搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于哈伯德模型的超冷原子量子模拟研究进展

何院耀 杨兵

引用本文:
Citation:

基于哈伯德模型的超冷原子量子模拟研究进展

何院耀, 杨兵
cstr: 32037.14.aps.74.20241595

Recent research progress of ultracold-atom quantum simulation of Fermi-Hubbard model

HE Yuanyao, YANG Bing
cstr: 32037.14.aps.74.20241595
PDF
HTML
导出引用
  • 费米-哈伯德模型是描述凝聚态物理中关联电子体系的基础模型, 与高温超导现象具有深刻联系. 近年来, 超冷原子量子模拟已成为研究该模型的重要范式, 同时多体数值计算在该模型基础物理性质的研究方面也取得了重要进展. 特别地, 最近超冷原子实验观测到三维哈伯德模型中的反铁磁相变, 是费米-哈伯德模型量子模拟的重要一步, 为理解量子磁性与高温超导之间的联系奠定了基础. 本文回顾费米-哈伯德模型的理论与实验研究进展, 侧重于三维体系, 并讨论实验的发展历程和现状, 展望未来的发展趋势.
    Fermi-Hubbard model is a fundamental lattice model describing correlated electron systems in condensed matter physics and is closely related to high-temperature superconductivity. In recent years, cold-atom quantum simulations have become an important paradigm for studying the Fermi-Hubbard model, and advances in quantum many-body computations have contributed to our understanding of its fundamental properties. Notably, a recent ultracold-atom experiment achieving the well-known antiferromagnetic (AFM) phase transition in the three-dimensional (3D) Hubbard model represents a key step in quantum simulation, laying a foundation for exploring the link between the quantum magnetism and high-temperature superconductivity. In this paper, the experimental and theoretical research progress of Fermi-Hubbard model in 3D systems is reviewed, the development history and present status in this field are discussed, and the future development direction is also prospected.The paper is organized as follows. To begin with, recent progress of observing AFM phase transitions in the 3D Hubbard model is reviewed, focusing on an ultracold-atom experiment conducted by the research group at the University of Science and Technology of China (USTC). Next, a theoretical introduction to the fundamental properties of the 3D Hubbard model is provided, in which prior theoretical studies is summarized, the current research status is outlined, and some unresolved or under-explored problems are discussed. In Section 3, the quantum simulation of the Hubbard model using ultracold atoms in optical lattices is discussed, and the basic principle, historical developments and key challenges are outlined. The USTC team overcame these challenges through innovative techniques such as atom cooling, large-scale uniform box traps, and precise measurements of the AFM structure factor. Their work successfully confirms the AFM phase transition via the critical scaling analysis. Finally, the significance of this achievement is emphasized, and the future research prospects of the 3D Hubbard model are discussed, including experimental studies on the doped regions and related theoretical benchmarks.
      Corresponding author: HE Yuanyao, heyuanyao@nwu.edu.cn ; YANG Bing, yangbing@sustech.edu.cn
    [1]

    Shao H J, Wang Y X, Zhu D Z, Zhu Y S, Sun H N, Chen S Y, Zhang C, Fan Z J, Deng Y, Yao X C, Chen Y A, Pan J W 2024 Nature 632 267Google Scholar

    [2]

    Arovas D P, Berg E, Kivelson S A, Raghu S 2022 Annu. Rev. Conden. Ma. P. 13 239Google Scholar

    [3]

    Qin M, Schäfer T, Andergassen S, Corboz P, Gull E 2022 Annu. Rev. Conden. Ma. P 13 275Google Scholar

    [4]

    Hubbard J, Flowers B H 1963 Proc. R. Soc. Lond. Ser. A 276 238Google Scholar

    [5]

    Kanamori J 1963 Prog. Theor. Phys. 30 275Google Scholar

    [6]

    Gutzwiller M C 1963 Phys. Rev. Lett. 10 159Google Scholar

    [7]

    Chen Q J, Wang Z Q, Rufus Boyack, Yang S L, Levin K 2024 Rev. Mod. Phys. 96 025002Google Scholar

    [8]

    Campostrini M, Hasenbusch M, Pelissetto A, Rossi P, Vicari E 2002 Phys. Rev. B 65 144520Google Scholar

    [9]

    Mermin N D, Wagner H 1966 Phys. Rev. Lett. 17 1133Google Scholar

    [10]

    Staudt R, Dzierzawa M, Muramatsu A 2000 Eur. Phys. J. B 17 411Google Scholar

    [11]

