搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水分解中氧气泡生长动力学研究

聂腾飞 徐强 罗欣怡 洪奥越 曹泽水 郭烈锦

引用本文:
Citation:

水分解中氧气泡生长动力学研究

聂腾飞, 徐强, 罗欣怡, 洪奥越, 曹泽水, 郭烈锦
cstr: 32037.14.aps.74.20250014

Kinetics of oxygen bubble growth in water decomposition

NIE Tengfei, XU Qiang, LUO Xinyi, HONG Aoyue, CAO Zeshui, GUO Liejin
cstr: 32037.14.aps.74.20250014
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 理解电极表面氧气泡演化对提升大规模水分解的效率具有重要意义. 本文提出了一种基于气泡边界的溶解氧通量的电极表面氧气泡生长的数值模型, 研究了反应区域和电流的大小对气泡生长的影响. 结果表明, 由气泡边界的氧通量计算得到气泡直径与气泡在化学反应控制阶段的生长关系吻合较好. 随着反应区域增大, 在气泡生长过程中, 由扩散控制向化学反应控制阶段过渡的时间也变长. 微电极表面的浓度峰值明显高于大电极表面的浓度峰值, 从而导致微电极表面与气泡表面之间的浓度梯度更加陡峭. 随着电流增大, 气泡的生长速率增大, 时间系数降低得越快. 电流为0.06 mA时的气泡直径与光电解水实验中电流为0.1 mA 的气泡直径能较好吻合. 这是因为生长的气泡对光的散射会导致气泡底部电流密度的降低.
    In order to enhance the efficiency of large-scale water decomposition, it is important to understand the oxygen bubble evolution on the electrode surface. In this work, a numerical model for the growth of oxygen bubbles on the electrode surface is proposed based on the dissolved oxygen flux at the bubble boundary, and the mechanisms of the reaction area and current during the bubble growth are investigated. The results show that the bubble diameters calculated from the oxygen flux at the bubble boundary are in good agreement with the diameters of the bubbles growing in the control phase of the chemical reaction. As the reaction region increases, the transition time from the diffusion-controlled stage to the chemical reaction-controlled stage becomes longer during the bubble growth. The concentration maximum value on the microelectrode surface is significantly higher than that on the large electrode surface, which leads to a steeper concentration gradient between the microelectrode surface and the bubble surface. As the current increases, the bubble growth rate increases and the time coefficient decreases faster. The bubble diameter at a current of 0.06 mA accords well with the bubble diameter at a current of 0.1 mA in the photoelectrochemical water splitting experiments. This is because the scattering of light by the growing bubbles leads to a decrease in the current density at the bottom of the bubble.
      通信作者: 徐强, qiang.xu@mail.xjtu.edu.cn ; 郭烈锦, lj-guo@mail.xjtu.edu.cn
    • 基金项目: 国家自然科学基金 (批准号: 52488201, 52422606)资助的课题.
      Corresponding author: XU Qiang, qiang.xu@mail.xjtu.edu.cn ; GUO Liejin, lj-guo@mail.xjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 52488201, 52422606).
    [1]

    Zhang S, Chen W 2022 Nat. Commun. 13 87Google Scholar

    [2]

    Angulo A, Linde P van der, Gardeniers H, Modestino M, Fernández Rivas D 2020 Joule 4 555Google Scholar

    [3]

    Iwata R, Zhang L, Wilke K L, Gong S, He M, Gallant B M, Wang E N 2021 Joule 5 887Google Scholar

    [4]

    Chen J, Guo L, Hu X, Cao Z, Wang Y 2018 Electrochim. Acta 274 57Google Scholar

    [5]

    Andaveh R, Darband G B, Maleki M, Rouhaghdam A S 2022 J. Mater. Chem. A 10 5147Google Scholar

    [6]

    Zhan S, Yuan R, Huang Y, Zhang W, Li B, Wang Z, Wang J 2022 Phys. Fluids 34 112120Google Scholar

    [7]

    郭烈锦, 曹振山, 王晔春, 张博, 冯雨杨, 徐强 2023 西安交通大学学报 57 1Google Scholar

    Guo L J, Cao Z S, Wang Y C, Zhang B, Feng Y Y, Xu Q 2023 J. Xi'an Jiaotong Univ. 57 1Google Scholar

    [8]

    Peñas P, Moreno Soto Á, Lohse D, Lajoinie G, van der Meer D 2021 Int. J. Heat Mass Transfer 174 121069Google Scholar

