-
超高强度马氏体时效不锈钢同时拥有优异的强度及易加工等良好性能,广泛应用于如飞机起落架等关键承载部件中。然而,由于析出的纳米粒子通常与BCC马氏体基体呈半共格或非共格关系,传统马氏体时效不锈钢在追求超高强度的同时依然面临材料强韧性制衡这一难题。本工作通过团簇式设计方法设计了一种新型共格析出强化的超高强度马氏体时效不锈钢(Fe-7.95Cr-13.47Ni-3.10Al-1.83Mo-0.03C-0.23Nb,wt.%)。实验结果表明,该冷轧态不锈钢时效后马氏体组织晶粒发生破碎,拉长,同时BCC马氏体基体中存在高密度位错(~1.8×10-3 nm-2)和大量的共格析出的B2-NiAl纳米粒子(<5 nm)。力学性能方面,该不锈钢在时效过程后表现出明显的时效硬化,峰值时效硬度达到651 HV。并且该不锈钢不仅具有极高的屈服强度(
s YS=2.3 GPa),而且具有良好的断后延伸率(El=3.6%),表明实现了良好的强塑性匹配。最后,我们对该不锈钢的超高强度来源进行了深入讨论,发现该不锈钢的超高强度来自于各不同微观结构的强化作用。本工作为进一步设计开发出高性能超高强度马氏体时效不锈钢提供了有价值的参考 。Ultra-high strength maraging stainless steels are widely used in many critical applications, such as aircraft landing gears owing to their excellent strength and good processability. However, traditional ultra-high strength maraging stainless steels face the challenge of balancing strength and ductility in the pursuit of ultra-high strength. This is mainly due to the semi-coherent or non-coherent relationship between the precipitated nanoparticles and the body-centered cubic (BCC) martensitic matrix. In this study, we design a novel ultra-high strength maraging stainless steel (Fe-7.95Cr-13.47Ni-3.10Al-1.83Mo-0.03C-0.23Nb, wt.%) using a cluster formula approach. Alloy ingots are prepared by vacuum induction melting under an argon atmosphere, followed by hot rolling at 950℃ and multiple passes of cold rolling. Finally, the alloy is aged at 500℃ for up to 288 h. Microstructural characterizations of the alloy in different aging states are performed using EBSD and TEM. As a result, the martensitic structure of the alloy was fragmented and elongated, with high-density dislocations (~ 1.8×10-3 nm-2) and a large number of coherent B2-NiAl nanoparticles (< 5 nm) observed in the BCC martensitic matrix after cold rolling and aging. In terms of mechanical properties, the alloy exhibits significant age-hardening, with a peak-aged hardness of 651 HV after ageing treatment. It also demonstrates an extraordinarily high yield strength (s YS = 2.3 GPa) and a decent elongation (El = 3.6%), indicating a well-balanced strength-ductility property. Finally, we present an in-depth discussion on the origins of the ultra-high strength in the novel alloy, revealing that various microstructural features contribute to its strengthening mechanism. This study provides valuable guidance for the design of high-performance ultra-high strength maraging stainless steels.-
Keywords:
- maraging stainless steel /
- ultra-high strength /
- coherent precipitation /
- strengthening mechanisms
-
[1] Yang K, Niu M C, Tian J L, Wang W 2018Acta. Metall. Sin. 54 1567(in Chinese) [杨柯, 牛梦超, 田家龙, 王威2018金属学报54 1567]
[2] Luo H W, Shen G H 2020Acta. Metall. Sin. 56 494(in Chinese) [罗海文, 沈国慧2020金属学报56 494]
[3] Sun W W, R. K. W. Marceau, M.J. Styles, D. Barbier, C.R. Hutchinson 2017Acta Mater. 130 28
[4] J. W. Morris Jr 2017Nat. Mater. 16 787
[5] Yang J R, Yu T H, Wang C H 2006Mater. Sci. Eng. A 438 276
[6] Shi X H, Zeng W D, Zhao Q Y, Peng W W, Kang C 2016J. Alloys. Compd. 679 184
[7] D.E. Wert, R.P. DiSabella, Strong 2006Adv. Mater. Process. 164 34
[8] S. Ifergane, M. Pinkas, Z. Barkayc, E. Brosh, V. Ezersky, O. Beeri, N. Eliaz 2017Mater. Charact. 127 129
[9] S. Floreen 1968Metall. Rev. 13 115
[10] R. Tewari, S. Mazumder, I. S. Batra, G. K. Dey, S. Banerjee 2000Acta Mater. 48 1187
[11] Xu W, P.E.J. Rivera-Díaz-del-Castillo, Yan W, Yang K, D. San Martín, L.A.I. Kestens, S. van der Zwaag 2010Acta Mater. 58 4067
[12] Qi L, Jin Y C, Zhao Y H, Yang X M, Zhao H, Han P D 2015J. Alloys. Compd. 621 383
[13] O. Moshka, M. Pinkas, E. Brosh, V. Ezersky, L. Meshi 2015Mater. Sci. Eng. A 638 232
[14] Zhou Q Q, Zhai Y C 2009Acta Metall. Sin. 45 1249(in Chinese) [周倩青, 翟玉春2009金属学报45 1249]
