搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分光镜厚度对双臂Tolansky干涉自准直仪测角准确性的影响

方振远 张宝武 崔建军 张斌 陈恺 许子杰 朱玲 孙怡 罗贤欢

引用本文:
Citation:

分光镜厚度对双臂Tolansky干涉自准直仪测角准确性的影响

方振远, 张宝武, 崔建军, 张斌, 陈恺, 许子杰, 朱玲, 孙怡, 罗贤欢
cstr: 32037.14.aps.74.20241174

Effect of beam splitter thickness on angle measurement accuracy of dual-arm Tolansky interferometric autocollimator

FANG Zhenyuan, ZHANG Baowu, CUI Jianjun, ZHANG Bin, CHEN Kai, XU Zijie, ZHU Ling, SUN Yi, LUO Xianhuan
cstr: 32037.14.aps.74.20241174
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 为了解决Tolansky干涉微小角度测量过程依赖动镜测量臂臂长的问题, 提出了一种双臂Tolansky干涉自准直测角方案, 针对其中分光镜厚度对测角准确性的影响, 利用几何光学的单折射球面公式和过渡公式分析了分光镜厚度影响下的虚拟点光源位置, 建立了包含分光镜厚度和折射率的圆心偏转量与偏转角之间的关系, 通过虚拟仿真和实体实验相结合的方式详细考察了分光镜厚度对测角准确性的影响. 结果显示, 分光镜厚度不同会影响初始圆心的位置; 随着分光镜厚度的增大, 不同角度下, 仿真测量结果与含厚度因素关系式理论值的相对偏差在±0.5%以内; 在同一角度下, 所建立的含厚度因素关系式与不含厚度因素关系式的差值逐渐增大. 在1 mm分光镜的厚度下, 以已标定自准直仪所测导轨数据为准, 所建立的含厚度因素关系式与不含厚度因素关系式的相对误差仅为0.22%. 本文结果为这种新型自准直仪的深度研究和开发提供了重要的指导.
    In order to solve the problem that the measurement arm length needs to be obtained in real time when calculating the measurement angle in the process of Tolansky interference small angle measurement, a dual-arm Tolansky interference autocollimation angle measurement scheme is proposed, which not only maintains the function of Tolansky interference, but also integrates the principle of optical leverage. In the simulation study, it is found that the splitter with thickness in the scheme will lead to the lateral offset of the optical axis of the emitted light, which will change the position of the virtual point light source, and finally change the position of the center of the interference circle on the detector. In this work, in order to reduce the influence of the thickness of the beam splitter on the angle measurement accuracy of the angle measurement scheme, the optical path structure of the angle measurement scheme is redrawn, and the relationship between the center offset of the interference ring and the deflection angle, which contains the thickness factor and can accurately describe the optical path, is deduced. Therefore, the corresponding method is adopted as follows. Firstly, the measurement optical path of the splitter with a thickness factor is redrawn, the splitter is partially enlarged, and the original beam is replaced with the center line of the laser beam to draw the optical path. Then, the position of the virtual point light source under the influence of the thickness of the splitter is analyzed by using the single refraction spherical formula and the transition formula of geometric optics, and the relationship between the offset of the interference center and the deflection angle with the thickness of the splitter is established. Secondly, the coordinate information of the center of the interference ring under different thickness parameters of the splitter is obtained by using the virtual simulation experiment, which proves the correctness of the theoretical analysis. Then, simulation experiments such as simulation measurement of multiple sets of setting angles and angle measurement under different splitter thickness conditions are carried out, and the accuracy of the relationship including the splitter thickness factor deduced above is cross-validated. Finally, combined with the actual experiment, measurements are taken on the guide rail and calibrated autocollimator, and the influence of beam splitter thickness on angle measurement accuracy is investigated in detail. The research results are obtained below. Experiments show that the thickness of the splitter will affect the position of the initial center of the circle; with the increase of the thickness of the splitter, the error between the simulation measurement results and the relationship including the thickness factor is within ± 0.5 % at different angles, and the experimental data and theoretical results are in good agreement. At the same angle, as the thickness of the beam splitter increases, the difference between the established relationship and the approximate relationship gradually increases. With 1-mm-thick beam splitter, the relative error between the established relationship and the calculated value of the approximate relationship is only 0.22 % based on the data of the guide rail measured by the calibrated autocollimator. From these results, a conclusion can be drawn below. The utilizing a thinner spectroscope can effectively reduce the calculation and measurement errors, providing an important guidance for carrying out the in-depth research and development of this new autocollimator.
      通信作者: 张宝武, zhangbaowu@126.com
    • 基金项目: 国家市场监督管理总局科技计划项目 (批准号: 2022MK220)和国家重点研发计划(批准号: 2023YFF0616203)资助的课题.
      Corresponding author: ZHANG Baowu, zhangbaowu@126.com
    • Funds: Project supported by the State Administration of Market Supervision and Administration of Science and Technology Plan Program, China (Grant No. 2022MK220) and the National Key R&D Program of China (Grant No. 2023YFF0616203).
    [1]