    [9]

    Luo X Y, Xu Q, Ye X M, Wang M S, Guo L J 2024 Int. J. Hydrogen Energy 61 859Google Scholar

    [10]

    Luo X Y, Xu Q, Nie T F, She Y L, Ye X M, Guo L J 2023 Phys. Chem. Chem. Phys. 25 16086Google Scholar

    [11]

    Park S, Liu L, Demirkır Ç, Van Der Heijden O, Lohse D, Krug D, Koper M T M 2023 Nat. Chem. 15 1532Google Scholar

    [12]

    Da Silva J, Nobrega E, Staciaki F, Almeida F R, Wosiak G, Gutierrez A, Bruno O, Lopes M C, Pereira E 2024 Chemical Engineering Journal 494 152943Google Scholar

    [13]

    Xu Q, Tao L Q, Nie T F, Liang L, She Y L, Wang M S 2024 J. Electrochem. Soc. 171 016501Google Scholar

    [14]

    Bashkatov A, Park S, Demirkır Ç, Wood J A, Koper M T M, Lohse D, Krug D 2024 J. Am. Chem. Soc. 146 10177

    [15]

    Zhang B, Wang Y C, Feng Y Y, Zhen C H, Liu M M, Cao Z S, Zhao Q Y, Guo L J 2024 Cell Rep. Phys. Sci. 5 101837Google Scholar

    [16]

    Liu H, Pan L M, Wen J 2016 Can. J. Chem. Eng. 94 192Google Scholar

    [17]

    Meulenbroek A M, Vreman A W, Deen N G 2021 Electrochim. Acta 385 138298Google Scholar

    [18]

    Zhan S Q, Yuan R, Wang X H, Zhang W, Yu K, Li B, Wang Z T, Wang J F 2023 Phys. Fluids 35 032111Google Scholar

    [19]

    Raman A, Porto C C D S, Gardeniers H, Soares C, Fernández Rivas D, Padoin N 2023 Chem. Eng. J. 477 147012Google Scholar

    [20]

    Meulenbroek A M, Deen N G, Vreman A W 2024 Electrochim. Acta 497 144510Google Scholar

    [21]

    Suen N T, Hung S F, Quan Q, Zhang N, Xu Y J, Chen H M 2017 Chem. Soc. Rev. 46 337Google Scholar

    [22]

    Chen J W, Guo L J 2019 Appl. Phys. Lett. 114 231604Google Scholar

    [23]

    Obata K F, Abdi F 2021 Sustain. Energ. Fuels 5 3791Google Scholar

    [24]

    Matsushima H, Kiuchi D, Fukunaka Y, Kuribayashi K 2009 Electrochem. Commun. 11 1721Google Scholar

    [25]

    Cao Z S, Wang Y C, Xu Q, Feng Y Y, Hu X W, Guo L J 2020 Electrochimica Acta 347 136230Google Scholar

    [26]

    Fernández D, Maurer P, Martine M, Coey J M D, Möbius M E 2014 Langmuir 30 13065Google Scholar

    [27]

    Yang X, Karnbach F, Uhlemann M, Odenbach S, Eckert K 2015 Langmuir 31 8184Google Scholar

    [28]

    Xu Q, Tao L Q, She Y L, Ye X M, Wang M S, Nie T F 2023 J. Electroanal. Chem. 935 117324Google Scholar

    [29]

    Lu X, Nie T, Li X, Jing L, Zhang Y, Ma L, Jing D 2023 Physics of Fluids 35 103314Google Scholar

    [30]

    Nie T F, Li Z, Luo X Y, She Y L, Liang L, Xu Q, Guo L J 2022 Electrochimica Acta 436 141394Google Scholar

    [31]

    Dorfi A E, West A C, Esposito D V 2017 J. Phys. Chem. C 121 26587Google Scholar

    [32]

    Holmes-Gentle I, Bedoya-Lora F, Alhersh F, Hellgardt K 2019 J. Phys. Chem. C 123 17Google Scholar

  • 图 1  几何模型和模拟设置的示意图

    Fig. 1.  Schematic diagram of the geometry and simulation settings.

    图 2  气泡界面更新的示意图

    Fig. 2.  Schematic diagram of the bubble interface update.

    图 3  四组网格计算得到的出口处的流速的r方向分量

    Fig. 3.  The r-direction component of the flow velocity at the outlet calculated by the four sets of grids.

