搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一阶艾里导数光束的艾里变换

陈嘉昊 高鸿飞 贺坚 王飞 周益民 徐一清 蔡阳健 周国泉

引用本文:
Citation:

一阶艾里导数光束的艾里变换

陈嘉昊, 高鸿飞, 贺坚, 王飞, 周益民, 徐一清, 蔡阳健, 周国泉

Airy transformation of an Airyprime beam

CHEN Jiahao, GAO Hongfei, HE Jian, WANG Fei, ZHOU Yimin, XU Yiqing, CAI Yangjian, ZHOU Guoquan
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 艾里变换是一种能实现高斯光束与艾里光束相互转换的神奇光学变换。一阶艾里导数光束,作为艾里光束的进阶型,在经过艾里变换后会产生怎样的光束?这就是本文所要研究的内容。当艾里系数大于负的横向比例因子时,一阶艾里导数光束的艾里变换在任意一个横向上的光场是偏心艾里光束和偏心一阶艾里导数光束之和。当艾里系数等于负的横向比例因子时,一阶艾里导数光束的艾里变换在任意一个横向上的光场是两个偏心优美厄米-高斯光束之和。此外,分别导出了一阶艾里导数光束经艾里变换后的质心和光束半宽在上述两种情形下的解析表达式。最后,实验上实现了一阶艾里导数光束的艾里变换,并测量了艾里系数对光强分布、质心和光束半宽的影响。一阶艾里导数光束艾里变换的研究拓宽了特殊形态分布光束的获取途径,有望应用于光通信和分束技术等领域。
    As a remarkable optical transformation enabling mutual conversion between Gaussian and Airy beams, the Airy transformation raises intriguing questions when applied to Airyprime beam—an advanced variant of conventional Airy beam. To address this inquiry, this study combines numerical simulations with experimental verification. Results reveal two distinct operational regimes: when the Airy coefficients exceed the negative transverse scale factor, the Airy-transformed optical field of Airyprime beam in any transverse direction becomes equivalent to the superposition of eccentric Airy beam and eccentric Airyprime beam. Conversely, when the Airy coefficients equal the negative transverse scale factor, the transformed optical field equivalently corresponds to the sum of two displaced elegant Hermite-Gaussian beams. Analytical expressions for centroids and beam half width under both regimes have been rigorously derived. Experimental validation through Airy transformation of Airyprime beams systematically measures the Airy coefficients’ influence on intensity distribution, centroid displacement, and beam half width. This investigation establishes a novel methodology for generating complex beam profiles while enhancing the potential application value of such beams in optical communication and beam-splitting technology.
  • [1]

    Zang X, Dan W S, Zhou Y M, Lv H, Wang F, Cai Y J, Zhou G Q 2022Opt. Express 30 3804

    [2]

    Kumari A, Dev V, Pal V 2024Opt. Laser Technol. 168 109387

    [3]

    Yu J, Wang Y P, Bai Z Y, Wu L P, Fu C L, Liu S, Liu Y 2023Opt. Express 31 11053

    [4]

    Yu J, Tong S D, Long H H, Bai Z Y, Wu L P, Liu Y 2024Opt. Express 32 6178

    [5]

    Dan W S, Zang X, Wang F, Zhou Y M, Xu Y Q, Chen R P, Zhou G Q 2022Opt. Express 30 32704

    [6]

    Chen Z, Peng S Y, Zhang Z H, Liu J L, Meng Yang 2024Opt. Lett. 49 6453

    [7]

    Chen D H, Mo Z W, Liang Z H, Jiang J J, Tang H L, Sun Y D, Wang Z Y, Wei Q F, Chen Y R, Deng D M 2024Opt. Commun. 554 130109

    [8]

    Zhao S K, Li J C, Li T Q, Huang X W, Bai Y F, Fu X Q 2024Laser Phys. 34 095001

    [9]

    Zhao S K, Huang X W, Bai Y F, Fu X Q 2024Chaos Soliton Fract. 187 115480

    [10]

    Zhou Y M, Zang X, Dan W S, Wang F, Chen R P, Zhou G Q 2023Opt. Laser Technol. 162 109303

    [11]

    Zang X, Dan W S, Wang F, Zhou Y M, Cai Y J, Zhou G Q 2022Opt. Lett. 47 5654

    [12]

