搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于自相关与频谱叠层的超分辨成像

李宗骏 张龙 龚文林

引用本文:
Citation:

基于自相关与频谱叠层的超分辨成像

李宗骏, 张龙, 龚文林

Super-resolution imaging based on auto-correlation and frequency ptychography

LI Zongjun, ZHANG Long, GONG Wenlin
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 基于HBT(Hanbury Brown-Twiss)的二阶自相关技术在非相干源照明和近场探测的条件下可以获得目标的傅里叶频谱信息, 然而获取高质量的频谱图像所需的测量次数较多、且成像分辨率受到探测器的像素规模的限制. 为了解决上述问题, 本文结合多点并行关联重建算法和叠层成像的思想, 提出了一种基于自相关和频谱叠层的超分辨成像方法. 通过多点并行关联重建算法获取目标的不同频率信息, 在此基础上, 利用傅里叶变换的移频特性和叠层成像的思想实现频谱信息的扩展, 进而采用相位恢复算法重建目标的实空间图像. 理论分析和实验结果表明, 该方法在相同探测器像素规模的条件下可以实现2倍的超分辨率成像, 同时可以降低高质量频谱图像重建所需的测量次数. 该方法对于超分辨显微成像和高分辨运动目标成像具有重要的借鉴意义.
    The second-order auto-correlation technology based on Hanbury Brown-Twiss (HBT) can obtain the Fourier spectrum information of a target even under the conditions of incoherent source illumination and near-field detection, which has better advantages in the fields of moving-target imaging, imaging in scattering medium, and X-ray imaging. However, a great number of measurements are required and the imaging resolution is also restricted by the pixel scale of the detector for high-quality Fourier spectrum image for HBT. At present, many relevant data processing methods and reconstruction algorithms can reduce the number of measurements required for the acquisition of high-quality spectral information, but the time of image reconstruction required by these methods is usually long and cannot improve the imaging resolution of the system. In recent years, Fourier ptychography based on real-space image detection has proven that higher-resolution imaging can be obtained through spectral ptychography and frequency extension. In this paper, by combining the idea of Fourier ptychography with HBT, a processing method based on multi-point parallel correlation reconstruction and spectral ptychography is proposed, which attempts to obtain high-quality spectral information of the target and achieve super-resolution imaging with few measurements. The proof-of-principle schematic of super-resolution imaging method based on autocorrelation and spectral ptychography is obtained. The corresponding super-resolution reconstruction framework is displayed, which mainly consists of three steps: multi-point parallel correlation reconstruction, spectral ptychography, and real-space image reconstruction based on phase-retrieval algorithm. Firstly, based on the physical mechanism, Fourier spectrum images of the target at different detection points are obtained through multi-point parallel correlation reconstruction. Secondly, according to the idea of spectrum ptychography, the frequency shifted spectrum obtained by multi-point parallel correlation reconstruction is aligned to form an extended spectrum. Finally, the target’s real-space image is reconstructed by phase-retrieval algorithm.The super-resolution imaging method based on auto-correlation and spectral ptychography is experimentally verified by using the setup. At the number of measurements N = 500, the experimental results are obtained on different pixel scales of the detector. The results indicate that the imaging resolution increases with the pixel scale of the detector increasing. However, when the number of measurements is small, both the Fourier spectrum and the real-space image obtained by single point detection are poor. When the multi-point parallel correlation reconstruction and spectral ptychography are adopted, the signal-to-noise ratio of the reconstructed Fourier spectrum can be significantly improved, and its spectral bandwidth can be expanded to twice that of the original spectrum at the same parameters. In addition, the experiments also show that for a 50×50 spectral image, even with 200 measurements (i.e. a sampling rate of 8%), high-quality super-resolution imaging can still be obtained.All in all, the proposed method provides important insights into super-resolution microscopy imaging and high-resolution imaging of moving target.
  • 图 1  基于自相关和频谱叠层的超分辨成像装置结构图

    Fig. 1.  The schematic of super-resolution imaging via autocorrelation and frequency ptychography.

    图 2  基于多点并行关联重建和频谱叠层处理实现超分辨重建的基本框架 (a) CCD记录的图片; (b)多点并行关联重建结果; (c)频域叠层结果; (d)基于相位恢复算法的实空间图像重建结果

    Fig. 2.  The framework of super-resolution image reconstruction based on multiple-point parallel correlation reconstruction and frequency ptychography: (a) The recorded images recorded by CCD; (b) the results of multi-point parallel correlation algorithm; (c) the results of frequency ptychography; (d) the image in the spatial domain reconstructed by phase-retrieval algorithm.

    图 3  待测物体及其傅里叶变换频谱

    Fig. 3.  The testing object and its Fourier-transform spectrum.