    图 4  模拟得到的气泡生长直径和快照

    Fig. 4.  Bubble growth diameter and snapshot obtained through simulation.

    图 5  不同反应区域时气泡的生长直径 (a)气泡的直径随时间的变化; (b) 30 s时的直径

    Fig. 5.  Growth diameter of the bubble at different reaction regions: (a) Diameter of the bubble as a function of time; (b) the diameter at 30 s.

    图 6  不同反应区域下生长的气泡的时间系数

    Fig. 6.  Time coefficient of bubbles growing in different reaction regions.

    图 7  不同反应区域的气泡边界的溶解氧通量

    Fig. 7.  Flux of dissolved oxygen at bubble boundaries in different reaction regions.

    图 8  电极表面浓度随时间变化 (a)光斑直径1.8 mm; (b)光斑直径0.1 mm

    Fig. 8.  Electrode surface concentration varies with time: (a) Laser diameter of 1.8 mm; (b) laser diameter of 0.1 mm.

    图 9  不同电流下的气泡直径

    Fig. 9.  Bubble diameter at different currents.

    图 10  光电极表面析气反应区域的示意图  (a)小气泡; (b)大气泡

    Fig. 10.  Schematic diagram of the gas evolution reaction area on the photoelectrode surface: (a) Small bubble; (b) large bubble.

    图 11  不同电流气泡边界的溶解氧通量

    Fig. 11.  Flux of dissolved oxygen at bubble boundaries for different currents.

    图 12  不同电流下气泡生长的时间系数 (a)气泡生长时的时间系数; (b)生长时间为0—3 s

    Fig. 12.  Time coefficients of bubble growth at different currents: (a) Time coefficient when the bubble grows; (b) growth time from 0 to 3 s.

    表 1  沸腾气泡与光解气泡的异同

    Table 1.  Similarities and differences between boiling bubble and photolysis bubble.

    沸腾气泡光解气泡
    生长过程成核、生长和脱离成核、生长和脱离
    相间作用异相成核异相成核
    驱动力过饱和温度过饱和浓度
    气泡成分水蒸气氢气/氧气
    能质传输涉及热能与物质的传递涉及热能、化学能、光能及物质的传递
    生长规律生长速率受热传导和蒸气压支配, 快速膨胀后脱离生长受限于光强、反应速率及气体扩散, 可能持续缓慢生长
    稳定性上升时可能因冷却而凝结化学性质稳定, 不易再溶解
    气泡尺寸/m10–3—10–210–9—10–4
    生长时间/s10–2—10–110–3—102
    下载: 导出CSV

    表 2  模拟参数

    Table 2.  Parameters used in simulation.

    参数
    表面张力 σ/(mN·m–1) 70
    电流 I/mA 0.03—0.12
    光斑半径 rlaser/mm 0.05—0.9
    转移电子数 z 4
    氧气摩尔质量$M_{\rm O_2} $/(g·mol–1) 32
    氧气扩散系数 $D_{\rm O_2} $/(m2·s–1) 2.1×10–9
    气泡初始半径 rb/μm 15
    参考压力 pref/kPa 101.325
    浓度建立时间 twait/s 1.2×10–5
    下载: 导出CSV
  • [1]

    Zhang S, Chen W 2022 Nat. Commun. 13 87Google Scholar

    [2]

    Angulo A, Linde P van der, Gardeniers H, Modestino M, Fernández Rivas D 2020 Joule 4 555Google Scholar

    [3]

    Iwata R, Zhang L, Wilke K L, Gong S, He M, Gallant B M, Wang E N 2021 Joule 5 887Google Scholar

    [4]

    Chen J, Guo L, Hu X, Cao Z, Wang Y 2018 Electrochim. Acta 274 57Google Scholar

    [5]

    Andaveh R, Darband G B, Maleki M, Rouhaghdam A S 2022 J. Mater. Chem. A 10 5147Google Scholar

    [6]

    Zhan S, Yuan R, Huang Y, Zhang W, Li B, Wang Z, Wang J 2022 Phys. Fluids 34 112120Google Scholar

    [7]

    郭烈锦, 曹振山, 王晔春, 张博, 冯雨杨, 徐强 2023 西安交通大学学报 57 1Google Scholar

    Guo L J, Cao Z S, Wang Y C, Zhang B, Feng Y Y, Xu Q 2023 J. Xi'an Jiaotong Univ. 57 1Google Scholar

    [8]