    Zang X, Dan W S, Zhou Y M, Wang F, Cai Y J, Zhou G Q 2023Opt. Lett. 48 912

    [13]

    Wang W X, Mi Z W, Zhang L P, Wang B Y, Han K Z, Lei C X, Man Z S, Ge X L 2023Opt. Commun. 549 129879

    [14]

    Yang S, Yu P X, Wu J W, Zhang X, Xu Z, Man Z S, Ge X L, Fu S G, Lei C X, Chen C D, Deng D M, Zhang L P 2023Opt. Express 31 35685

    [15]

    Zhang L P,Yang S, Li S Y, Man Z S, Ge X L, Lei C X, He S, Zhang W F, Deng D M, Chen C D 2024Chaos Soliton Fract. 181 114506

    [16]

    He J, Dan W S, Zang X, Zhou Y M, Wang F, Cai Y J, Zhou G Q 2024Opt. Laser Technol. 168109932

    [17]

    Zang X, Wang F, Dan W S, Zhou Y, M Zhou G Q 2022Opt. Laser Technol.155 108398

    [18]

    Chen C D, Zhang L P, Yang S, Li S Y, Deng D M 2024Opt. Lett. 49 268

    [19]

    Zheng X Q, Yang Y Z, Liu Y J, Lin X J, Liang Z H, Liu J, Deng D M 2024 Opt. Lett. 49 4393

    [20]

    Jiang Y F, Huang K K, Lu X H 2012Opt. Commun. 285 4840

    [21]

    Jiang Y F, Huang K K, Lu X H 2012J. Opt. Soc. Am. A. 29 1412

    [22]

    Ez-zariy L, Boufalah F, Dalil-Essakali L, Belafhal A 2018Optik 171501

    [23]

    Yaalou M, El Halba E M, Hricha Z, Belafhal A 2019Opt. Quant. Electron. 51 64

    [24]

    Yaalou M, Hricha Z, El Halba E M, Belafhal A 2019Opt. Quant. Electron. 51 308

    [25]

    Yaalou M, Hricha Z, Lazrek M, Belafhal A 2020J. Mod. Opt. 67 771

    [26]

    Yaalou M, Hricha Z, Belafhal A 2020Opt. Quant. Electron. 52 165

    [27]

    Yaalou M, Hricha Z, Belafhal A 2020Opt. Quant. Electron. 52 461

    [28]

    Chu X C, Liu R J, Wang X, Han Z X, Ni Y H 2021 Opt. Appl. 51 473

    [29]

    Zhang Q, Liu Z R, Wang X 2022Results Phys. 35 105389

    [30]

    Huang H Q, Wu Y, Lin Z J, Xu D L, Jiang J J, Mo Z W, Yang H B, Deng D M 2022Wave. Random Complex. DOI10.1080/17455030.2022.2066222

    [31]

    Zhang Q, Liu Z R, Wang X 2022Phys. Scripta 97115502

    [32]

    Zhang Q, Liu Z R, Wang X 2022Optik 251 168477

    [33]

    Tang H L, Fan Z J, Ouyang S G, Mo Z W, Xu D L, Huang H Y, Deng D M 2023Results Phys. 50 106552

    [34]

    Lin Q D, Zhang H, Hu Z Q, Lu X, Lu X Y, Cai Y J, Zhao C L 2023Photonics 10 974

    [35]

    Yaalou M, Hricha Z, Belafhal A 2023Opt. Quant. Electron. 55 875

    [36]

    Yaalou M, Hricha Z, Belafhal A 2023Opt. Quant. Electron. 55 138

    [37]

    Gradshteyn I S, Ryzhik I M 1980Table of integrals, series, and products(New York:Academic Press)

    [38]

    Vallée O, Manuel S 2010Airy Functions and Applications to Physics(London:Imperial College Press).