[15] M. Hättestrand, J.O. Nilsson, K. Stiller, P. Liu, M. Andersson 2004Acta Mater. 52 1023
[16] A. Ghosh, S. Das, S. Chatterjee 2008Mater. Sci. Eng. A 486 152
[17] A. Mahmoudi, M.R. Zamanzad Ghavidel, S. Hossein Nedjad, A. Heidarzadeh, M. Nili Ahmadabadi 2011Mater. Charact. 62 976
[18] H. Leitner, R. Schnitzer, M. Schober, S. Zinner 2011Acta Mater. 59 5012
[19] V. Vaithyanathan, Chen L Q 2002Acta Mater. 50 4061
[20] Li H, Liu Y, Liu B 2022Mater. Sci. Eng. A 842 143099
[21] Niu M C, Zhou G, Wang W, M. Babar Shahzad, Shan Y Y, Yang K 2019Acta Mater. 179 296
[22] Wan J, Ruan H, Ding Z, Kong L 2023Scr. Mater. 226 115224
[23] Li K, Yu B, R.D.K. Misra, Han G, Liu S, Shang C J 2018Mater. Sci. Eng. A 715 485
[24] S.W. Ooi, P. Hill, M. Rawson, H.K.D.H. Bhadeshia 2013Mater. Sci. Eng. A 564 485
[25] Liu T Q, Cao Z X, Wang H, Wu G L, Jin J J, Cao W Q 2020Scr. Mater. 178 285
[26] Li Y C, Yan W, J.D. Cotton, G.J. Ryan, Shen Y F, Wang W, Shan Y Y, Yang K 2015Mater. Des. 82 56
[27] P. Hedströma, S. Baghsheikhi, P. Liu, J. Odqvist 2012Mater. Sci. Eng. A 534 552
[28] Li J L, Zhang J Q, Li Z, Wang Q, Dong C, Xu F, Sun L X, P. K. Liaw 2024J. Mater. Sci. Technol. 186 174
[29] Zhang J X, Wang J C, H. Harada, Y. Koizumi 2005Acta Mater. 53 4623
[30] Wang Z H, Wang Q, Niu B, Dong C, Zhang H W, Zhang H F, P. K. Liaw 2021Mater. Res. Lett. 9 458
[31] Jiang S H, Wang H, Wu Y, Liu X J, Chen H H, Yao M J, B. Gault, D. Ponge, D. Raabe, A. Hirata, Chen M W, Wang Y D, Lu Z P 2017Nature. 544 460
[32] Zhou B C, Liu S F, Wu H H, Luan J H, Guo J M. Yang T, Jiao Z B 2023Mater. Des. 234 112341
[33] Liang Y J, Wang L J, Wen Y R, Cheng B Y, Wu Q L, Cao T Q, Xiao Q, Xue Y F, Sha G, Wang Y D, Ren Y, Li X Y, Wang L, Wang F C, Cai H N 2018Nat. Commun. 9 4063
[34] Hong H L, Wang Q, Dong C, P.K. Liaw 2014Sci. Rep. 4 7065
[35] Pang C, Jiang B B, Shi Y, Wang Q, Dong C 2015J. Alloys. Compd. 652 63
[36] Wang Z H, Niu B, Wang Q, Dong C, Jie J C, Wang T M, T.G. Nieh 2021J. Mater. Sci. Technol. 93 60
[37] H.A. Calderon, M.E. Fine, J.R. Weertman 1987Metall. Trans. A 19 1135
[38] N.Q. Vo, C.H. Liebscher, M.J.S. Rawlings, M. Asta, D.C. Dunand 2014Acta Mater. 71 89
[39] E.J. Czyryca 1993Key Eng. Mater. 84 491
[40] Wen D H, Wang Q, Jiang B B, Zhang C, Li X N, Chen G Q, Tang R, Zhang R Q, Dong C, P.K. Liaw 2018Mater. Sci. Eng. A 719 27
[41] N. Bailey 1993Welding Steels without Hydrogen Cracking (Cambridge: Woodhead Publishing) p69
[42] C.L. Briant, S.K. Banerji 1978Int. Metal. Rev. 23 164
[43] W.F. Hosford 2005Mechanical Behavior of Materials (New York: Cambridge University Press) p16
[44] H. Leitner, M. Schober, R. Schnitzer 2010Acta Mater. 58 1261
[45] Bi Z X 2014Special Steel Technology. 20 11(in Chinese) [毕正绪2014特钢技术20 11]
[46] E.I. Galindo-Nava, P.E.J. Rivera-Díaz-del-Castillo 2015Acta Mater. 98 81
[47] E.I. Galindo-Nava, W.M. Rainforth, P.E.J. Rivera-Díaz-del-Castillo 2016Acta Mater. 117 270
[48] P.E.J. Rivera-Díaz-del-Castillo, K. Hayashi, E.I. Galindo-Nava 2013Mater. Sci. Technol. 29 1206
[49] R.L. Fleischer 1961Acta Matall. 9 966
[50] D.R. Lide 2008CRC Handbook of Chemistry and Physics (Boca Raton: CRC Press) 12-10
[51] S. Morito, H. Yoshida, T. Maki, Huang X 2006Mater. Sci. Eng. A 438 237
[52] U.F. Kocks, H. Mecking 2003Prog. Mater Sci. 48 171
[53] Su J, Raabe D, Li Z M 2019Acta Mater. 163 40
[54] E. Nembach 1997Mater. Sci. Technol. 3 329
[55] T. Gladman 1999Mater. Sci. J. 15 30
[56] A. Argon 2007Strengthening Mechanisms in Crystal Plasticity (Oxford: Oxford University Press) p74
[57] P.M. Kelley 1973Int. Metall. Rev. 18 31
[58] A. Kelly, R.B. Nicholson 1971Strengthening Methods in Crystals (London: Elsevier) p37
[59] T. Hong, A.J. Freeman 1991Phys. Rev. B Condens. Matter. 43 6446
计量
- 文章访问数: 32
- PDF下载量: 1
- 被引次数: 0