lee K C, Cheng H H, Chang G E 2024 ACS Photonics 11 2659Google Scholar

    [6]

    Reboud V, Concepción O, Du W, El Kurdi M, Hartmann J M, Ikonic Z, Assali S, Pauc N, Calvo V, Cardoux C, Kroemer E, Coudurier N, Rodriguez P, Yu S Q, Buca D, Chelnokov A 2024 Photon. Nanostruc. Fundam. Appl. 58 101233Google Scholar

    [7]

    Zheng J, Liu Z, Xue C L, Li C B, Zuo Y H, Cheng B W, Wang Q M 2018 J. Semicond. 39 061006Google Scholar

    [8]

    Zhou Y Y, Dou W, Du W, Pham T, Ghetmiri S A, Al-Kabi S, Mosleh A, Alher M, Margetis J, Tolle J, Sun G, Soref R, Li B, Mortazavi M, Naseem H, Yu S Q 2016 J. Appl. Phys. 120 023102Google Scholar

    [9]

    Ghetmiri S A, Du W, Margetis J, Mosleh A, Cousar L, Conley B R, Domulevicz L, Nazzal A, Sun G, Soref R A, Tolle J, Li B, Naseem H A, Yu S Q 2014 Appl. Phys. Lett. 105 151109Google Scholar

    [10]

    Wirths S, Geiger R, von den Driesch N, Mussler G, Stoica T, Mantl S, Ikonic Z, Luysberg M, Chiussi S, Hartmann J M, Sigg H, Faist J, Buca D, Grützmacher D 2015 Nat. Photonics 9 88Google Scholar

    [11]

    Arakawa Y, Nakamura T, Urino Y, Fujita T 2013 IEEE Commun. Mag. 51 72Google Scholar

    [12]

    Wu S T, Zhang L, Wan R Q, Zhou H, Lee K H, Chen Q M, Huang Y C, Gong X, Tan C S 2023 Photonics Res. 11 1606Google Scholar

    [13]

    Liu X Q, Zhang J, Niu C Q, Liu T R, Huang Q X, Li M M, Zhang D D, Pang Y Q, Liu Z, Zuo Y H, Cheng B W 2022 Photonics Res. 10 1567Google Scholar

    [14]

    Ghosh S, Sun G, Yu S Q, Chang G E 2025 IEEE J. Sel. Top. Quantum Electron. 31 1Google Scholar

    [15]

    黄诗浩, 谢文明, 汪涵聪, 林光杨, 王佳琪, 黄巍, 李成 2018 物理学报 67 040501Google Scholar

    Huang S H, Xie W M, Wang H C, Lin G Y, Wang J Q, Huang W, Li C 2018 Acta Phys. Sin. 67 040501Google Scholar

    [16]

    Huang S H, Zheng Q Q, Xie W M, Lin J Y, Huang W, Li C, Qi D F 2018 J. Phys. Condens. Matter 30 465701Google Scholar

    [17]

    Murphy-Armando F, Murray É D, Savić I, Trigo M, Reis D A, Fahy S 2023 Appl. Phys. Lett. 122 012202Google Scholar

    [18]

    Wang C, Wang H, Chen W, Xie X, Zong J, Liu L, Jin S, Zhang Y, Yu F, Meng Q, Tian Q, Wang L, Ren W, Li F, Zhang H, Zhang Y 2021 Nano Lett. 21 8258Google Scholar

    [19]

    Stern M J, René de Cotret L P, Otto M R, Chatelain R P, Boisvert J P, Sutton M, Siwick B J 2018 Phys. Rev. B 97 165416Google Scholar

    [20]

    Huang P, Zhang Y, Hu K, Qi J, Zhang D, Cheng L 2024 Chin. Phys. B 33 017201Google Scholar

    [21]

    Rogowicz E, Kopaczek J, Kutrowska-Girzycka J, Myronov M, Kudrawiec R, Syperek M 2021 ACS Appl. Electron. Mater. 3 344Google Scholar

    [22]

    Rideau D, Feraille M, Ciampolini L, Minondo M, Tavernier C, Jaouen H, Ghetti A 2006 Phys. Rev. B 74 195208Google Scholar

    [23]

    Song Z, Fan W, Tan C S, Wang Q, Nam D, Zhang D H, Sun G 2019 New J. Phys. 21 073037Google Scholar

    [24]