    Ibarra-García-Padilla E, Mukherjee R, Hulet R G, Hazzard K R A, Paiva T, Scalettar R T 2020 Phys. Rev. A 102 033340Google Scholar

    [12]

    Sun F, Xu X Y 2024 arXiv: 2404.09989 [cond-mat. str-el]

    [13]

    Song Y F, Deng Y, He Y Y 2024 arXiv: 2407.08603 [cond-mat. str-el]

    [14]

    Werner F, Parcollet O, Georges A, Hassan S R 2005 Phys. Rev. Lett. 95 056401Google Scholar

    [15]

    Fuchs S, Gull E, Troyer M, Jarrell M, Pruschke T 2011 Phys. Rev. B 83 235113Google Scholar

    [16]

    Schäfer T, Katanin A A, Held K, Toschi A 2017 Phys. Rev. Lett. 119 046402Google Scholar

    [17]

    Rampon L, Simkovic F, Ferrero M 2024 arXiv: 2409.08848 [cond-mat. str-el]

    [18]

    Kozik E, Burovski E, Scarola V W, Troyer M 2013 Phys. Rev. B 87 205102Google Scholar

    [19]

    Lenihan C, Kim A J, Simkovic F, Kozik E 2022 Phys. Rev. Lett. 129 107202Google Scholar

    [20]

    Garioud R, Šimkovic F, Rossi R, Spada G, Schäfer T, Werner F, Ferrero M 2024 Phys. Rev. Lett. 132 246505Google Scholar

    [21]

    He Y Y, Qin M P, Shi H, Lu Z Y, Zhang S W 2019 Phys. Rev. B 99 045108Google Scholar

    [22]

    Zheng B X, Chung C M, Corboz P, Ehlers G, Qin M P, Noack R M, Shi H, White S R, Zhang S W, Chan G K L 2017 Science 358 1155Google Scholar

    [23]

    Xu H, Chung C M, Qin M P, Schollwöck U, White S R, Zhang S W 2024 Science 384 7691Google Scholar

    [24]

    Feynman R P 1982 Int. J. Theor. Phys. 21 467Google Scholar

    [25]

    Anderson M H, Ensher J R, Matthews M R, Wieman C E, Cornell E A 1995 Science 269 198Google Scholar

    [26]

    Jaksch D, Bruder C, Cirac J I, Gardiner C W, Zoller P 1998 Phys. Rev. Lett. 81 3108Google Scholar

    [27]

    DeMarco B, Jin D S 1999 Science 285 1703Google Scholar

    [28]

    Greiner M, Mandel O, Esslinger T, Hansch T W, Bloch I 2002 Nature 415 39Google Scholar

    [29]

    Jordens R, Strohmaier N, Gunter K, Moritz H, Esslinger T 2008 Nature 455 204Google Scholar

    [30]

    Schneider U, Hackermuller L, Will S, Best Th, Bloch I, Costi T A, Helmes R W, Rasch D, Rosch A 2008 Science 322 1520Google Scholar

    [31]

    Ho T L, Zhou Q 2009 arXiv: 0911.5506 [cond-mat. quant-gas]

    [32]

    Lee P A, Nagaosa N, Wen X G 2006 Rev. Mod. Phys. 78 17Google Scholar

    [33]

    Duan L M, Demler E, Lukin M D 2003 Phys. Rev. Lett. 91 090402Google Scholar

    [34]

    Trotzky S, Cheinet P, Fölling S, et al. 2008 Science 319 295Google Scholar

    [35]

    Bakr W S, Gillen J I, Peng A, Folling S, Greiner M 2009 Nature 462 74Google Scholar

    [36]

    Haller E, Hudson J, Kelly A, Cotta D A, Peaudecerf B, Bruce G D, Kuhr S 2015 Nat. Phys. 11 738Google Scholar

    [37]

    Greif D, Parsons M F, Mazurenko A, Chiu C S, Blatt S, Huber F, Ji G, Greiner M 2016 Science 351 953Google Scholar

    [38]

    Hart R A, Duarte P M, Yang T L, Liu X X, Paiva T, Khatami E, Scalettar R T, Trivedi N, Huse D A, Hulet R G 2015 Nature 519 211Google Scholar

    [39]

    Mazurenko A, Chiu C S, Ji G, et al. 2017 Nature 545 462Google Scholar

    [40]