    [39]

    Martínez-Herrero R, Mejías P M 1993Opt. Lett. 18 1669

    [40]

    Nemes G, Serna J 1998OSA TOPS 17 200

    [41]

    Mei Z R, Zhao D M 2005Appl. Opt. 44 1381

    [42]

    Deng D M 2005Phys. Lett. A 341 352

    [43]

    Liu F, Ji X L 2011Acta Phys. Sin. 60 014216(in Chinese)[刘飞,季小玲2011物理学报 60 014216]

    [44]

    Yu J Y, Chen Y H, Cai Y J 2016Acta Phys. Sin. 65 214202(in Chinese)[余佳益,陈亚红,蔡阳健2016物理学报 65 214202]

    [45]

    Mihoubi K, Bencheikh A, Manallah A 2018Opt. Laser. Technol. 9 191

  • [1] 陆万利. 锥角调制的圆艾里涡旋光束构建光学针. 物理学报, doi: 10.7498/aps.73.20240878
    [2] 宁啸坤, 耿滔. 频谱非对称包络调制的圆对称艾里光束的传播特性研究. 物理学报, doi: 10.7498/aps.71.20220019
    [3] 张霞萍. 自由空间中时空复变量自减速艾里拉盖尔高斯光束的相互作用. 物理学报, doi: 10.7498/aps.69.20191272
    [4] 朱一帆, 耿滔. 谐振腔内的高质量圆对称艾里光束的产生方法. 物理学报, doi: 10.7498/aps.69.20191088
    [5] 陈卫军, 宋德, 李野, 王新, 秦旭磊, 刘春阳. 竞争型非线性介质中艾里-高斯光束交互作用的调控. 物理学报, doi: 10.7498/aps.68.20190042
    [6] 朱洁, 朱开成. 像散正弦-高斯光束的分数傅里叶变换与椭圆空心光束产生. 物理学报, doi: 10.7498/aps.65.204204
    [7] 龚宁, 朱开成, 夏辉. 四瓣高斯光束的Gyrator变换性质和矩形空心光束的产生. 物理学报, doi: 10.7498/aps.65.124204
    [8] 朱坤占, 贾维国, 张魁, 于宇, 张俊萍. 拉曼增益和自陡峭效应对艾里脉冲传输特性的影响. 物理学报, doi: 10.7498/aps.65.074204
    [9] 朱坤占, 贾维国, 张魁, 于宇, 张俊萍, 门克内木乐. 在反常色散区艾里脉冲与光孤子相互作用规律的研究. 物理学报, doi: 10.7498/aps.65.024208
    [10] 陈卫军, 卢克清, 惠娟利, 张宝菊. 饱和非线性介质中艾里-高斯光束的传输与交互作用. 物理学报, doi: 10.7498/aps.65.244202
    [11] 朱开成, 唐慧琴, 郑小娟, 唐英. 广义双曲正弦-高斯光束的Gyrator变换性质和暗空心光束产生. 物理学报, doi: 10.7498/aps.63.104210
    [12] 罗朝明, 陈世祯, 凌晓辉, 张进, 罗海陆. 高阶邦加球上柱矢量光束的变换. 物理学报, doi: 10.7498/aps.63.154203
    [13] 张泽, 刘京郊, 张鹏, 倪培根, Prakash Jai, 胡洋, 姜东升, Christodoulides Demetrios N, 陈志刚. 多艾里光束合成自聚焦光束的实验实现. 物理学报, doi: 10.7498/aps.62.034209
    [14] 刘向丽, 李赞, 胡易俗. 无线传感网中基于质心的高效坐标压缩算法. 物理学报, doi: 10.7498/aps.62.070201
    [15] 任志君, 吴琼, 周卫东, 吴根柱, 施逸乐. 空间诱导产生艾里-贝塞尔光弹研究. 物理学报, doi: 10.7498/aps.61.174207
    [16] 欧军, 江月松, 黎芳, 刘丽. 拉盖尔-高斯光束在界面反射和折射的质心偏移特性研究. 物理学报, doi: 10.7498/aps.60.114203
    [17] 杨爱林, 李晋红, 吕百达. 大气湍流中光束束宽扩展和角扩展的比较研究. 物理学报, doi: 10.7498/aps.58.2451
    [18] 吴 平, 吕百达, 陈天禄. 光束分数傅里叶变换的Wigner分布函数分析方法. 物理学报, doi: 10.7498/aps.54.658
    [19] 邹其徽, 吕百达. 等束宽超短脉冲光束的远场特性. 物理学报, doi: 10.7498/aps.54.5642
    [20] 肖 峻, 吕百达, 张 彬. 随机位相板对激光束的变换特性. 物理学报, doi: 10.7498/aps.48.1891
计量
  • 文章访问数:  46
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 上网日期:  2025-04-24

/

返回文章
返回