    Lever L, Ikonić Z, Valavanis A, Kelsall R W, Myronov M, Leadley D R, Hu Y, Owens N, Gardes F Y, Reed G T 2012 J. Appl. Phys. 112 123105Google Scholar

    [25]

    Liu S Q, Yen S T 2019 J. Appl. Phys. 125 245701Google Scholar

    [26]

    Wang X, Li H, Camacho-Aguilera R, Cai Y, Kimerling L C, Michel J, Liu J 2013 Opt. Lett. 38 652Google Scholar

    [27]

    Claussen S A, Tasyurek E, Roth J E, Miller D A B 2010 Opt. Express 18 25596Google Scholar

    [28]

    Zhou X Q, van Driel H M, Mak G 1994 Phys. Rev. B 50 5226Google Scholar

    [29]

    Mak G, van Driel H M 1994 Phys. Rev. B 49 16817Google Scholar

  • 图 1  Ge1–x Snx材料的能带参数 (a) Γ能谷与L能谷的能量差值与Sn组分之间的关系; (b)导带电子状态密度与Sn组分之间的关系  

    Fig. 1.  Parameters of Ge1–x Snx: (a) The energy difference of Γ and L valley as a function of composition x; (b) the electron density of states (DOS) effective masses at Γ and L valley as a function of composition x.

    图 2  Ge1–x Snx材料的谷间散射率 (a) Γ能谷到L能谷的散射率与能量的关系; (b) L能谷到Γ能谷的散射率与能量的关系

    Fig. 2.  Inter-valley scattering rate (a) from Γ to L valleys and (b) from L to Γ valley with different Sn compositions.

    图 3  谷间散射率与注入电子之间的关系 (a) Γ能谷到L能谷的谷间散射率; (b) L能谷到Γ能谷的散射率

    Fig. 3.  Relationship between inter-valley scattering rate and inject electron density with different Sn compositions: (a) From Γ to L valleys scattering; (b) from L to Γ valley scattering.

    图 4  谷间光学声子散射率与Sn组分之间的关系

    Fig. 4.  Inter-valley scattering rate from Γ to L valleys scattering and from L to Γ valley scattering under different Sn compositions.

    图 5  Ge1–x Snx材料注入电子浓度与电子转移时间的关系(对数坐标), 插图为线性坐标

    Fig. 5.  Relationship between electron transmission time and electron density in Γ, L valleys with various Sn compositions, the inset shows as a linear scale.

    图 6  散射时间常数与Sn组分的关系

    Fig. 6.  Relationship between composition and time-delay.

    图 7  考虑与不考虑散射模型的情况下, Γ能谷、L能谷电子填充率与Sn组分的关系

    Fig. 7.  Simulated electron population ratio for Γ and L valleys as a function of Sn compositions, with and without the scattering model.

  • [1]

    Miao Y H, Wang G L, Kong Z Z, Xu B Q, Zhao X W, Luo X, Lin H X, Dong Y, Lu B, Dong L P, Zhou J R, Liu J B, Radamson H H 2021 Nanomaterials 11 2556Google Scholar

    [2]

    Oka H, Mizubayashi W, Ishikawa Y, Uchida N, Mori T, Endo K 2021 Appl. Phys. Express 14 096501Google Scholar

    [3]

    Zhang D, Song J J, Xue X X, Zhang S Q 2022 Chin. Phys. B 31 068401Google Scholar

    [4]

    Wang H J, Han G Q, Jiang X W, Liu Y, Zhang J C, Hao Y 2019 IEEE Trans. Electron Devices 66 1985Google Scholar

    [5]

    Wang P C, Huang P R, Ghosh S, Bansal R, Jheng Y T, Lee K C, Cheng H H, Chang G E 2024 ACS Photonics 11 2659Google Scholar

    [6]

    Reboud V, Concepción O, Du W, El Kurdi M, Hartmann J M, Ikonic Z, Assali S, Pauc N, Calvo V, Cardoux C, Kroemer E, Coudurier N, Rodriguez P, Yu S Q, Buca D, Chelnokov A 2024 Photon. Nanostruc. Fundam. Appl. 58 101233Google Scholar

    [7]

    Zheng J, Liu Z, Xue C L, Li C B, Zuo Y H, Cheng B W, Wang Q M 2018 J. Semicond. 39 061006Google Scholar

    [8]

    Zhou Y Y, Dou W, Du W, Pham T, Ghetmiri S A, Al-Kabi S, Mosleh A, Alher M, Margetis J, Tolle J, Sun G, Soref R, Li B, Mortazavi M, Naseem H, Yu S Q 2016 J. Appl. Phys. 120 023102Google Scholar