    Yang B, Sun H, Huang C J, Wang H Y, Deng Y J, Dai H N, Yuan Z S, Pan J W 2020 Science 369 550Google Scholar

    [41]

    Sun H, Yang B, Wang H Y, et al. 2021 Nat. Phys. 17 990Google Scholar

  • 图 1  超冷原子模拟费米-哈伯德模型的示意图, 采用超冷原子等效于凝聚态体系中的电子, 而利用光学驻波构建出晶格结构, 可构筑哈伯德模型中的量子反铁磁物态, 进而通过调控体系的相互作用、温度和掺杂浓度等来研究反铁磁相变, 以及探究高温超导态的微观机理

    Fig. 1.  Illustration of the ultracold atom simulation for the Fermi-Hubbard model, ultracold atoms serve as analogues of electrons in condensed matter systems, with optical standing waves forming lattice structures, this setup allows for the creation of the Hubbard antiferromagnetic (AFM) state, by controlling parameters such as interaction strength, temperature and doping, the system can be utilized to study AFM phase transitions and explore the microscopic mechanism of high-temperature superconductivity.

    图 2  (a)半满填充下的费米-哈伯德模型大致相图[1]; (b)随着$ U $增大实验测量的反铁磁结构因子结果[1]; (c)关于$ U $的临界标度行为[1]

    Fig. 2.  (a) Schematic phase diagram of the 3D half-filled Fermi-Hubbard model[1]; (b) experimental results of antiferromagnetic structure factor as a function of interaction strength $ U $[1]; (c) the critical scaling behavior of antiferromagnetic structure factor[1].

    图 3  使用DMFT和$ {\mathrm{D}}{{\Gamma }}{\mathrm{A}} $算法得到的掺杂三维哈伯德模型在$ U=9.8 t $的磁性相图[16], 其中AF是奈儿反铁磁序, SDW是非公度的自旋密度波序, QCP是量子临界点

    Fig. 3.  Magnetic phase diagram for the 3D doped Hubbard model with $ U=9.8 t $, based on DMFT and $ {\mathrm{D}}{{\Gamma }}{\mathrm{A}} $ simulations[16], AF denotes the antiferromagnetic order, and SDW represents incommensurate spin density wave order, and QCP marks the quantum critical point.

  • [1]

    Shao H J, Wang Y X, Zhu D Z, Zhu Y S, Sun H N, Chen S Y, Zhang C, Fan Z J, Deng Y, Yao X C, Chen Y A, Pan J W 2024 Nature 632 267Google Scholar

    [2]

    Arovas D P, Berg E, Kivelson S A, Raghu S 2022 Annu. Rev. Conden. Ma. P. 13 239Google Scholar

    [3]

    Qin M, Schäfer T, Andergassen S, Corboz P, Gull E 2022 Annu. Rev. Conden. Ma. P 13 275Google Scholar

    [4]

    Hubbard J, Flowers B H 1963 Proc. R. Soc. Lond. Ser. A 276 238Google Scholar

    [5]

    Kanamori J 1963 Prog. Theor. Phys. 30 275Google Scholar

    [6]

    Gutzwiller M C 1963 Phys. Rev. Lett. 10 159Google Scholar

    [7]

    Chen Q J, Wang Z Q, Rufus Boyack, Yang S L, Levin K 2024 Rev. Mod. Phys. 96 025002Google Scholar

    [8]

    Campostrini M, Hasenbusch M, Pelissetto A, Rossi P, Vicari E 2002 Phys. Rev. B 65 144520Google Scholar

    [9]

    Mermin N D, Wagner H 1966 Phys. Rev. Lett. 17 1133Google Scholar

    [10]

    Staudt R, Dzierzawa M, Muramatsu A 2000 Eur. Phys. J. B 17 411Google Scholar

    [11]

    Ibarra-García-Padilla E, Mukherjee R, Hulet R G, Hazzard K R A, Paiva T, Scalettar R T 2020 Phys. Rev. A 102 033340Google Scholar

    [12]

    Sun F, Xu X Y 2024 arXiv: 2404.09989 [cond-mat. str-el]

    [13]

    Song Y F, Deng Y, He Y Y 2024 arXiv: 2407.08603 [cond-mat. str-el]

    [14]

    Werner F, Parcollet O, Georges A, Hassan S R 2005 Phys. Rev. Lett. 95 056401Google Scholar

    [15]

    Fuchs S, Gull E, Troyer M, Jarrell M, Pruschke T 2011 Phys. Rev. B 83 235113Google Scholar