    Peñas P, Moreno Soto Á, Lohse D, Lajoinie G, van der Meer D 2021 Int. J. Heat Mass Transfer 174 121069Google Scholar

    [9]

    Luo X Y, Xu Q, Ye X M, Wang M S, Guo L J 2024 Int. J. Hydrogen Energy 61 859Google Scholar

    [10]

    Luo X Y, Xu Q, Nie T F, She Y L, Ye X M, Guo L J 2023 Phys. Chem. Chem. Phys. 25 16086Google Scholar

    [11]

    Park S, Liu L, Demirkır Ç, Van Der Heijden O, Lohse D, Krug D, Koper M T M 2023 Nat. Chem. 15 1532Google Scholar

    [12]

    Da Silva J, Nobrega E, Staciaki F, Almeida F R, Wosiak G, Gutierrez A, Bruno O, Lopes M C, Pereira E 2024 Chemical Engineering Journal 494 152943Google Scholar

    [13]

    Xu Q, Tao L Q, Nie T F, Liang L, She Y L, Wang M S 2024 J. Electrochem. Soc. 171 016501Google Scholar

    [14]

    Bashkatov A, Park S, Demirkır Ç, Wood J A, Koper M T M, Lohse D, Krug D 2024 J. Am. Chem. Soc. 146 10177

    [15]

    Zhang B, Wang Y C, Feng Y Y, Zhen C H, Liu M M, Cao Z S, Zhao Q Y, Guo L J 2024 Cell Rep. Phys. Sci. 5 101837Google Scholar

    [16]

    Liu H, Pan L M, Wen J 2016 Can. J. Chem. Eng. 94 192Google Scholar

    [17]

    Meulenbroek A M, Vreman A W, Deen N G 2021 Electrochim. Acta 385 138298Google Scholar

    [18]

    Zhan S Q, Yuan R, Wang X H, Zhang W, Yu K, Li B, Wang Z T, Wang J F 2023 Phys. Fluids 35 032111Google Scholar

    [19]

    Raman A, Porto C C D S, Gardeniers H, Soares C, Fernández Rivas D, Padoin N 2023 Chem. Eng. J. 477 147012Google Scholar

    [20]

    Meulenbroek A M, Deen N G, Vreman A W 2024 Electrochim. Acta 497 144510Google Scholar

    [21]

    Suen N T, Hung S F, Quan Q, Zhang N, Xu Y J, Chen H M 2017 Chem. Soc. Rev. 46 337Google Scholar

    [22]

    Chen J W, Guo L J 2019 Appl. Phys. Lett. 114 231604Google Scholar

    [23]

    Obata K F, Abdi F 2021 Sustain. Energ. Fuels 5 3791Google Scholar

    [24]

    Matsushima H, Kiuchi D, Fukunaka Y, Kuribayashi K 2009 Electrochem. Commun. 11 1721Google Scholar

    [25]

    Cao Z S, Wang Y C, Xu Q, Feng Y Y, Hu X W, Guo L J 2020 Electrochimica Acta 347 136230Google Scholar

    [26]

    Fernández D, Maurer P, Martine M, Coey J M D, Möbius M E 2014 Langmuir 30 13065Google Scholar

    [27]

    Yang X, Karnbach F, Uhlemann M, Odenbach S, Eckert K 2015 Langmuir 31 8184Google Scholar

    [28]

    Xu Q, Tao L Q, She Y L, Ye X M, Wang M S, Nie T F 2023 J. Electroanal. Chem. 935 117324Google Scholar

    [29]

    Lu X, Nie T, Li X, Jing L, Zhang Y, Ma L, Jing D 2023 Physics of Fluids 35 103314Google Scholar

    [30]

    Nie T F, Li Z, Luo X Y, She Y L, Liang L, Xu Q, Guo L J 2022 Electrochimica Acta 436 141394Google Scholar

    [31]

    Dorfi A E, West A C, Esposito D V 2017 J. Phys. Chem. C 121 26587Google Scholar

    [32]

    Holmes-Gentle I, Bedoya-Lora F, Alhersh F, Hellgardt K 2019 J. Phys. Chem. C 123 17Google Scholar