    [9]

    Ghetmiri S A, Du W, Margetis J, Mosleh A, Cousar L, Conley B R, Domulevicz L, Nazzal A, Sun G, Soref R A, Tolle J, Li B, Naseem H A, Yu S Q 2014 Appl. Phys. Lett. 105 151109Google Scholar

    [10]

    Wirths S, Geiger R, von den Driesch N, Mussler G, Stoica T, Mantl S, Ikonic Z, Luysberg M, Chiussi S, Hartmann J M, Sigg H, Faist J, Buca D, Grützmacher D 2015 Nat. Photonics 9 88Google Scholar

    [11]

    Arakawa Y, Nakamura T, Urino Y, Fujita T 2013 IEEE Commun. Mag. 51 72Google Scholar

    [12]

    Wu S T, Zhang L, Wan R Q, Zhou H, Lee K H, Chen Q M, Huang Y C, Gong X, Tan C S 2023 Photonics Res. 11 1606Google Scholar

    [13]

    Liu X Q, Zhang J, Niu C Q, Liu T R, Huang Q X, Li M M, Zhang D D, Pang Y Q, Liu Z, Zuo Y H, Cheng B W 2022 Photonics Res. 10 1567Google Scholar

    [14]

    Ghosh S, Sun G, Yu S Q, Chang G E 2025 IEEE J. Sel. Top. Quantum Electron. 31 1Google Scholar

    [15]

    黄诗浩, 谢文明, 汪涵聪, 林光杨, 王佳琪, 黄巍, 李成 2018 物理学报 67 040501Google Scholar

    Huang S H, Xie W M, Wang H C, Lin G Y, Wang J Q, Huang W, Li C 2018 Acta Phys. Sin. 67 040501Google Scholar

    [16]

    Huang S H, Zheng Q Q, Xie W M, Lin J Y, Huang W, Li C, Qi D F 2018 J. Phys. Condens. Matter 30 465701Google Scholar

    [17]

    Murphy-Armando F, Murray É D, Savić I, Trigo M, Reis D A, Fahy S 2023 Appl. Phys. Lett. 122 012202Google Scholar

    [18]

    Wang C, Wang H, Chen W, Xie X, Zong J, Liu L, Jin S, Zhang Y, Yu F, Meng Q, Tian Q, Wang L, Ren W, Li F, Zhang H, Zhang Y 2021 Nano Lett. 21 8258Google Scholar

    [19]

    Stern M J, René de Cotret L P, Otto M R, Chatelain R P, Boisvert J P, Sutton M, Siwick B J 2018 Phys. Rev. B 97 165416Google Scholar

    [20]

    Huang P, Zhang Y, Hu K, Qi J, Zhang D, Cheng L 2024 Chin. Phys. B 33 017201Google Scholar

    [21]

    Rogowicz E, Kopaczek J, Kutrowska-Girzycka J, Myronov M, Kudrawiec R, Syperek M 2021 ACS Appl. Electron. Mater. 3 344Google Scholar

    [22]

    Rideau D, Feraille M, Ciampolini L, Minondo M, Tavernier C, Jaouen H, Ghetti A 2006 Phys. Rev. B 74 195208Google Scholar

    [23]

    Song Z, Fan W, Tan C S, Wang Q, Nam D, Zhang D H, Sun G 2019 New J. Phys. 21 073037Google Scholar

    [24]

    Lever L, Ikonić Z, Valavanis A, Kelsall R W, Myronov M, Leadley D R, Hu Y, Owens N, Gardes F Y, Reed G T 2012 J. Appl. Phys. 112 123105Google Scholar

    [25]

    Liu S Q, Yen S T 2019 J. Appl. Phys. 125 245701Google Scholar

    [26]

    Wang X, Li H, Camacho-Aguilera R, Cai Y, Kimerling L C, Michel J, Liu J 2013 Opt. Lett. 38 652Google Scholar

    [27]

    Claussen S A, Tasyurek E, Roth J E, Miller D A B 2010 Opt. Express 18 25596Google Scholar

    [28]

    Zhou X Q, van Driel H M, Mak G 1994 Phys. Rev. B 50 5226Google Scholar

    [29]