    [16]

    Schäfer T, Katanin A A, Held K, Toschi A 2017 Phys. Rev. Lett. 119 046402Google Scholar

    [17]

    Rampon L, Simkovic F, Ferrero M 2024 arXiv: 2409.08848 [cond-mat. str-el]

    [18]

    Kozik E, Burovski E, Scarola V W, Troyer M 2013 Phys. Rev. B 87 205102Google Scholar

    [19]

    Lenihan C, Kim A J, Simkovic F, Kozik E 2022 Phys. Rev. Lett. 129 107202Google Scholar

    [20]

    Garioud R, Šimkovic F, Rossi R, Spada G, Schäfer T, Werner F, Ferrero M 2024 Phys. Rev. Lett. 132 246505Google Scholar

    [21]

    He Y Y, Qin M P, Shi H, Lu Z Y, Zhang S W 2019 Phys. Rev. B 99 045108Google Scholar

    [22]

    Zheng B X, Chung C M, Corboz P, Ehlers G, Qin M P, Noack R M, Shi H, White S R, Zhang S W, Chan G K L 2017 Science 358 1155Google Scholar

    [23]

    Xu H, Chung C M, Qin M P, Schollwöck U, White S R, Zhang S W 2024 Science 384 7691Google Scholar

    [24]

    Feynman R P 1982 Int. J. Theor. Phys. 21 467Google Scholar

    [25]

    Anderson M H, Ensher J R, Matthews M R, Wieman C E, Cornell E A 1995 Science 269 198Google Scholar

    [26]

    Jaksch D, Bruder C, Cirac J I, Gardiner C W, Zoller P 1998 Phys. Rev. Lett. 81 3108Google Scholar

    [27]

    DeMarco B, Jin D S 1999 Science 285 1703Google Scholar

    [28]

    Greiner M, Mandel O, Esslinger T, Hansch T W, Bloch I 2002 Nature 415 39Google Scholar

    [29]

    Jordens R, Strohmaier N, Gunter K, Moritz H, Esslinger T 2008 Nature 455 204Google Scholar

    [30]

    Schneider U, Hackermuller L, Will S, Best Th, Bloch I, Costi T A, Helmes R W, Rasch D, Rosch A 2008 Science 322 1520Google Scholar

    [31]

    Ho T L, Zhou Q 2009 arXiv: 0911.5506 [cond-mat. quant-gas]

    [32]

    Lee P A, Nagaosa N, Wen X G 2006 Rev. Mod. Phys. 78 17Google Scholar

    [33]

    Duan L M, Demler E, Lukin M D 2003 Phys. Rev. Lett. 91 090402Google Scholar

    [34]

    Trotzky S, Cheinet P, Fölling S, et al. 2008 Science 319 295Google Scholar

    [35]

    Bakr W S, Gillen J I, Peng A, Folling S, Greiner M 2009 Nature 462 74Google Scholar

    [36]

    Haller E, Hudson J, Kelly A, Cotta D A, Peaudecerf B, Bruce G D, Kuhr S 2015 Nat. Phys. 11 738Google Scholar

    [37]

    Greif D, Parsons M F, Mazurenko A, Chiu C S, Blatt S, Huber F, Ji G, Greiner M 2016 Science 351 953Google Scholar

    [38]

    Hart R A, Duarte P M, Yang T L, Liu X X, Paiva T, Khatami E, Scalettar R T, Trivedi N, Huse D A, Hulet R G 2015 Nature 519 211Google Scholar

    [39]

    Mazurenko A, Chiu C S, Ji G, et al. 2017 Nature 545 462Google Scholar

    [40]

    Yang B, Sun H, Huang C J, Wang H Y, Deng Y J, Dai H N, Yuan Z S, Pan J W 2020 Science 369 550Google Scholar

    [41]