  • [1] 林茜, 谢普初, 胡建波, 张凤国, 王裴, 王永刚. 不同晶粒度高纯铜层裂损伤演化的有限元模拟. 物理学报, 2021, 70(20): 204601. doi: 10.7498/aps.70.20210726
    [2] 叶欣, 单彦广. 疏水表面振动液滴模态演化与流场结构的数值模拟. 物理学报, 2021, 70(14): 144701. doi: 10.7498/aps.70.20210161
    [3] 姜春华, 赵正予. 化学复合率对激发赤道等离子体泡影响的数值模拟. 物理学报, 2019, 68(19): 199401. doi: 10.7498/aps.68.20190173
    [4] 丁明松, 江涛, 董维中, 高铁锁, 刘庆宗, 傅杨奥骁. 热化学模型对高超声速磁流体控制数值模拟影响分析. 物理学报, 2019, 68(17): 174702. doi: 10.7498/aps.68.20190378
    [5] 周剑宏, 童宝宏, 王伟, 苏家磊. 油滴撞击油膜层内气泡的变形与破裂过程的数值模拟. 物理学报, 2018, 67(11): 114701. doi: 10.7498/aps.67.20180133
    [6] 梁煜, 关奔, 翟志刚, 罗喜胜. 激波汇聚效应对球形气泡演化影响的数值研究. 物理学报, 2017, 66(6): 064701. doi: 10.7498/aps.66.064701
    [7] 刘扬, 韩燕龙, 贾富国, 姚丽娜, 王会, 史宇菲. 椭球颗粒搅拌运动及混合特性的数值模拟研究. 物理学报, 2015, 64(11): 114501. doi: 10.7498/aps.64.114501
    [8] 王新鑫, 樊丁, 黄健康, 黄勇. 双钨极耦合电弧数值模拟. 物理学报, 2013, 62(22): 228101. doi: 10.7498/aps.62.228101
    [9] 陈石, 王辉, 沈胜强, 梁刚涛. 液滴振荡模型及与数值模拟的对比. 物理学报, 2013, 62(20): 204702. doi: 10.7498/aps.62.204702
    [10] 王勇, 林书玉, 莫润阳, 张小丽. 含气泡液体中气泡振动的研究. 物理学报, 2013, 62(13): 134304. doi: 10.7498/aps.62.134304
    [11] 欧阳建明, 马燕云, 邵福球, 邹德滨. 高空核爆炸下大气的X射线电离及演化过程数值模拟. 物理学报, 2012, 61(8): 083201. doi: 10.7498/aps.61.083201
    [12] 杜宏亮, 何立明, 兰宇丹, 王峰. 约化场强对氮-氧混合气放电等离子体演化特性的影响. 物理学报, 2011, 60(11): 115201. doi: 10.7498/aps.60.115201
    [13] 欧阳建明, 邵福球, 邹德滨. 大气等离子体中负氧离子产生和演化过程数值模拟. 物理学报, 2011, 60(11): 110209. doi: 10.7498/aps.60.110209
    [14] 赵啦啦, 刘初升, 闫俊霞, 蒋小伟, 朱艳. 不同振动模式下颗粒分离行为的数值模拟. 物理学报, 2010, 59(4): 2582-2588. doi: 10.7498/aps.59.2582
    [15] 兰宇丹, 何立明, 丁伟, 王峰. 不同初始温度下H2/O2混合物等离子体的演化. 物理学报, 2010, 59(4): 2617-2621. doi: 10.7498/aps.59.2617
    [16] 蔡利兵, 王建国. 介质表面高功率微波击穿的数值模拟. 物理学报, 2009, 58(5): 3268-3273. doi: 10.7498/aps.58.3268
    [17] 王狂飞, 郭景杰, 米国发, 李邦盛, 傅恒志. Ti-45at.% Al合金定向凝固过程中显微组织演化的计算机模拟. 物理学报, 2008, 57(5): 3048-3058. doi: 10.7498/aps.57.3048
    [18] 欧阳建明, 邵福球, 王 龙, 房同珍, 刘建全. 一维大气等离子体化学过程数值模拟. 物理学报, 2006, 55(9): 4974-4979. doi: 10.7498/aps.55.4974
    [19] 张远涛, 王德真, 王艳辉. 大气压介质阻挡丝状放电时空演化数值模拟. 物理学报, 2005, 54(10): 4808-4815. doi: 10.7498/aps.54.4808
    [20] 袁行球, 陈重阳, 李 辉, 赵太泽, 郭文康, 须 平. 电子束离子阱中高价态离子演化过程的数值模拟. 物理学报, 2003, 52(8): 1906-1910. doi: 10.7498/aps.52.1906
计量
  • 文章访问数:  339
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-03
  • 修回日期:  2025-03-03
  • 上网日期:  2025-03-20

/

返回文章
返回