    Mak G, van Driel H M 1994 Phys. Rev. B 49 16817Google Scholar

  • [1] 刘伟, 平云霞, 杨俊, 薛忠营, 魏星, 武爱民, 俞文杰, 张波. 微波退火和快速热退火下钛调制镍与锗锡反应. 物理学报, 2021, 70(11): 116801. doi: 10.7498/aps.70.20202118
    [2] 武红, 李峰. GeH/层间弱相互作用调控锗烯电子结构的机制. 物理学报, 2016, 65(9): 096801. doi: 10.7498/aps.65.096801
    [3] 吴海娜, 孙雪, 公卫江, 易光宇. 电子-声子相互作用对平行双量子点体系热电效应的影响. 物理学报, 2015, 64(7): 077301. doi: 10.7498/aps.64.077301
    [4] 苏少坚, 张东亮, 张广泽, 薛春来, 成步文, 王启明. Ge(001)衬底上分子束外延生长高质量的Ge1-xSnx合金. 物理学报, 2013, 62(5): 058101. doi: 10.7498/aps.62.058101
    [5] 罗质华, 梁国栋. 带有电子-双声子相互作用的一维铁磁性介观环的非经典本征态和非经典本征持续电流. 物理学报, 2012, 61(5): 057303. doi: 10.7498/aps.61.057303
    [6] 罗质华, 梁国栋. 一维介观环中持续电流的电子-声子相互作用非经典效应. 物理学报, 2011, 60(3): 037303. doi: 10.7498/aps.60.037303
    [7] 王晓艳, 张鹤鸣, 宋建军, 马建立, 王冠宇, 安久华. 应变Si/(001)Si1-xGex电子迁移率. 物理学报, 2011, 60(7): 077205. doi: 10.7498/aps.60.077205
    [8] 赵凤岐, 周炳卿. 外电场作用下纤锌矿氮化物抛物量子阱中极化子能级. 物理学报, 2007, 56(8): 4856-4863. doi: 10.7498/aps.56.4856
    [9] 夏志林, 范正修, 邵建达. 激光作用下薄膜中的电子-声子散射速率. 物理学报, 2006, 55(6): 3007-3012. doi: 10.7498/aps.55.3007
    [10] 张红群, 刘韶军, 李融武. TTF-TCNQ的Peierls相变研究. 物理学报, 2005, 54(7): 3317-3320. doi: 10.7498/aps.54.3317
    [11] 张红群. 一维有机导体的Peierls相变研究. 物理学报, 2004, 53(4): 1162-1165. doi: 10.7498/aps.53.1162
    [12] 陈丹平, 姜雄伟, 朱从善. Bi2O3-Li2O玻璃的热致变色研究. 物理学报, 2001, 50(8): 1501-1506. doi: 10.7498/aps.50.1501
    [13] 李 泌. 铁的原子间相互作用及声子谱. 物理学报, 2000, 49(9): 1692-1695. doi: 10.7498/aps.49.1692
    [14] 金奎娟, 潘少华, 杨国桢. 量子阱中电子-LO声子相互作用引起共振喇曼散射的不对称线形. 物理学报, 1995, 44(2): 299-304. doi: 10.7498/aps.44.299
    [15] 余超凡, 陈斌, 何国柱. 巡游电子系统中电子-声子相互作用对磁性激发的影响. 物理学报, 1994, 43(5): 839-845. doi: 10.7498/aps.43.839
    [16] 杨光参. q振子光场模型的光与物质相互作用的非线性理论. 物理学报, 1994, 43(4): 521-529. doi: 10.7498/aps.43.521
    [17] 傅荣堂, 李列明, 孙鑫, 傅柔励. 高分子中的电子-声子相互作用与非线性光学极化率. 物理学报, 1993, 42(3): 422-430. doi: 10.7498/aps.42.422
    [18] 刘福绥, 范希庆, 刘砚章, 王淮生, 阮英超. 电子多声子作用对散射时间的效应. 物理学报, 1989, 38(1): 154-158. doi: 10.7498/aps.38.154
    [19] 沈文达, 朱莳通. 库仑相互作用对相对论性电子束受激散射的影响. 物理学报, 1982, 31(2): 234-236. doi: 10.7498/aps.31.234
    [20] 郑建宣, 张文英, 刘起宏, 刘敬旗. 铜-锗-锡三元系合金相图. 物理学报, 1966, 22(4): 423-428. doi: 10.7498/aps.22.423
计量
  • 文章访问数:  287
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-14
  • 修回日期:  2024-11-18
  • 上网日期:  2024-12-13

/

返回文章
返回