    Sun H, Yang B, Wang H Y, et al. 2021 Nat. Phys. 17 990Google Scholar

  • [1] 赵秀琴, 张文慧. 双模光机械腔中冷原子的量子相变和超辐射相塌缩. 物理学报, 2024, 73(24): 240301. doi: 10.7498/aps.73.20241103
    [2] 谭辉, 曹睿, 李永强. 基于动力学平均场的光晶格超冷原子量子模拟. 物理学报, 2023, 72(18): 183701. doi: 10.7498/aps.72.20230701
    [3] 刘荣肇, 樊振军, 王浩成, 宁昊明, 米振宇, 刘广耀, 宋小会. 锌离子掺杂钴基金属有机材料[(CH3)2NH2]Co1–xZnx(HCOO)3中的低温反常磁现象. 物理学报, 2023, 72(3): 030201. doi: 10.7498/aps.72.20221761
    [4] 罗雨晨, 李晓鹏. 相互作用费米子的量子模拟. 物理学报, 2022, 71(22): 226701. doi: 10.7498/aps.71.20221756
    [5] 周晓凡, 樊景涛, 陈刚, 贾锁堂. 光学腔中一维玻色-哈伯德模型的奇异超固相. 物理学报, 2021, 70(19): 193701. doi: 10.7498/aps.70.20210778
    [6] 许鹏, 何晓东, 刘敏, 王谨, 詹明生. 中性原子量子计算研究进展. 物理学报, 2019, 68(3): 030305. doi: 10.7498/aps.68.20182133
    [7] 于佳, 刘通, 赵康, 潘伯津, 穆青隔, 阮彬彬, 任治安. 112型铁基化合物EuFeAs2的单晶生长与表征. 物理学报, 2018, 67(20): 207403. doi: 10.7498/aps.67.20181393
    [8] 李德铭, 方松科, 童金山, 苏健, 张娜, 宋桂林. Ca2+掺杂对SmFeO3的介电、铁磁特性及磁相变温度的影响. 物理学报, 2018, 67(6): 067501. doi: 10.7498/aps.67.20172433
    [9] 郑晓军, 张俊, 黄忠兵. 扩展哈伯德模型中原子团簇的结构和热力学性质研究. 物理学报, 2010, 59(6): 3897-3904. doi: 10.7498/aps.59.3897
    [10] 杨金虎, 王杭栋, 杜建华, 张瞩君, 方明虎. Co(S1-xSex)2系统中的铁磁量子相变. 物理学报, 2009, 58(2): 1195-1199. doi: 10.7498/aps.58.1195
    [11] 马玉彬. 脱氧La0.5Ca0.5MnO3样品的铁磁-反铁磁转变和电阻率变化. 物理学报, 2009, 58(7): 4976-4979. doi: 10.7498/aps.58.4976
    [12] 杨金虎, 王杭栋, 杜建华, 张瞩君, 方明虎. NiS2-xSex在x=1.00附近的反铁磁量子相变. 物理学报, 2008, 57(4): 2409-2414. doi: 10.7498/aps.57.2409
    [13] 程金光, 隋 郁, 千正男, 刘志国, 黄喜强, 苗继鹏, 吕 喆, 王先杰, 苏文辉. 单晶NdMnO3的比热研究. 物理学报, 2005, 54(9): 4359-4364. doi: 10.7498/aps.54.4359
    [14] 聂一行, 石云龙, 张云波, 梁九卿, 蒲富恪. 外磁场中单畴反铁磁颗粒的宏观量子效应. 物理学报, 2000, 49(8): 1580-1585. doi: 10.7498/aps.49.1580
    [15] 王治国, 丁国辉, 许伯威. 反铁磁链的自旋Peierls相变. 物理学报, 1999, 48(2): 296-301. doi: 10.7498/aps.48.296
    [16] 聂一行, 张云波, 梁九卿, 蒲富格. 反铁磁粒子的势助量子隧穿和宏观量子效应. 物理学报, 1999, 48(5): 966-972. doi: 10.7498/aps.48.966
    [17] 余登科, 顾 强, 汪汉廷, 沈觉涟. 双层Heisenberg反铁磁体中的量子相变. 物理学报, 1999, 48(13): 169-174. doi: 10.7498/aps.48.169
    [18] 应和平, 季达人. 一种有效的量子Monte Carlo模拟方法及其关于二维反铁磁Heisenberg模型的研究. 物理学报, 1993, 42(11): 1845-1850. doi: 10.7498/aps.42.1845
    [19] 杜安, 魏国柱, 聂惠权. 高Tc超导体的反铁磁理论计算. 物理学报, 1992, 41(10): 1686-1693. doi: 10.7498/aps.41.1686
    [20] 钟健. Heisenberg反铁磁超晶格的自旋波. 物理学报, 1990, 39(3): 486-490. doi: 10.7498/aps.39.486
计量
  • 文章访问数:  331
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-14
  • 修回日期:  2024-10-30
  • 上网日期:  2024-12-09
  • 刊出日期:  2025-01-05

/

返回文章
返回