    She C, Xu L, Shan X D, Zhu H, Zhou Y, Wang Q L 2021 Appl. Opt. 60 8016Google Scholar

    [2]

    Shimizu Y, Matsukuma H, Wei G 2019 Sensors 19 5289Google Scholar

    [3]

    Zhao Y K, Fan X W, Wang C C, Lu L 2020 Opt. Lasers Eng. 126 105866Google Scholar

    [4]

    Geckeler R D, Krause M, Just A, Kranz O, Bosse H 2015 Measurement 73 231Google Scholar

    [5]

    Zhang M S 2021 J. Phys. Conf. Ser. 1952 022020Google Scholar

    [6]

    付鹏, 张艳春, 赵涛, 赵勇明, 唐松, 李颖, 韩沈丹 2023 中国激光 51 219Google Scholar

    Fu P, Zhang Y C, Zhao T, Zhao Y M, Tang S, Li Y, Han S D 2023 Chin. J. Lasers 51 219Google Scholar

    [7]

    Wang S X, Kong L B, Wang C J, Cheung C F 2023 Opt. Express 31 2234Google Scholar

    [8]

    Wu C G, Shen X Y 2023 Journal of China Jiliang University 34 342(in Chinese)[吴晨光, 沈小燕 2023 中国计量大学学报 34 342]

    [9]

    吴晨光, 沈小燕, 周世男 2023中国测试 (网络首发)

    Wu C G, Shen X Y, Zhou S N 2023 China Measurem. Test (In press

    [10]

    陈秋霞 2006 红外 8 33Google Scholar

    Chen Q X 2006 Infrared 8 33Google Scholar

    [11]

    陈颖, 张学典, 逯兴莲, 张振一, 潘丽娜 2011 光机电信息 28 6Google Scholar

    Chen Y, Zhang X D, Lu X L, Zhang Z Y, Pan L N 2011 OME Inf. 28 6Google Scholar

    [12]

    Xu W, Xu W H, Bouet N, Zhou J, Yan H F, Huang X J, Huang L, Lu M, Maxim Z, Chu Y S, Nazaretski E 2023 Opt. Lasers Eng. 161 107331Google Scholar

    [13]

    蓝旭辉 2020 硕士学位论文 (杭州: 中国计量大学)

    Lan X H 2020 M. S. Thesis (Hangzhou: China Jiliang University

    [14]

    Guo C Y, Zhou Z J, Wu R, Su Z Y 2024 Opt. Fiber Technol. 86 103841Google Scholar

    [15]

    Larichev R A, Filatov Y V 2013 J. Opt. Technol. 80 554Google Scholar

    [16]

    Korolev A N, Gartsuev A I, Polishchuk G S, Tregub V P 2009 J. Opt. Technol. 76 624Google Scholar

    [17]

    Shen M Z, Liao S T 2005 KEM 295-296 337Google Scholar

    [18]

    张宝武, 崔建军, 欧阳烨锋, 陈恺, 方振远 2023 计量学报 44 1202Google Scholar

    Zhang B W, Cui J J, Ouyang Y F, Chen K, Fang Z Y 2023 Acta Metrolog. Sin. 44 1202Google Scholar

    [19]

    欧阳烨锋, 许子杰, 张宝武, 朱玲, 方振远, 罗贤欢, 孙怡 2024 光学学报 44 0526001Google Scholar

    Ouyang Y F, Xu Z J, Zhang B W, Zhu L, Fang Z Y, Luo X H, Sun Y 2024 Acta Opt. Sin. 44 0526001Google Scholar

    [20]

    许子杰, 张宝武, 施江焕, 欧阳烨锋, 朱玲, 方振远 2024 光学技术 50 459Google Scholar

    Xu Z J, Zhang B W, Shi J H, Ouyang Y F, Zhu L, Fang Z Y 2024 Opt. Techn. 50 459Google Scholar

    [21]