    图 4  基于自相关和频谱叠层的超分辨成像实验验证结果(N = 500) (a)—(c)CCD像素规模大小分别为19×19, 25×25 39×39像素不采用频谱叠层处理下的成像结果; (d)—(f)为采用多点并行关联重建和频谱叠层处理后对应的成像结果, 左上角依次为关联重构的频谱图和相位恢复算法重建的实空间图像, 黑色实线为待测物体傅里叶变换频谱横截面, 红色虚线为关联重构频谱图的横截面

    Fig. 4.  Experimental demonstration results of super-resolution imaging via autocorrelation and frequency ptychography (N = 500): (a)–(c) The imaging results without frequency ptychography when the pixel sizes of the CCD are 19×19, 25×25, and 39×39 pixels, respectively; (d)–(f) the corresponding results with multiple-point parallel correlation reconstruction and frequency ptychography. The upper left corner shows the frequency spectrums obtained by correlation reconstruction and the images in spatial domain reconstructed by phase-retrieval algorithm. The black solid line represents the cross-section of the testing object’s Fourier-transform spectrum, and the red dashed line represents the cross-section of the frequency spectrums obtained by correlation reconstruction.

    图 5  不同测量次数下基于自相关和频谱叠层的成像结果(CCD像素规模大小为25×25像素) (a)多点并行关联重建和频谱叠层处理后的目标频谱图; (b)基于相位恢复算法重建的实空间图像

    Fig. 5.  Imaging results based on autocorrelation and frequency ptychography in different measurements (with 25×25 pixels for the CCD): (a) The target’s frequency spectrum with multiple-point parallel correlation reconstruction and frequency ptychography; (b) the images in the spatial domain reconstructed by phase-retrieval algorithm.

  • [1]

    Brown R H, Twiss R Q 1956 Nature 177 27Google Scholar

    [2]

    Glauber R J 1963 Phys. Rev. 130 2529Google Scholar

    [3]

    Zhang M H, Wei Q, Shen X, Liu Y F, Liu H L, Bai Y F, Han S S 2007 Phys. Lett. A 366 569Google Scholar

    [4]

    Gatti A, Bache M, Magatti D, Brambilla E, Ferri F, Lugiato L A 2006 J. Mod. Opt. 53 739Google Scholar

    [5]

    Shapiro J H, Boyd R W 2012 Quantum Inf. Process. 11 949Google Scholar

    [6]

    Shih Y H 2024 Chin. Opt. Lett. 22 060011Google Scholar

    [7]

    Zhao C Q, Gong W L, Chen M L, Li E R, Wang H, Xu W D, Han S S 2012 Appl. Phys. Lett. 101 141123Google Scholar

    [8]

    Erkmen B I. 2012 J. Opt. Soc. Am. A 29 782Google Scholar

    [9]

    Gong W L, Zhao C Q, Yu H, Chen M L, Xu W D, Han S S 2016 Sci. Rep. 6 26133Google Scholar

    [10]

    Stellinga D, Phillips D B, Mekhail S P, Selyem A, Turtaev S, Čižmár T, Padgett M J 2021 Science 374 1395Google Scholar

    [11]

    Sun Z, Tuitje F, Spielmann C 2019 Opt. Express 27 33652Google Scholar

    [12]

    Peng J Z, Yao M H, Huang Z B, Zhong J G 2021 APL Photonics 6 046102Google Scholar

    [13]

    Wu D X, Luo J W, Huang G Q, Feng Y H, Feng X H, Zhang R S, Shen Y C, Li Z H 2021 Nat. Commun. 12 4712Google Scholar

    [14]

    Ota S, Horisaki R, Kawamura Y, Ugawa M, Sato I, Hashimoto K, Kamesawa R, Setoyama K, Yamaguchi S, Fujiu K, Waki K, Noji H 2018 Science 360 1246Google Scholar

    [15]

    Elser V 2003 J. Opt. Soc. Am. A 20 40Google Scholar

    [16]

    Ying G R, Wei Q, Shen X, Han S S 2008 Opt. Commun. 281 5130Google Scholar

    [17]

    Zhang C, Gong W L, Han S S 2013 Appl. Phys. Lett. 102 021111Google Scholar

    [18]

    Bo Z W, Gong W L, Han S S 2016 Chin. Opt. Lett. 14 070301Google Scholar

    [19]

    Katz O, Small E, Silberberg Y 2012 Nat. Photonics 6 549Google Scholar

    [20]

    Cheng J, Han S S 2004 Phys. Rev. Lett. 92 093903Google Scholar

    [21]

    Yu H, Lu R H, Han S S, Xie H L, Du G H, Xiao T Q, Zhu D M 2016 Phys. Rev. Lett. 117 113901Google Scholar

    [22]

    林洁, 程静 2010 光学学报 30 2912Google Scholar

    Lin J, Cheng J 2010 Acta Opt. Sin. 30 2912Google Scholar

    [23]

    Lei Z, Wang C F, Zhang D W, Wang L X, Gong W L 2017 IEEE Photonics J. 9 1

    [24]

    Wang H, Han S S 2012 Europhys. Lett. 98 24003Google Scholar

    [25]