    张宝武, 许子杰, 施江焕, 朱玲, 方振远, 孙怡, 罗贤欢 2024 中国计量大学学报 35 1Google Scholar

    Zhang B W, Xu Z J, Shi J H, Zhu L, Fang Z Y, Sun Y, Luo X H 2024 J. China Jiliang Univ. 35 1Google Scholar

    [22]

    欧阳烨锋, 张宝武, 李玉彬, 朱玲, 方振远, 薛财文 2023 中国计量大学学报 34 541Google Scholar

    Ouyang Y F, Li Y B, Zhu L, Fang Z Y, Xue C W 2023 J. China Jiliang Univ. 34 541Google Scholar

    [23]

    欧阳烨锋, 崔建军, 张宝武, 陈恺, 杨宁, 方振远 2024 激光技术 48 135Google Scholar

    Ouyang Y F, Cui J J, Zhang B W, Chen K, Yang N, Fang Z Y 2024 Laser Techn. 48 135Google Scholar

  • 图 1  Tolansky干涉自准直仪模型

    Fig. 1.  Tolansky interference autocollimator model.

    图 2  同心圆环干涉图像

    Fig. 2.  Concentric ring interference image.

    图 3  干涉自准直仪原理图

    Fig. 3.  Schematic diagram of interference autocollimator.

    图 4  Tolansky干涉自准直仪仿真模型

    Fig. 4.  Simulation model of Tolansky interferometric autocollimator.

    图 5  实验一仿真数据与理论数据

    Fig. 5.  The simulation data and theoretical data of Experiment 1.

    图 6  X轴偏转仿真数据与理论数据误差

    Fig. 6.  Simulation data of X-axis deflection and theoretical data error.

    图 7  Y轴偏转仿真数据与理论数据误差

    Fig. 7.  Simulation data of Y-axis deflection and theoretical data error.

    图 8  圆心偏移量随分光镜厚度变化趋势图

    Fig. 8.  The change trend of center offset with the thickness of the beam splitter.

    图 9  双臂Tolensky干涉实体仪器

    Fig. 9.  Dual-arm Tolensky interference entity instrument.

    图 10  (18)式与(19)式测量值计算结果比较

    Fig. 10.  Comparison of calculated results of measured values between Eq. (18) and Eq. (19).

    表 1  Zemax软件参数设置

    Table 1.  Zemax software parameter settings.

    物体类型 参数
    激光源 高斯激光, 波长 632 nm, 光源宽度 5 mm.
    会聚透镜 镜片直径 12 mm, 厚度 1 mm
    分光镜 尺寸 20 mm × 20 mm, 厚度可调节, x 轴倾斜 45°
    参考反射镜 直径 10 mm, 厚度不计, x 轴倾斜 –90°
    测量反射镜 直径 10 mm, 厚度不计, 无倾斜
    CCD 接收面尺寸 12.8 mm × 12.8 mm, x 轴倾斜 90°
    参考臂臂长$ {D}_{1} $ 初始长度 70 mm, 臂长可调节
    测量臂臂长$ {D}_{2} $ 初始长度 130 mm, 臂长可调节
    相机距离L 初始长度 140 mm, 距离可调节
    空气折射率 $ {n}_{0}=1.00029 $
    玻璃折射率 $ n=1.5168 $
    下载: 导出CSV

    表 2  实验一参数

    Table 2.  Parameters of Experiment 1.

    实验对象 分光镜
    厚度/mm
    会聚透镜
    CL2位置
    理论
    数值/mm
    $ {C}_{0}{C}_{0} $ 0 固定 0
    $ {C}_{0}{C}_{2} $ 5 固定 4.822735
    $ {C}_{0}{C}_{1} $ 5 下移 1.671882
    下载: 导出CSV

    表 3  实验二参数设置

    Table 3.  Parameter setting of Experiment 2.

    物体类型 参数
    分光镜 尺寸 20 mm × 20 mm, 厚度 5 mm
    CCD 相机距离 $ L=140 $mm
    参考臂臂长 $ {D}_{1}=70 $mm
    会聚透镜焦距 $ f=70 $mm
    下载: 导出CSV
  • [1]

    She C, Xu L, Shan X D, Zhu H, Zhou Y, Wang Q L 2021 Appl. Opt. 60 8016Google Scholar

    [2]

    Shimizu Y, Matsukuma H, Wei G 2019 Sensors 19 5289Google Scholar

    [3]

    Zhao Y K, Fan X W, Wang C C, Lu L 2020 Opt. Lasers Eng. 126 105866Google Scholar

    [4]

    Geckeler R D, Krause M, Just A, Kranz O, Bosse H 2015 Measurement 73 231Google Scholar

    [5]

    Zhang M S 2021 J. Phys. Conf. Ser. 1952 022020Google Scholar

    [6]

    付鹏, 张艳春, 赵涛, 赵勇明, 唐松, 李颖, 韩沈丹 2023 中国激光 51 219Google Scholar

    Fu P, Zhang Y C, Zhao T, Zhao Y M, Tang S, Li Y, Han S D 2023 Chin. J. Lasers 51 219Google Scholar

    [7]

    Wang S X, Kong L B, Wang C J, Cheung C F 2023 Opt. Express 31 2234Google Scholar

    [8]

    Wu C G, Shen X Y 2023 Journal of China Jiliang University 34 342(in Chinese)[吴晨光, 沈小燕 2023 中国计量大学学报 34 342]

    [9]

    吴晨光, 沈小燕, 周世男 2023中国测试 (网络首发)

    Wu C G, Shen X Y, Zhou S N 2023 China Measurem. Test (In press

    [10]

    陈秋霞 2006 红外 8 33Google Scholar

    Chen Q X 2006 Infrared 8 33Google Scholar

    [11]

    陈颖, 张学典, 逯兴莲, 张振一, 潘丽娜 2011 光机电信息 28 6Google Scholar

    Chen Y, Zhang X D, Lu X L, Zhang Z Y, Pan L N 2011 OME Inf. 28 6Google Scholar

    [12]

    Xu W, Xu W H, Bouet N, Zhou J, Yan H F, Huang X J, Huang L, Lu M, Maxim Z, Chu Y S, Nazaretski E 2023 Opt. Lasers Eng. 161 107331Google Scholar

    [13]

    蓝旭辉 2020 硕士学位论文 (杭州: 中国计量大学)

    Lan X H 2020 M. S. Thesis (Hangzhou: China Jiliang University

    [14]

    Guo C Y, Zhou Z J, Wu R, Su Z Y 2024 Opt. Fiber Technol. 86 103841Google Scholar

    [15]

    Larichev R A, Filatov Y V 2013 J. Opt. Technol. 80 554Google Scholar

    [16]

    Korolev A N, Gartsuev A I, Polishchuk G S, Tregub V P 2009 J. Opt. Technol. 76 624Google Scholar

    [17]

    Shen M Z, Liao S T 2005 KEM 295-296 337Google Scholar

    [18]

    张宝武, 崔建军, 欧阳烨锋, 陈恺, 方振远 2023 计量学报 44 1202Google Scholar

    Zhang B W, Cui J J, Ouyang Y F, Chen K, Fang Z Y 2023 Acta Metrolog. Sin. 44 1202Google Scholar

    [19]

    欧阳烨锋, 许子杰, 张宝武, 朱玲, 方振远, 罗贤欢, 孙怡 2024 光学学报 44 0526001Google Scholar

    Ouyang Y F, Xu Z J, Zhang B W, Zhu L, Fang Z Y, Luo X H, Sun Y 2024 Acta Opt. Sin. 44 0526001Google Scholar

    [20]

    许子杰, 张宝武, 施江焕, 欧阳烨锋, 朱玲, 方振远 2024 光学技术 50 459Google Scholar

    Xu Z J, Zhang B W, Shi J H, Ouyang Y F, Zhu L, Fang Z Y 2024 Opt. Techn. 50 459Google Scholar

    [21]

    张宝武, 许子杰, 施江焕, 朱玲, 方振远, 孙怡, 罗贤欢 2024 中国计量大学学报 35 1Google Scholar

    Zhang B W, Xu Z J, Shi J H, Zhu L, Fang Z Y, Sun Y, Luo X H 2024 J. China Jiliang Univ. 35 1Google Scholar

    [22]

    欧阳烨锋, 张宝武, 李玉彬, 朱玲, 方振远, 薛财文 2023 中国计量大学学报 34 541Google Scholar

    Ouyang Y F, Li Y B, Zhu L, Fang Z Y, Xue C W 2023 J. China Jiliang Univ. 34 541Google Scholar

    [23]

    欧阳烨锋, 崔建军, 张宝武, 陈恺, 杨宁, 方振远 2024 激光技术 48 135Google Scholar

    Ouyang Y F, Cui J J, Zhang B W, Chen K, Yang N, Fang Z Y 2024 Laser Techn. 48 135Google Scholar