    Zhu R G, Yu H, Tan Z J, Lu R H, Han S S, Huang Z F, Wang J 2020 Opt. Express 28 17556Google Scholar

    [26]

    Zheng G A, Horstmeyer R, Yang C H 2013 Nat. Photonics 7 739Google Scholar

    [27]

    孙佳嵩, 张玉珍, 陈钱, 左超 2016 光学学报 36 1011005Google Scholar

    Sun J S, Zhang Y Z, Chen Q, Zuo C 2016 Acta Opt. Sin. 36 1011005Google Scholar

    [28]

    Liu H L, Cheng J, Han S S 2007 J. Appl. Phys. 102 103102Google Scholar

    [29]

    Loh N T D, Eisebitt S, Flewett S, Elser V 2010 Phys. Rev. E 82 061128Google Scholar

  • [1] 刘睿泽, 祝玉鹏, 周新隆, 米沼锞, 吴承哲, 秦俏华, 柯常军, 史祎诗. 基于像素不扩展视觉密码的光学彩色脆弱水印. 物理学报, doi: 10.7498/aps.73.20231652
    [2] 潘新宇, 毕筱雪, 董政, 耿直, 徐晗, 张一, 董宇辉, 张承龙. 叠层相干衍射成像算法发展综述. 物理学报, doi: 10.7498/aps.72.20221889
    [3] 赵富, 胡渝曜, 王鹏, 刘军. 偏振复用散射成像. 物理学报, doi: 10.7498/aps.72.20230551
    [4] 单明广, 刘翔宇, 庞成, 钟志, 于蕾, 刘彬, 刘磊. 结合线性回归的离轴数字全息去载波相位恢复算法. 物理学报, doi: 10.7498/aps.71.20211509
    [5] 孙昇, 王超, 史浩东, 付强, 李英超. 分孔径离轴同时偏振超分辨率成像光学系统像差校正. 物理学报, doi: 10.7498/aps.71.20220946
    [6] 陈洁, 周昕, 白星, 李聪, 徐昭, 倪洋. 强散射过程与双随机相位加密过程的等价性分析. 物理学报, doi: 10.7498/aps.70.20201903
    [7] 肖晓, 杜舒曼, 赵富, 王晶, 刘军, 李儒新. 基于赝热光照明的单发光学散斑成像. 物理学报, doi: 10.7498/aps.68.20181723
    [8] 吴佳键, 龚凯, 王聪, 王磊. 相依网络上基于相连边的择优恢复算法. 物理学报, doi: 10.7498/aps.67.20172526
    [9] 高强, 王晓华, 王秉中. 基于宽带立体超透镜的远场超分辨率成像. 物理学报, doi: 10.7498/aps.67.20172608
    [10] 肖俊, 李登宇, 王雅丽, 史祎诗. 并行化叠层成像算法研究. 物理学报, doi: 10.7498/aps.65.154203
    [11] 何林阳, 刘晶红, 李刚. 基于多相组重建的航空图像超分辨率算法. 物理学报, doi: 10.7498/aps.64.114208
    [12] 梁美彦, 张存林. 相位补偿算法对提高太赫兹雷达距离像分辨率的研究. 物理学报, doi: 10.7498/aps.63.148701
    [13] 王治昊, 王雅丽, 李拓, 史祎诗. 基于旋转相位编码与照明光束匹配的叠层衍射成像算法研究. 物理学报, doi: 10.7498/aps.63.164204
    [14] 刘亚文, 陈亦望, 徐鑫, 刘宗信. 基于辅助差分方程的完全匹配层在时域多分辨率分析算法中的应用与性能分析. 物理学报, doi: 10.7498/aps.62.034101
    [15] 周树波, 袁艳, 苏丽娟. 基于双阈值Huber范数估计的图像正则化超分辨率算法. 物理学报, doi: 10.7498/aps.62.200701
    [16] 陈翼男, 金伟其, 赵磊, 赵琳. 基于Poisson-Markov分布最大后验概率的多通道超分辨率盲复原算法. 物理学报, doi: 10.7498/aps.58.264
    [17] 王兆华, 魏志义, 张 杰. 飞秒激光脉冲的频率分辨偏振光学开关法测量研究. 物理学报, doi: 10.7498/aps.54.1194
    [18] 刘福民, 翟宏琛, 杨晓苹. 基于相息图迭代的随机相位加密. 物理学报, doi: 10.7498/aps.52.2462
    [19] 王兆华, 魏志义, 滕 浩, 王 鹏, 张 杰. 飞秒激光脉冲的谐波频率分辨光学开关法测量研究. 物理学报, doi: 10.7498/aps.52.362
    [20] 张西芹, 邢达. 超声调制介质中漫散射光自相关性质研究. 物理学报, doi: 10.7498/aps.50.1914
计量
  • 文章访问数:  306
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-12
  • 修回日期:  2025-03-31
  • 上网日期:  2025-04-02

/

返回文章
返回