  • [1] 孙晨, 冯玉涛, 傅頔, 张亚飞, 李娟, 刘学斌. 多普勒差分干涉仪干涉图信噪比对相位不确定度研究. 物理学报, 2020, 69(1): 014202. doi: 10.7498/aps.69.20191179
    [2] 祁科武, 赵宇宏, 郭慧俊, 田晓林, 侯华. 温度对小角度对称倾斜晶界位错运动影响的晶体相场模拟. 物理学报, 2019, 68(17): 170504. doi: 10.7498/aps.68.20190051
    [3] 李荣凤, 高树超, 肖朝凡, 徐智怡, 薛兴泰, 刘建波, 赵研英, 陈佳洱, 卢海洋, 颜学庆. 激光尾波场驱动准连续小角度电子束研究进展. 物理学报, 2017, 66(15): 154101. doi: 10.7498/aps.66.154101
    [4] 刘伟波, 董丽芳. 介质阻挡放电中同心圆环斑图的产生机理. 物理学报, 2015, 64(24): 245202. doi: 10.7498/aps.64.245202
    [5] 韩奎, 王子煜, 沈晓鹏, 吴琼华, 童星, 唐刚, 吴玉喜. 基于光子晶体自准直和带隙效应的马赫-曾德尔干涉仪设计. 物理学报, 2011, 60(4): 044212. doi: 10.7498/aps.60.044212
    [6] 张淳民, 朱兰艳. 新型偏振风成像干涉仪中偏振化方向对调制度和干涉强度的影响研究. 物理学报, 2010, 59(2): 989-997. doi: 10.7498/aps.59.989
    [7] 严新革, 张淳民, 赵葆常. 时空混合调制型偏振干涉成像光谱仪干涉图获取模式研究. 物理学报, 2010, 59(5): 3123-3129. doi: 10.7498/aps.59.3123
    [8] 简小华, 张淳民, 张霖, 赵葆常, 朱兰艳. 利用偏振干涉成像光谱仪进行偏振检测的最佳角度分析. 物理学报, 2009, 58(4): 2286-2293. doi: 10.7498/aps.58.2286
    [9] 袁志林, 张淳民, 赵葆常. 新型偏振干涉成像光谱仪信噪比研究. 物理学报, 2007, 56(11): 6413-6419. doi: 10.7498/aps.56.6413
    [10] 杜志伟, 周铁涛, 赵 辉, 冯林平, 董宝中, 陈昌麒. Al-Zn-Mg-Cu合金时效过程的小角度x射线散射研究. 物理学报, 2004, 53(10): 3601-3608. doi: 10.7498/aps.53.3601
    [11] 吴 光, 周春源, 曾和平. 光纤Sagnac干涉仪中单光子干涉及路由控制. 物理学报, 2004, 53(3): 698-702. doi: 10.7498/aps.53.698
    [12] 柴路, 何铁英, 杨胜杰, 王清月, 张志刚. 光谱位相干涉仪参数的优化选取. 物理学报, 2004, 53(1): 114-118. doi: 10.7498/aps.53.114
    [13] 张国英, 刘贵立, 曾梅光, 钱存富. 钢中小角度晶界区的电子结构及掺杂效应. 物理学报, 2000, 49(7): 1344-1347. doi: 10.7498/aps.49.1344
    [14] 徐信业, 王育竹. 多普勒型原子干涉仪的理论探讨. 物理学报, 1997, 46(6): 1062-1072. doi: 10.7498/aps.46.1062
    [15] 魏铭鉴. 用双晶衍射仪作小角散射测量. 物理学报, 1990, 39(2): 225-230. doi: 10.7498/aps.39.225
    [16] 长度室. 激光小角度测量仪. 物理学报, 1976, 25(6): 546-548. doi: 10.7498/aps.25.546
    [17] 权夕祖. 扫描球面-平面干涉仪. 物理学报, 1975, 24(5): 375-380. doi: 10.7498/aps.24.375
    [18] 母国光, 战元龄. 关于测量单色仪的光谱狭缝宽度的干涉方法. 物理学报, 1964, 20(5): 457-464. doi: 10.7498/aps.20.457
    [19] 胡建芳, 韦钦, 张志三. 锗红外干涉仪. 物理学报, 1964, 20(11): 1164-1171. doi: 10.7498/aps.20.1164
    [20] 物理教研组摄谱仪小组. 小型自准直攝谱仪. 物理学报, 1960, 16(4): 245-246. doi: 10.7498/aps.16.245
计量
  • 文章访问数:  346
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-26
  • 修回日期:  2025-01-04
  • 上网日期:  2025-01-24
  • 刊出日期:  2025-03-05

/

返回文章
返回